New developments for complete experiments

Yannick Wunderlich

HISKP, University of Bonn

June 19, 2024

Introduction: Importance of spin-reactions

) Reactions with spin (e.g. photoproduction) useful in classic N-physics, but also for modern physics-topics that go beyond this:

Introduction: Importance of spin-reactions

) Reactions with spin (e.g. photoproduction) useful in classic N^ -physics, but also for modern physics-topics that go beyond this:

- *) 'T-matrix' \mathcal{T}_{fi} parameterized by $N_{\mathcal{A}}$ spin-amplitudes $\{b_i, i = 1, \dots, N_{\mathcal{A}}\}$
- *) The usual reactions under study are:
 - Pion-Nucleon (πN -) scattering: $\pi N \longrightarrow \pi N$ (2 spin-amplitudes)
 - Pion photoproduction: $\gamma N \longrightarrow \pi N$ (4 spin-amplitudes)
 - Pion electroproduction: $eN \longrightarrow e'\pi N$ (6 spin-amplitudes)
 - 2-Pion photoproduction: $\gamma N \longrightarrow \pi \pi N$ (8 spin-amplitudes)

^{- ...}

Generic case:

Photoproduction:

- *) General meson-production reaction: $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:
 - \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
 - N: target-nucleon,
 - $\{\varphi_i\}$: one or multiple meson(s),
 - B: recoil (spin 1/2-) baryon.

Generic case:

Photoproduction:

*) General meson-production reaction:

 $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:

- \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
- N: target-nucleon,
- $\{\varphi_i\}$: one or multiple meson(s),
- B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\begin{split} \mathcal{T}_{fi} &= \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N, \\ &- \kappa_i \left(\{ p_j \}, \{ \sigma_i \} \right): \text{spin-kinem. operators,} \\ &- b_i \left(\Omega_2^{n_f} \right): \text{spin ('transversity') ampl.'s,} \\ &- \Omega_2^{n_f}: \text{ phase-space for } 2 \to n_f\text{-reaction.} \end{split}$$

Generic case:

Photoproduction:

*) General meson-production reaction:

 $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:

- \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
- N: target-nucleon,
- $\{\varphi_i\}$: one or multiple meson(s),
- B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\mathcal{T}_{fi} = \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N,$$

- $\kappa_i \left(\left\{ p_j \right\}, \left\{ \sigma_i \right\} \right)$: spin-kinem. operators, - $b_i \left(\Omega_2^{n_f} \right)$: spin ('transversity') ampl.'s, - $\Omega_2^{n_f}$: phase-space for $2 \rightarrow n_f$ -reaction.
- *) The number of amplitudes N_A is determined from *spin-multiplicities*:

 $N_{\mathcal{A}} = \boldsymbol{n}_{\mathcal{P}} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi_{1}} \dots \boldsymbol{n}_{\varphi_{\tilde{n}}} \boldsymbol{n}_{B},$

with additional factor of (1/2) in case of a $2 \rightarrow 2$ reaction (parity!)

Generic case:

Photoproduction:

- *) General meson-production reaction: $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:
 - \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
 - N: target-nucleon,
 - $\{\varphi_i\}$: one or multiple meson(s),
 - B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\mathcal{T}_{fi} = \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N,$$

- $\kappa_i (\{p_j\}, \{\sigma_i\})$: spin-kinem. operators, - $b_i (\Omega_2^{n_f})$: spin ('transversity') ampl.'s, - $\Omega_2^{n_f}$: phase-space for $2 \rightarrow n_f$ -reaction.
- *) The number of amplitudes N_A is determined from *spin-multiplicities*:

 $N_{\mathcal{A}} = \boldsymbol{n}_{\mathcal{P}} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi_{1}} \dots \boldsymbol{n}_{\varphi_{\tilde{n}}} \boldsymbol{n}_{B},$

with additional factor of (1/2) in case of a $2 \rightarrow 2$ reaction (parity!)

*) Produce one pseudoscalar meson φ : $\gamma N \rightarrow \varphi B.$

*) Then:
$$N_{\mathcal{A}} = \frac{1}{2} (\boldsymbol{n}_{\gamma} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi} \boldsymbol{n}_{B})$$

= $\frac{1}{2} (2 \times 2 \times 1 \times 2) = \underline{4}$.

*) We have:

$$\mathcal{T}_{\text{fi}} = \chi_B^{\dagger} [\kappa_1 b_1 + \kappa_2 b_2 + \kappa_3 b_3 \\ + \kappa_4 b_4] \chi_N, \text{ where:}$$

- $b_i = b_i(W, \theta)$: transversity amplitudes.

Generic case:

- *) General meson-production reaction: $\mathcal{P}N \rightarrow \{\varphi_i\} B$, with:
 - \mathcal{P} : 'probe'-particle $(\pi, \gamma, \gamma^*, \ldots)$,
 - N: target-nucleon,
 - $\{\varphi_i\}$: one or multiple meson(s),
 - B: recoil (spin 1/2-) baryon.
- *) One can always expand:

$$\mathcal{T}_{fi} = \chi_B^{\dagger} \left[\sum_{k=1}^{N_A} \kappa_k b_k \left(\Omega_2^{n_f} \right) \right] \chi_N,$$

- κ_i ({ p_j }, { σ_i }): spin-kinem. operators, - b_i ($\Omega_2^{n_f}$): spin ('transversity') ampl.'s, - $\Omega_2^{n_f}$: phase-space for 2 \rightarrow n_f -reaction.
- *) The number of amplitudes N_A is determined from *spin-multiplicities*:

 $N_{\mathcal{A}} = \boldsymbol{n}_{\mathcal{P}} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi_{1}} \dots \boldsymbol{n}_{\varphi_{\tilde{n}}} \boldsymbol{n}_{B},$

with additional factor of (1/2) in case of a $2 \rightarrow 2$ reaction (parity!)

Photoproduction:

*) Produce one pseudoscalar meson φ : $\gamma N \rightarrow \varphi B.$

*) Then:
$$N_{\mathcal{A}} = \frac{1}{2} (\boldsymbol{n}_{\gamma} \boldsymbol{n}_{N} \boldsymbol{n}_{\varphi} \boldsymbol{n}_{B})$$

= $\frac{1}{2} (2 \times 2 \times 1 \times 2) = \underline{4}$.

*) We have:

$$\begin{aligned} \mathcal{T}_{fi} &= \chi_B^{\dagger} [\kappa_1 b_1 + \kappa_2 b_2 + \kappa_3 b_3 \\ &+ \kappa_4 b_4] \chi_N, \text{ where:} \\ - b_i &= b_i (W, \theta): \text{ transversity amplitudes.} \end{aligned}$$

- *) { $\kappa_1, \ldots, \kappa_4$ } are complicated, e.g.: $\kappa_1 = \frac{(\hat{q} \cdot \hat{e})}{\sqrt{2} \sin^2 \theta} \left[e^{-i\frac{\theta}{2}} \left(\hat{k} \cdot \hat{\sigma} \right) - e^{i\frac{\theta}{2}} \left(\hat{q} \cdot \hat{\sigma} \right) \right]$ $\kappa_2 = \ldots$, where:
 - \hat{k}, \hat{q} : photon- and meson momentum,
 - $\hat{\epsilon}$: γ -polarization,
 - $\hat{\boldsymbol{\sigma}} = (\sigma_x, \sigma_y, \sigma_z)^T$: Pauli-matrices,
 - W: CMS-energy,
 - θ : CMS scattering-angle.

Polarization observables

<u>Generic case:</u> Observables defined as *bilinear forms*:

 $\begin{aligned} \mathcal{O}^{\alpha} &= \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_{i}^{*} \tilde{\Gamma}_{ij}^{\alpha} b_{j}, \\ \text{for } \alpha &= 1, \dots, N_{\mathcal{A}}^{2}. \\ (\boldsymbol{c}^{\alpha}: \text{ normaliz. factors}) \end{aligned}$

- *) The $\tilde{\Gamma}^{\alpha}$ are a set of complete, orthogonal complex $N_{\mathcal{A}} \times N_{\mathcal{A}}$ -matrices ('Clifford algebra')
- *) The $\tilde{\Gamma}^{\alpha}$ can be decomposed into classes according to their *shape*

Polarization observables

<u>Generic case:</u> Observables defined as *bilinear forms*:

$$\mathcal{O}^{\alpha} = \boldsymbol{c}^{\alpha} \sum_{i,j=1}^{N_{\mathcal{A}}} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j,$$

for $\alpha = 1, \dots, N_{\mathcal{A}}^2$. (\boldsymbol{c}^{α} : normaliz. factors)

*) The $\tilde{\Gamma}^{\alpha}$ are a set of complete, orthogonal complex $N_{\mathcal{A}} \times N_{\mathcal{A}}$ -matrices ('Clifford algebra')

*) The $\tilde{\Gamma}^{\alpha}$ can be decomposed into classes according to their *shape*

Photoproduction observable	Class
$\sigma_0 = rac{1}{2} \left(b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2 ight)$	
$-\check{\Sigma} = rac{1}{2} \left(b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2 ight)$	S
$-\check{T} = \frac{1}{2} \left(- b_1 ^2 + b_2 ^2 + b_3 ^2 - b_4 ^2 \right)$	
$\check{P} = rac{1}{2} \left(- b_1 ^2 + b_2 ^2 - b_3 ^2 + b_4 ^2 ight)$	
$\mathcal{O}_{1+}^{a} = b_{1} b_{3} \sin \phi_{13} + b_{2} b_{4} \sin \phi_{24} = \mathrm{Im} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2} \right] = -\check{G}$	
$\mathcal{O}_{1-}^{a} = b_{1} b_{3} \sin \phi_{13} - b_{2} b_{4} \sin \phi_{24} = \operatorname{Im} \left[b_{3}^{*} b_{1} - b_{4}^{*} b_{2} \right] = \breve{F}$	$a=\mathcal{BT}$
$\mathcal{O}^{a}_{2+} = b_{1} b_{3} \cos \phi_{13} + b_{2} b_{4} \cos \phi_{24} = \operatorname{Re} \left[b_{3}^{*} b_{1} + b_{4}^{*} b_{2} \right] = -\check{E}$	
$\mathcal{O}_{2-}^{a} = b_{1} b_{3} \cos \phi_{13} - b_{2} b_{4} \cos \phi_{24} = \operatorname{Re} \left[b_{3}^{*} b_{1} - b_{4}^{*} b_{2} \right] = \check{H}$	
$\mathcal{O}_{1+}^{b} = b_1 b_4 \sin \phi_{14} + b_2 b_3 \sin \phi_{23} = \mathrm{Im} \left[b_4^* b_1 + b_3^* b_2 \right] = \check{O}_{z'}$	
$\mathcal{O}_{1-}^{b} = b_1 b_4 \sin \phi_{14} - b_2 b_3 \sin \phi_{23} = \operatorname{Im} \left[b_4^* b_1 - b_3^* b_2 \right] = -\check{C}_{x'}$	$b = \mathcal{BR}$
$\mathcal{O}_{2+}^{b} = b_1 b_4 \cos \phi_{14} + b_2 b_3 \cos \phi_{23} = \operatorname{Re} \left[b_4^* b_1 + b_3^* b_2 \right] = -\check{C}_{z'}$	
$\mathcal{O}_{2-}^{b} = b_1 b_4 \cos \phi_{14} - b_2 b_3 \cos \phi_{23} = \operatorname{Re} \left[b_4^* b_1 - b_3^* b_2 \right] = -\check{O}_{x'}$	
$\mathcal{O}_{1+}^{c} = b_{1} b_{2} \sin \phi_{12} + b_{3} b_{4} \sin \phi_{34} = \mathrm{Im} \left[b_{2}^{*} b_{1} + b_{4}^{*} b_{3} \right] = -\check{L}_{x'}$	
$\mathcal{O}_{1-}^{c} = b_{1} b_{2} \sin \phi_{12} - b_{3} b_{4} \sin \phi_{34} = \mathrm{Im} \left[b_{2}^{*} b_{1} - b_{4}^{*} b_{3} \right] = -\check{T}_{z'}$	$c=\mathcal{T}\mathcal{R}$
$\mathcal{O}_{2+}^{c} = b_{1} b_{2} \cos \phi_{12} + b_{3} b_{4} \cos \phi_{34} = \operatorname{Re} \left[b_{2}^{*} b_{1} + b_{4}^{*} b_{3} \right] = -\check{L}_{z'}$	
$\mathcal{O}_{2-}^{c} = b_{1} b_{2} \cos \phi_{12} - b_{3} b_{4} \cos \phi_{34} = \operatorname{Re} \left[b_{2}^{*} b_{1} - b_{4}^{*} b_{3} \right] = \check{T}_{x'}$	

<u>CEA</u>: What are the minimal subsets of the observables \mathcal{O}^{α} , which allow for the unique extraction of the amplitudes b_i up to one unknown overall phase $\phi(\Omega_2^{n_f})$?

- *) Analysis operates on each 'bin' in $\Omega_2^{n_f}$ individually.
- *) Disregard measurement uncertainty!

<u>CEA</u>: What are the minimal subsets of the observables \mathcal{O}^{α} , which allow for the unique extraction of the amplitudes b_i up to one unknown overall phase $\phi(\Omega_2^{n_f})$?

- *) Analysis operates on each 'bin' in $\Omega_2^{n_f}$ individually.
- *) Disregard measurement uncertainty!
 - *) Initial standard assumption: the moduli $|b_1|, |b_2|, \ldots, |b_N|$ are already known from a certain subset of N_A 'diagonal' observables.
 - \Rightarrow Have to determine a minimal set of relative phases $\phi_{ij} := \phi_i \phi_j$ $(b_j = |b_j| e^{i\phi_j})$

<u>CEA</u>: What are the minimal subsets of the observables \mathcal{O}^{α} , which allow for the unique extraction of the amplitudes b_i up to one unknown overall phase $\phi(\Omega_2^{n_f})$?

- *) Analysis operates on each 'bin' in $\Omega_2^{n_f}$ individually.
- *) Disregard measurement uncertainty!
 - *) Initial <u>standard assumption</u>: the moduli |b₁|, |b₂|,..., |b_N| are already known from a certain subset of N_A 'diagonal' observables.
 ⇒ Have to determine a minimal set of relative phases φ_{ii} := φ_i φ_i (b_i = |b_i| e^{iφ_j})
 - *) From 'heuristic' arguments: complete sets have minimal length of $2N_A$ observables. \hookrightarrow We know how many observables we have to select. But which ones?

<u>CEA</u>: What are the minimal subsets of the observables \mathcal{O}^{α} , which allow for the unique extraction of the amplitudes b_i up to one unknown overall phase $\phi(\Omega_2^{n_f})$?

- *) Analysis operates on each 'bin' in $\Omega_2^{n_f}$ individually.
- *) Disregard measurement uncertainty!
 - *) Initial standard assumption: the moduli |b₁|, |b₂|,..., |b_N| are already known from a certain subset of N_A 'diagonal' observables.
 ⇒ Have to determine a minimal set of relative phases φ_{ij} := φ_i φ_j (b_j = |b_j| e^{iφ_j})
 - *) From 'heuristic' arguments: complete sets have minimal length of $2N_A$ observables. \hookrightarrow We know how many observables we have to select. But which ones?
- *) Simplest (formal) solution: $\mathcal{O}^{\alpha} = \mathbf{c}^{\alpha} \sum_{i,j=1}^{N} b_i^* \tilde{\Gamma}_{ij}^{\alpha} b_j$ can be 'inverted' (using the completeness of the $\tilde{\Gamma}$ -matrices): $b_i^* b_j = \frac{1}{\tilde{N}} \sum_{\alpha=1}^{N_{\mathcal{A}}^2} \left(\tilde{\Gamma}_{ij}^{\alpha}\right)^* \left(\frac{\mathcal{O}^{\alpha}}{\mathbf{c}^{\alpha}}\right)$.

⇒ Obtain moduli from $|b_i| = \sqrt{b_i^* b_i}$ and rel.-phases from a 'minimal' set of $b_i^* b_j$ ⇒ Obtain (quite large) over-complete set { \mathcal{O}^{α} } determined via the RHS

Complete experiments

Ře

Ře

Truncated partial-wave analysis (TPWA)

<u>Generic case:</u> partial-wave exp. for $2 \rightarrow 2$ spin-reaction in helicity-formalism:

$$\mathcal{T}_{\mu_1\mu_2,\lambda_1\lambda_2}(s,t) = e^{i(\lambda-\mu)\phi}\sum_{j=\mathsf{max}(|\lambda|,|\mu|)}^\infty (2j+1)\mathcal{T}_{\mu,\lambda}^j(s) d_{\mu,\lambda}^j(heta),$$

where $\lambda := \lambda_1 - \lambda_2$, $\mu := \mu_1 - \mu_2$ and $\{b_i\} \Leftrightarrow \{H_i\} = \{\mathcal{T}_{\pm\pm,\pm\pm}\}.$

Truncated partial-wave analysis (TPWA)

<u>Generic case</u>: partial-wave exp. for $2 \to 2$ spin-reaction in helicity-formalism: $\mathcal{T}_{\mu_1\mu_2,\lambda_1\lambda_2}(s,t) = e^{i(\lambda-\mu)\phi} \sum_{j=\max(|\lambda|,|\mu|)}^{\infty} (2j+1)\mathcal{T}_{\mu,\lambda}^j(s) d_{\mu,\lambda}^j(\theta),$ where $\lambda := \lambda_1 - \lambda_2, \ \mu := \mu_1 - \mu_2$ and $\{b_i\} \Leftrightarrow \{H_i\} = \{\mathcal{T}_{\pm\pm,\pm\pm}\}.$ <u>E.g.</u>: for photoproduction $(N_{\mathcal{A}} = 4)$, one has the multipole-series $(x = \cos\theta)$: $F_1(W,\theta) = \sum_{\ell=0}^{\infty\ell_{\max}} [\ell M_{\ell+}(W) + E_{\ell+}(W)] P'_{\ell+1}(x) + [(\ell+1) M_{\ell-}(W) + E_{\ell-}(W)] P'_{\ell-1}(x),$

$$F_{4}(W,\theta) = \sum_{\ell=2}^{\not \infty \ell_{\max}} \left[M_{\ell+}(W) - E_{\ell+}(W) - M_{\ell-}(W) - E_{\ell-}(W) \right] P_{\ell}^{''}(x), \text{ where } \{F_{i}\} \Leftrightarrow \{b_{i}\},$$

*) 4 $\ell_{\rm max}$ complex multipoles present in every truncation-order $\ell_{\rm max} \geq 1$:

$$\mathcal{M}_{\ell} = \{ E_{0+}, E_{1+}, M_{1+}, M_{1-}, E_{2+}, E_{2-}, \dots, M_{\ell_{\max}} \}.$$

(Generic case: $N_{\mathcal{A}} * \ell_{\max}$ waves for every order $\ell_{\max} \geq 1$.)

*) \mathcal{M}_{ℓ} determined up to 1 overall phase $\Rightarrow 8\ell_{max} - 1$ real par.'s in TPWA.

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

Complete experiments: 'measurement formulation'

A *complete experiment* is a set of measurements that is sufficient to predict all other possible experiments. For polarization experiments, this means a subset of all existing polarization observables that is capable of determining all the remaining observables. cf.: [L. Tiator, AIP Conf. Proc. **1432**, no.1, 162-167 (2012)]

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

Predict all remaining observables from determined amplitudes \checkmark

 $\Downarrow \uparrow$

Use set of 'inversion formulas', which yield unique solutions using *all* observables (\checkmark , for CEA)

Complete experiments: 'measurement formulation'

A *complete experiment* is a set of measurements that is sufficient to predict all other possible experiments. For polarization experiments, this means a subset of all existing polarization observables that is capable of determining all the remaining observables. cf.: [L. Tiator, AIP Conf. Proc. **1432**, no.1, 162-167 (2012)]

A complete experiment is a minimum subset selected from entire set of N_A^2 polarization observables that allows for an unambiguous extraction of the complex amplitudes describing the process (either b_i or \mathcal{M}_ℓ), up to one unknown overall phase ($\phi(W, \theta)$ for the CEA, $\phi(W)$ for the TPWA).

 $\downarrow \uparrow$

Predict all remaining observables from determined amplitudes \checkmark

Use set of 'inversion formulas', which yield unique solutions using *all* observables (\checkmark , for CEA)

Complete experiments: 'measurement formulation'

A *complete experiment* is a set of measurements that is sufficient to predict all other possible experiments. For polarization experiments, this means a subset of all existing polarization observables that is capable of determining all the remaining observables. cf.: [L. Tiator, AIP Conf. Proc. **1432**, no.1, 162-167 (2012)]

 $\hookrightarrow \exists$ solution-methods for both CEA and TPWA

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

<u>'Geometrical (graphical) analog'</u>: Represent each amplitude b_1, \ldots, b_{N_A} by a point and every product $b_j^* b_i$, or rel.-phase ϕ_{ij} , by a *line connecting points* 'i' and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^* b_j] \propto \cos \phi_{ij}$ by a *solid line*, \hookrightarrow Represent every Im $[b_i^* b_j] \propto \sin \phi_{ij}$ by a *dashed line*.

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

<u>'Geometrical (graphical) analog'</u>: Represent each amplitude b_1, \ldots, b_{N_A} by a point and every product $b_j^* b_i$, or rel.-phase ϕ_{ij} , by a line connecting points 'i' and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^* b_j] \propto \cos \phi_{ij}$ by a solid line, \hookrightarrow Represent every Im $[b_i^* b_j] \propto \sin \phi_{ij}$ by a dashed line.

Moravcsik's Theorem (modified): The thus constructed graph is *fully complete*, i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

<u>'Geometrical (graphical) analog'</u>: Represent each amplitude b_1, \ldots, b_{N_A} by a point and every product $b_j^* b_i$, or rel.-phase ϕ_{ij} , by a *line connecting points* 'i' and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^* b_j] \propto \cos \phi_{ij}$ by a *solid line*, \hookrightarrow Represent every Im $[b_i^* b_j] \propto \sin \phi_{ij}$ by a *dashed line*.

Moravcsik's Theorem (modified): The thus constructed graph is *fully complete*, i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

(i) the graph is fully *connected* and all points have to Example: *Example: Example:*

- all continuous ambiguities are resolved,
- existence of *consistency relation* is ensured.
 - \hookrightarrow crucial for resolving discrete ambiguities

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C **102**, no.3, 034605 (2020)], based on [Moravcsik, J. Math. Phys. **26**, 211 (1985).]:

<u>'Geometrical (graphical) analog'</u>: Represent each amplitude b_1, \ldots, b_{N_A} by a point and every product $b_j^* b_i$, or rel.-phase ϕ_{ij} , by a *line connecting points* 'i' and 'j'. Furthermore: \hookrightarrow Represent every Re $[b_i^* b_j] \propto \cos \phi_{ij}$ by a *solid line*, \hookrightarrow Represent every Im $[b_i^* b_j] \propto \sin \phi_{ij}$ by a *dashed line*.

Moravcsik's Theorem (modified): The thus constructed graph is *fully complete*, i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

(i) the graph is fully *connected* and all points have to Example: have *order two* (i.e. are attached to two lines):

- all continuous ambiguities are resolved,
- existence of *consistency relation* is ensured.
 - \hookrightarrow crucial for resolving discrete ambiguities

(ii) the graph has to have an *odd* number of dashed lines, as well as *any* number of solid lines:

- all discrete ambiguities are resolved.

is complete

Moravcsik's Th. applied to photoproduction $(N_A = 4)$

For $N_{\mathcal{A}} = 4$, one gets $\frac{(N_{\mathcal{A}}-1)!}{2} = \frac{3!}{2} = 3$ possible graph-topologies :

 \hookrightarrow Each of these topologies can be used as a starting point to derive complete sets, ...

Moravcsik's Th. applied to photoproduction $(N_A = 4)$

 $\Rightarrow \mathsf{Extract} \; \mathsf{'Moravcsik-complete'} \; \mathsf{set:} \; \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{H}, \check{L}_{x'}, \check{T}_{z'}, \check{L}_{z'}, \check{T}_{x'} \}.$

Moravcsik's Th. applied to photoproduction $(N_A = 4)$

Two-meson photoproduction

- *) 8 amplitudes vs. 64 observables
- *) Typical complete graph:

*) [Phys. Rev. C 103, 1, 014607 (2021)]

Two-meson photoproduction

- *) 8 amplitudes vs. 64 observables
- *) Typical complete graph:

*) [Phys. Rev. C 103, 1, 014607 (2021)]

Vector-meson photoproduction

- *) 12 amp.'s vs. 144 observables
- *) Example for start-topology:

*) No. of start-topologies: $\frac{(N_A-1)!}{2} = 19958400, \text{ (demanding!)}$

Two-meson photoproduction

- 8 amplitudes vs. 64 observables *)
- Typical complete graph:

*) [Phys. Rev. C 103, 1, 014607 (2021)]

Vector-meson photoproduction

- 12 amp.'s vs. 144 observables *)
- Example for start-topology: *)

*) No. of start-topologies: $\frac{(N_{A}-1)!}{2} = 19958400$, (demanding!) Observation: Moravcsik-complete sets tend to be slightly over-complete, i.e. to contain more than $2N_A$ observables, for problems with $N_A \ge 4$ amplitudes

Two-meson photoproduction

- 8 amplitudes vs. 64 observables *)
- Typical complete graph:

sin(ϕ_{se}) $\sim \sin(\phi_{14})$ P. Kroenert et al

[Phys. Rev. C 103, 1, 014607 (2021)]

Vector-meson photoproduction

- 12 amp.'s vs. 144 observables *)
- Example for start-topology: *)

*) No. of start-topologies: $\frac{(N_{A}-1)!}{2} = 19958400$, (demanding!) → Improvement using new graphs, containing additional directional information.

cf.: [YW, Phys. Rev. C 104, no.4, 045203 (2021)]

*) Example: photoproduction ($N_{\mathcal{A}} = 4$). Consider group $S\left\{\sigma_{0}, \check{\Sigma}, \check{T}, \check{P}\right\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_{S}} \propto \pm |b_{1}|^{2} \pm |b_{2}|^{2} \pm |b_{3}|^{2} + |b_{4}|^{2}$.

*) Example: photoproduction ($N_{\mathcal{A}} = 4$). Consider group $S\left\{\sigma_{0}, \check{\Sigma}, \check{T}, \check{P}\right\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_{S}} \propto \pm |b_{1}|^{2} \pm |b_{2}|^{2} \pm |b_{3}|^{2} + |b_{4}|^{2}$.

 \Rightarrow Use $t := \tan\left(\frac{\theta}{2}\right)$ and write linear factorizations (for finite ℓ_{\max}):

$$egin{aligned} b_1\left(heta
ight) &\propto rac{\exp\left(-irac{ heta}{2}
ight)}{(1+t^2)^{\ell_{ ext{max}}}} \prod_{j=1}^{2\ell_{ ext{max}}}\left(t+eta_j
ight), \ b_3\left(heta
ight) &\propto rac{\exp\left(-irac{ heta}{2}
ight)}{(1+t^2)^{\ell_{ ext{max}}}} \prod_{i=1}^{2\ell_{ ext{max}}}\left(t+lpha_i
ight), \ b_2(heta) &= b_1(- heta), \ b_4(heta) &= b_3(- heta). \end{aligned}$$

with $4\ell_{\max}$ roots $\{\alpha_k, \beta_j\} \in \mathbb{C}$ equivalent to multipoles: $\{E_{\ell\pm}, M_{\ell\pm}\}$. [A. S. Omelaenko, Sov. J. Nucl. Phys. **34**, 406 (1981)]

*) Example: photoproduction ($N_{\mathcal{A}} = 4$). Consider group $S \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_S} \propto \pm |b_1|^2 \pm |b_2|^2 \pm |b_3|^2 + |b_4|^2$.

 \Rightarrow Use $t := \tan\left(\frac{\theta}{2}\right)$ and write linear factorizations (for finite ℓ_{\max}):

$$egin{aligned} b_1\left(heta
ight) \propto rac{\exp\left(-irac{ heta}{2}
ight)}{(1+t^2)^{\ell_{\mathsf{max}}}} \prod_{j=1}^{2\ell_{\mathsf{max}}} \left(t+eta_j
ight), \ b_3\left(heta
ight) \propto rac{\exp\left(-irac{ heta}{2}
ight)}{(1+t^2)^{\ell_{\mathsf{max}}}} \prod_{i=1}^{2\ell_{\mathsf{max}}} \left(t+lpha_i
ight), \ b_2(heta) = b_1(- heta), \ b_4(heta) = b_3(- heta). \end{aligned}$$

with $4\ell_{\max}$ roots $\{\alpha_k, \beta_j\} \in \mathbb{C}$ equivalent to multipoles: $\{E_{\ell\pm}, M_{\ell\pm}\}$. [A. S. Omelaenko, Sov. J. Nucl. Phys. **34**, 406 (1981)]

 $\hookrightarrow \text{ Study discrete ambiguities of group } \mathcal{S}, \text{ generated by } (i \in \{1, \dots, 2\ell_{\max}\}): \\ (t - \alpha_i^*)(t - \alpha_i) \xrightarrow{\alpha_i \to \alpha_i^*} (t - [\alpha_i^*]^*)(t - \alpha_i^*) = (t - \alpha_i^*)(t - \alpha_i).$

 $\Rightarrow \underline{\text{Surprise:}} all \text{ ambiguites can be resolved using less than } 2N_{\mathcal{A}} = 8 \text{ observables!} \\ [YW, R. Beck and L. Tiator PRC$ **89** $, no.5, 055203 (2014)] \\ [R. L. Workman, et al., PRC$ **95** $, no.1, 015206 (2017)] \\ [YW, arXiv:2008.00514 [nucl-th]] \end{cases}$

*) Example: photoproduction ($N_A = 4$). Consider group $S \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$, i.e. 'diagonal' observables: $\mathcal{O}^{\alpha_s} \propto \pm |b_1|^2 \pm |b_2|^2 \pm |b_3|^2 + |b_4|^2$. \Rightarrow Use $t := \tan\left(\frac{\theta}{2}\right)$ and write linear factorizations (for finite ℓ_{\max}): $b_1\left(heta
ight) \propto rac{\exp\left(-irac{arphi}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\max}}}\prod_{i=1}^{2\epsilon_{\max}}\left(t+eta_j
ight), \; b_3\left(heta
ight) \propto rac{\exp\left(-irac{arphi}{2}
ight)}{\left(1+t^2
ight)^{\ell_{\max}}}\prod_{i=1}^{2\epsilon_{\max}}\left(t+lpha_i
ight),$ $b_2(\theta) = b_1(-\theta), \ b_4(\theta) = b_3(-\theta).$ with $4\ell_{\max}$ roots $\{\alpha_k, \beta_i\} \in \mathbb{C}$ equivalent to multipoles: $\{E_{\ell\pm}, M_{\ell\pm}\}$. [A. S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981)] \hookrightarrow Study discrete ambiguities of group S, generated by $(i \in \{1, \dots, 2\ell_{\max}\})$: $(t - \alpha_i^*)(t - \alpha_i) \xrightarrow{-i} (t - [\alpha_i^*]^*)(t - \alpha_i^*) = (t - \alpha_i^*)(t - \alpha_i).$ Generic observable in CEA Generic observable in TPWA Comment: number of observables needed for 2.0 [ود 1.8 [و 2.0 6 1.8 1.8 completeness has been reduced, but not (!) the 1.6 number of *datapoints*! 14 1.4 -1.0 -0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10 $\cos\theta$ $\cos \theta$

Y. Wunderlich
Testing completeness of photoproduction TPWA

*) I-O studies using model-data (MAID2007, $\gamma p \rightarrow \pi^0 p$), set: $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{F}\}$

Testing completeness of photoproduction TPWA

*) I-O studies using model-data (MAID2007, $\gamma p \rightarrow \pi^0 p$), set: $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{F}\}$

*) Bayesian inference for (real) γp → ηp data, set {σ₀, Σ, Ť, Ĕ, F, Ğ}
 cf.: [P. Kroenert, YW, F. Afzal and A. Thiel, Phys. Rev. C 109, no.4, 045206 (2024)]

Y. Wunderlich

Complete experiments

- 5-dimensional phase-space:

$$\left\{s, t, m_{\varphi_2 B}^2, \Omega_{\varphi_2 B} = (\theta_{\varphi_2 B}, \phi_{\varphi_2 B})\right\}$$

- 8 helicity-configurations:

$$\lambda_{\gamma} = \pm 1$$
, $\lambda_N = \pm \frac{1}{2}$, $\lambda_B = \pm \frac{1}{2}$.

- $\varphi_2 B$ angular-momentum Q.N.'s: $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots, \infty$ and $M = -J, \dots, +J$.

- 5-dimensional phase-space:

$$\left\{s, t, m_{\varphi_2 B}^2, \Omega_{\varphi_2 B} = (\theta_{\varphi_2 B}, \phi_{\varphi_2 B})\right\}$$

- 8 helicity-configurations:

$$\lambda_{\gamma} = \pm 1$$
, $\lambda_N = \pm \frac{1}{2}$, $\lambda_B = \pm \frac{1}{2}$.

-
$$\varphi_2 B$$
 angular-momentum Q.N.'s:
 $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots, \infty$ and $M = -J, \dots, +J$.

[cf. Talk by V. Mathieu (Monday)]

$$\mathcal{A}_{\lambda_{\gamma};\lambda_{N}\lambda_{B}}\left(s,t,m_{\varphi_{2}B}^{2},\Omega_{\varphi_{2}B}\right) = \sum_{J=\frac{1}{2},\frac{3}{2},\dots}^{J_{\max}}\sum_{M=-J}^{+J} \mathcal{T}_{\lambda_{\gamma},M;\lambda_{N}\lambda_{B}}^{(J)}\left(s,t,m_{\varphi_{2}B}^{2}\right) \mathcal{D}_{M,-\lambda_{B}}^{*J}\left(\Omega_{\varphi_{2}B}\right).$$

- 5-dimensional phase-space:

$$\left\{s, t, m_{\varphi_2 B}^2, \Omega_{\varphi_2 B} = (\theta_{\varphi_2 B}, \phi_{\varphi_2 B})\right\}$$

- 8 helicity-configurations:

$$\lambda_{\gamma} = \pm 1$$
, $\lambda_N = \pm \frac{1}{2}$, $\lambda_B = \pm \frac{1}{2}$.

-
$$\varphi_2 B$$
 angular-momentum Q.N.'s:
 $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots, \infty$ and $M = -J, \dots, +J$.

[cf. Talk by V. Mathieu (Monday)]

$$\mathcal{A}_{\lambda_{\gamma};\lambda_{N}\lambda_{B}}\left(s,t,m_{\varphi_{2}B}^{2},\Omega_{\varphi_{2}B}\right) = \sum_{J=\frac{1}{2},\frac{3}{2},\dots}^{J_{\max}} \sum_{M=-J}^{+J} \mathcal{T}_{\lambda_{\gamma},M;\lambda_{N}\lambda_{B}}^{(J)}\left(s,t,m_{\varphi_{2}B}^{2}\right) D_{M,-\lambda_{B}}^{*J}\left(\Omega_{\varphi_{2}B}\right).$$

*) Assume: 8 functions $|\mathcal{A}_{\lambda_{\gamma};\lambda_{N}\lambda_{B}}|^{2}$ uniquely fixed from **8 pol.-measurements**: $\{|\mathcal{A}_{+;++}|^{2}, |\mathcal{A}_{+;+-}|^{2}, \dots, |\mathcal{A}_{-;--}|^{2}\} \Leftrightarrow \{I_{0}, P_{z}, P_{z'}, \mathcal{O}_{zz'}, I^{\odot}, P_{z}^{\odot}, \mathcal{O}_{zz'}^{\odot}, P_{z'}^{\odot}, \mathcal{O}_{zz'}^{\odot}\}.$ \rightarrow Forget dependence on $(\lambda_{\gamma}; \lambda_{N}\lambda_{B})$ from now on (fix $\lambda_{B} = 1/2$ in *D*-fct.)

 \Rightarrow TPWA:

- 5-dimensional phase-space:

$$\left\{s, t, m_{\varphi_2 B}^2, \Omega_{\varphi_2 B} = (\theta_{\varphi_2 B}, \phi_{\varphi_2 B})\right\}$$

- 8 helicity-configurations:

$$\lambda_{\gamma} = \pm 1$$
, $\lambda_N = \pm \frac{1}{2}$, $\lambda_B = \pm \frac{1}{2}$.

- $\varphi_2 B$ angular-momentum Q.N.'s: $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots, \infty$ and $M = -J, \dots, +J$.

[cf. Talk by V. Mathieu (Monday)]

$$\mathcal{A}_{\lambda_{\gamma};\lambda_{N}\lambda_{B}}\left(s,t,m_{\varphi_{2}B}^{2},\Omega_{\varphi_{2}B}\right) = \sum_{J=\frac{1}{2},\frac{3}{2},\dots}^{J_{\max}} \sum_{M=-J}^{+J} \mathcal{T}_{\lambda_{\gamma},M;\lambda_{N}\lambda_{B}}^{(J)}\left(s,t,m_{\varphi_{2}B}^{2}\right) \mathcal{D}_{M,-\lambda_{B}}^{*J}\left(\Omega_{\varphi_{2}B}\right).$$

*) Assume: 8 functions $|\mathcal{A}_{\lambda_{\gamma};\lambda_{N}\lambda_{B}}|^{2}$ uniquely fixed from **8 pol.-measurements**: $\left\{|\mathcal{A}_{+;++}|^{2}, |\mathcal{A}_{+;+-}|^{2}, \dots, |\mathcal{A}_{-;--}|^{2}\right\} \Leftrightarrow \left\{l_{0}, P_{z}, P_{z'}, \mathcal{O}_{zz'}, I^{\odot}, P_{z}^{\odot}, P_{z'}^{\odot}, \mathcal{O}_{zz'}^{\odot}\right\}.$

ightarrow Forget dependence on $(\lambda_{\gamma}; \lambda_N \lambda_B)$ from now on (fix $\lambda_B = 1/2$ in D-fct.)

 $\Rightarrow \text{ Consider discrete partial-wave ambiguities for the squared-modulus function} \\ \mathcal{A}(\Omega_{(\alpha,\beta)}) \mathcal{A}^*(\Omega_{(\alpha,\beta)}).$

 \Rightarrow TPWA:

*) Introduce new angular variables $u:=e^{i\theta_{\varphi_2B}}$ and $v:=e^{i\phi_{\varphi_2B}}$

$$\Rightarrow \mathcal{A}\left(\Omega_{\varphi_{2}B}\right) = \sum_{J,M}^{J_{\max}} \mathcal{T}_{M}^{(J)} \mathcal{D}_{M,-1/2}^{*J}\left(\Omega_{\varphi_{2}B}\right) \equiv \tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}}v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q}.$$

*) Introduce new angular variables $u:=e^{i heta_{arphi_2B}}$ and $v:=e^{i\phi_{arphi_2B}}$

$$\Rightarrow \mathcal{A}\left(\Omega_{\varphi_{2}B}\right) = \sum_{J,M}^{J_{\max}} \mathcal{T}_{M}^{(J)} \mathcal{D}_{M,-1/2}^{*J}\left(\Omega_{\varphi_{2}B}\right) \equiv \tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}} v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q}.$$

*) **Factorize** the amplitude, e.g. for *u*-dependence (also possible for v):

$$\tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}}v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q} \equiv \frac{\boldsymbol{a}_{2J_{\max}}(v)}{u^{J_{\max}}v^{J_{\max}}} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right],$$

*) Introduce new angular variables $u:=e^{i\theta_{\varphi_2B}}$ and $v:=e^{i\phi_{\varphi_2B}}$

$$\Rightarrow \mathcal{A}\left(\Omega_{\varphi_{2}B}\right) = \sum_{J,M}^{J_{\max}} \mathcal{T}_{M}^{(J)} \mathcal{D}_{M,-1/2}^{*J}\left(\Omega_{\varphi_{2}B}\right) \equiv \tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}} v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q}.$$

*) **Factorize** the amplitude, e.g. for *u*-dependence (also possible for v):

$$\begin{split} \tilde{\mathcal{A}}(u,v) &= \frac{1}{u^{J_{\max}}v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q} \equiv \frac{\boldsymbol{a}_{2J_{\max}}(v)}{u^{J_{\max}}v^{J_{\max}}} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right], \\ \Rightarrow \quad \tilde{\mathcal{A}}(u,v) \tilde{\mathcal{A}}^{*}(u,v) &= |\boldsymbol{a}_{2J_{\max}}(v)|^{2} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right] \left[\frac{1}{u} - u_{n}^{*}(v) \right]. \end{split}$$

*) Introduce new angular variables $u:=e^{i\theta_{\varphi_2B}}$ and $v:=e^{i\phi_{\varphi_2B}}$

$$\Rightarrow \mathcal{A}\left(\Omega_{\varphi_{2}B}\right) = \sum_{J,M}^{J_{\max}} \mathcal{T}_{M}^{(J)} D_{M,-1/2}^{*J}\left(\Omega_{\varphi_{2}B}\right) \equiv \tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}} v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q}.$$

*) **Factorize** the amplitude, e.g. for *u*-dependence (also possible for v):

$$\begin{split} \tilde{\mathcal{A}}(u,v) &= \frac{1}{u^{J_{\max}}v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q} \equiv \frac{\boldsymbol{a}_{2J_{\max}}(v)}{u^{J_{\max}}v^{J_{\max}}} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right], \\ \Rightarrow \quad \tilde{\mathcal{A}}(u,v) \tilde{\mathcal{A}}^{*}(u,v) &= |\boldsymbol{a}_{2J_{\max}}(v)|^{2} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right] \left[\frac{1}{u} - u_{n}^{*}(v) \right]. \end{split}$$

*) For every $n \in \{1, \dots, 2J_{\max}\}$, there is a 'choice':

$$\underline{\mathrm{l:}} \ [u - u_n(v)] \ (\mathrm{i.e.:} \ u_n(v) \to u_n(v)) \ \text{or} \ \underline{\mathrm{ll:}} \ \left[\frac{1}{u} - u_n^*(v)\right] \ \left(\mathrm{i.e.:} \ u_n(v) \to \frac{1}{u_n^*(v)}\right)$$

*) Introduce new angular variables $u:=e^{i heta_{arphi_2B}}$ and $v:=e^{i\phi_{arphi_2B}}$

$$\Rightarrow \mathcal{A}\left(\Omega_{\varphi_{2}B}\right) = \sum_{J,M}^{J_{\max}} \mathcal{T}_{M}^{(J)} D_{M,-1/2}^{*J}\left(\Omega_{\varphi_{2}B}\right) \equiv \tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}}v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q}.$$

*) Factorize the amplitude, e.g. for *u*-dependence (also possible for v):

$$\begin{split} \tilde{\mathcal{A}}(u,v) &= \frac{1}{u^{J_{\max}}v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q} \equiv \frac{\boldsymbol{a}_{2J_{\max}}(v)}{u^{J_{\max}}v^{J_{\max}}} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right], \\ \Rightarrow \quad \tilde{\mathcal{A}}(u,v) \tilde{\mathcal{A}}^{*}(u,v) &= |\boldsymbol{a}_{2J_{\max}}(v)|^{2} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right] \left[\frac{1}{u} - u_{n}^{*}(v) \right]. \end{split}$$

*) For every $n \in \{1, \dots, 2J_{\max}\}$, there is a 'choice':

$$\underline{\mathrm{l:}} \ [u - u_n(v)] \ (\mathrm{i.e.:} \ u_n(v) \to u_n(v)) \ \text{or} \ \underline{\mathrm{l!:}} \ \left[\frac{1}{u} - u_n^*(v)\right] \ \left(\mathrm{i.e.:} \ u_n(v) \to \frac{1}{u_n^*(v)}\right)$$

*) Additional constraint: Ambiguity-transformed amplitude has to be a polynomial in *u* and *v*!!

*) Introduce new angular variables $u:=e^{i heta_{arphi_2B}}$ and $v:=e^{i\phi_{arphi_2B}}$

$$\Rightarrow \mathcal{A}\left(\Omega_{\varphi_{2}B}\right) = \sum_{J,M}^{J_{\max}} \mathcal{T}_{M}^{(J)} D_{M,-1/2}^{*J}\left(\Omega_{\varphi_{2}B}\right) \equiv \tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}} v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q}.$$

*) Factorize the amplitude, e.g. for *u*-dependence (also possible for v):

$$\tilde{\mathcal{A}}(u,v) = \frac{1}{u^{J_{\max}}v^{J_{\max}}} \sum_{k,q=0}^{2J_{\max}} \boldsymbol{c}_{k,q} u^{k} v^{q} \equiv \frac{\boldsymbol{a}_{2J_{\max}}(v)}{u^{J_{\max}}v^{J_{\max}}} \prod_{n=1}^{2J_{\max}} \left[u - u_{n}(v) \right],$$

$$\Rightarrow \qquad \tilde{\mathcal{A}}(u,v)\tilde{\mathcal{A}}^*(u,v) = |\boldsymbol{a}_{2J_{\max}}(v)|^2 \prod_{n=1}^{2J_{\max}} [u-u_n(v)] \left[\frac{1}{u}-u_n^*(v)\right].$$

*) For every $n \in \{1, \dots, 2J_{\max}\}$, there is a 'choice':

$$\underline{l:} \ [u-u_n(v)] \ (\text{i.e.:} \ u_n(v) \to u_n(v)) \ \text{or} \ \underline{ll:} \ \left[\frac{1}{u} - u_n^*(v)\right] \ \left(\text{i.e.:} \ u_n(v) \to \frac{1}{u_n^*(v)}\right).$$

*) Additional constraint: Ambiguity-transformed amplitude has to be a polynomial in *u* and *v*!!

\Rightarrow 2-meson TPWA is much better constrained, most likely unique!

cf.: [I. S. Stefanescu, J. Math. Phys. **26** (9), 2141-2160 (1985)] & [W. A. Smith *et al.* [JPAC], Phys. Rev. D **108**, no.7, 076001 (2023)]

Thank You!

Additional Slides

→ One can improve the situation using new kind of graphs, containing additional directional information.
 [YW, Phys. Rev. C 104, no.4, 045203 (2021)]

- → One can improve the situation using new kind of graphs, containing additional directional information. [YW, Phys. Rev. C 104, no.4, 045203 (2021)]
 - *) Example:

 $\Leftrightarrow \text{ complete photoproduction-set } (2N = 8 \text{ obs.'s in combination with 4 'diagonal' obs.'s } \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}): \\ \{\mathcal{O}_{2+}^a, \mathcal{O}_{2-}^a, \mathcal{O}_{1+}^c, \mathcal{O}_{2-}^c\} = \{\check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}\}.$

- → One can improve the situation using new kind of graphs, containing additional directional information. [YW, Phys. Rev. C 104, no.4, 045203 (2021)]
 - *) Example:

 $\begin{array}{l} \Leftrightarrow \text{ complete photoproduction-set } (2N = 8 \text{ obs.'s in } \\ \text{ combination with 4 'diagonal' obs.'s } \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}): \\ \{\mathcal{O}_{2+}^a, \mathcal{O}_{2-}^a, \mathcal{O}_{1+}^c, \mathcal{O}_{2-}^c\} = \{\check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}\}. \end{array}$

- Single-lined arrows: same as in Moravcsik's Theorem
- Double-lined arrows: 'crossed' selection $\mathcal{O}_{1\pm}^c\oplus \mathcal{O}_{2\pm}^c$
- 'Outer' direction \Leftrightarrow 'directional convention' for consistency rel.: $\phi_{12} + \phi_{24} + \phi_{43} + \phi_{31} = 0$.
- Direction of 'inner' arrows: sign of 'ζ-angle' (cf. Figure on the right) in discrete-ambiguity formulas

- → One can improve the situation using new kind of graphs, containing additional directional information. [YW, Phys. Rev. C 104, no.4, 045203 (2021)]
 - *) Example:

 $\begin{array}{l} \Leftrightarrow \text{ complete photoproduction-set } (2N = 8 \text{ obs.'s in combination with 4 'diagonal' obs.'s } \{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}): \\ \{\mathcal{O}_{2+}^a, \mathcal{O}_{2-}^a, \mathcal{O}_{1+}^c, \mathcal{O}_{2-}^c\} = \{\check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}\}. \end{array}$

- Single-lined arrows: same as in Moravcsik's Theorem
- Double-lined arrows: 'crossed' selection $\mathcal{O}_{1\pm}^{c}\oplus \mathcal{O}_{2\pm}^{c}$
- 'Outer' direction \Leftrightarrow 'directional convention' for consistency rel.: $\phi_{12} + \phi_{24} + \phi_{43} + \phi_{31} = 0$.
- Direction of 'inner' arrows: sign of ' ζ -angle' (cf. Figure on the right) in discrete-ambiguity formulas
- $\begin{array}{l} \hookrightarrow \ \underline{\text{Confirm}} \ \text{min. sets of } 2N_{\mathcal{A}}=8 \ \text{for photoproduction ;} \\ \underline{\text{Obtain new}} \ \text{sets of } 2N_{\mathcal{A}}=12 \ \text{for } e^-\text{-production!} \\ \overline{\text{For } N_{\mathcal{A}}>6}, \ \text{sets still (slightly) over-complete } \dots \end{array}$

Physical significance of the overall phase

We have new standard-approaches in place to determine complete experiments, and thus $|b_i|$ and ϕ_{ij} , for reactions with any number of amplitudes N_A !

Physical significance of the overall phase

We have new standard-approaches in place to determine complete experiments, and thus $|b_i|$ and ϕ_{ij} , for reactions with any number of amplitudes N_A !

<u>However</u>: the unknown phase $\phi(\Omega_2^{n_f})$ remains a problem, because:

 \Rightarrow Complete experiment fixes only 'internal spin-structure' $ilde{\mathcal{T}}_{\mathit{fi}}!$

Physical significance of the overall phase

We have new standard-approaches in place to determine complete experiments, and thus $|b_i|$ and ϕ_{ij} , for reactions with any number of amplitudes N_A ! <u>However:</u> the unknown phase $\phi(\Omega_2^{n_i})$ remains a problem, because:

 \Rightarrow Complete experiment fixes only 'internal spin-structure' $\tilde{\mathcal{T}}_{fi}$! The phase has *physical significance*, because:

- (Perfect) knowledge of the phase \Rightarrow project-out partial waves to all orders!

- Analytically continue part. waves away from physical region \Rightarrow unique resonance-poles!

Measure the overall phase in scattering experiments using <u>vortex beams</u> \equiv beams of particles with intrinsic orbital angular momentum $\langle L_z \rangle = \hbar \ell$ along the axis of propagation (i.e. *z*-axis) cf. [Ivanov, Phys. Rev. D **85**, 076001 (2012)], [Ivanov, arXiv:2205.00412 [hep-ph] (2022)]

Measure the overall phase in scattering experiments using <u>vortex beams</u> \equiv beams of particles with intrinsic orbital angular momentum $\langle L_z \rangle = \hbar \ell$ along the axis of propagation (i.e. *z*-axis) cf. [Ivanov, Phys. Rev. D **85**, 076001 (2012)], [Ivanov, arXiv:2205.00412 [hep-ph] (2022)]

Measure the overall phase in scattering experiments using <u>vortex beams</u> \equiv beams of particles with intrinsic orbital angular momentum $\langle L_z \rangle = \hbar \ell$ along the axis of propagation (i.e. z-axis) cf. [Ivanov, Phys. Rev. D 85, 076001 (2012)], [Ivanov, arXiv:2205.00412 [hep-ph] (2022)]

 $\begin{array}{l} \underline{\mathsf{Proposal}} & [\mathsf{Ivanov}, \,\mathsf{Phys. \, Rev. \, D} \ \mathbf{85}, \, 076001 \ (2012)]: \ for \ the \ example \ \gamma p \to \pi p, \ consider \\ & \mathsf{double-twisted} \ \gamma p\text{-collision} \ (i.e. \ both \ \gamma \ and \ p \ are \ in \ a \ [Bessel] \ vortex-state) \\ \Rightarrow \ \mathsf{Measure} \ azimuthal \ asymmetry \ A = \frac{\Delta \sigma}{\sigma} \ (\text{'sine-weighted' c.s. } \Delta \sigma; \ \mathsf{non-weighted} \ \sigma) \\ \Rightarrow \ \mathsf{Then}, \ \mathsf{one} \ \mathsf{has} \ \boxed{A = \frac{d\phi \ (\theta_{\gamma \pi}^{\mathsf{LAB}})}{d\theta_{\gamma \pi}^{\mathsf{LAB}}} \cdot P}, \ \mathsf{with} \ \mathsf{an} \ '\mathsf{analyzing} \ \mathsf{power'} \ P. \\ \Rightarrow \ \mathsf{For \ insanely \ good \ accuracy \ and \ statistics, \ integration \ yields: \ \phi \ (\theta_{\gamma \pi}^{\mathsf{LAB}}) + \mathcal{C}. \end{array}$

Vortex-beams at the GeV-scale maybe feasible within 10-20 years [Ivanov, priv. comm. (2022)]

Measure the overall phase in scattering experiments using vortex beams \equiv beams of particles with intrinsic orbital angular momentum $\langle L_z \rangle = \hbar \ell$ along the axis of propagation (i.e. z-axis) cf. [Ivanov, Phys. Rev. D 85, 076001 (2012)], [Ivanov, arXiv:2205.00412 [hep-ph] (2022)]

 $\begin{array}{l} \underline{\operatorname{Proposal}} & [\operatorname{Ivanov}, \operatorname{Phys. Rev. D} \mathbf{85}, 076001 \ (2012)]: \text{ for the example } \gamma p \to \pi p, \text{ consider} \\ & \operatorname{double-twisted} \gamma p\text{-collision (i.e. both } \gamma \text{ and } p \text{ are in a [Bessel] vortex-state}) \\ \Rightarrow & \operatorname{Measure} azimuthal asymmetry \ A = \frac{\Delta \sigma}{\sigma} \ (\text{'sine-weighted' c.s. } \Delta \sigma; \text{ non-weighted } \sigma) \\ \Rightarrow & \operatorname{Then, one has} \left[A = \frac{d\phi \left(\theta_{\gamma \pi}^{\mathsf{LAB}} \right)}{d\theta_{\gamma \pi}^{\mathsf{LAB}}} \cdot P \right], \text{ with an 'analyzing power' } P. \\ \Rightarrow & \operatorname{For insanely good accuracy and statistics, integration yields: } \underline{\phi \left(\theta_{\gamma \pi}^{\mathsf{LAB}} \right) + \mathcal{C}}. \end{array} \right.$

Alternative: Hanbury-Brown and Twiss experiment [Goldberger et al. Phys. Rev. 132, 2764 (1963)]

Moravcsik's Th. applied to electroproduction $(N_A = 6)$

- $\label{eq:combined} \rightarrow \mbox{ In the same way as before, extract the 'Moravcsik-complete' set (combined with 'diagonal' observables <math display="inline">\left\{ R_T^{00}, \ ^c R_T^{00}, R_T^{0y}, R_T^{y'0}, R_L^{00}, R_L^{0y} \right\}):$

$$\{ \mathcal{O}_{2+}^{a}, \mathcal{O}_{2-}^{c}, \mathcal{O}_{1+}^{c}, \mathcal{O}_{1-}^{c}, \mathcal{O}_{2}^{d}, \mathcal{O}_{2+}^{h}, \mathcal{O}_{2-}^{h} \} \\ \equiv \left\{ R_{TT'}^{0z}, {}^{s}R_{TT}^{0x}, R_{T}^{x'z}, R_{T}^{z'x}, R_{L}^{x'x}, {}^{c}R_{LT}^{x'x}, {}^{s}R_{LT'}^{z'x} \right\}.$$

Moravcsik's Th. applied to electroproduction $(N_A = 6)$

- $\stackrel{\hookrightarrow}{\to} \text{ In the same way as before, extract the 'Moravcsik-complete' set (combined with 'diagonal' observables } \left\{ R_T^{00}, \ {}^cR_T^{00}, R_T^{0y}, R_T^{y'0}, R_L^{00}, R_L^{0y} \right\}): \\ \left\{ \mathcal{O}_{2+}^a, \mathcal{O}_{2-}^a, \mathcal{O}_{1+}^c, \mathcal{O}_{2-}^c, \mathcal{O}_{2+}^d, \mathcal{O}_{2-}^h \right\} \\ \equiv \left\{ R_{TT'}^{02}, \ {}^sR_{TT}^{02}, R_T^{y'z}, R_T^{z'x}, R_L^{x'x}, \ {}^cR_{LT}^{x'x}, \ {}^sR_{LT'}^{z'x} \right\}.$
- *) In total, we obtain for the first time (!):
 - 64 non-redundant Moravcsik-complete sets composed of 13 observables
 - \hookrightarrow Only one observable more than the minimal number of $2N_A = 12$ observables!

Moravcsik's Th. applied to electroproduction $(N_A = 6)$

- $\stackrel{\hookrightarrow}{\to} \text{ In the same way as before, extract the 'Moravcsik-complete' set (combined with 'diagonal' observables } \left\{ R_T^{00}, \ {}^cR_T^{00}, R_T^{0y}, R_T^{y'0}, R_L^{00}, R_L^{0y} \right\}): \\ \left\{ \mathcal{O}_{2+}^a, \mathcal{O}_{2-}^a, \mathcal{O}_{1+}^c, \mathcal{O}_{2-}^c, \mathcal{O}_{2+}^d, \mathcal{O}_{2-}^h \right\} \\ \equiv \left\{ R_{TT'}^{02}, \ {}^sR_{TT}^{02}, R_T^{y'z}, R_T^{z'x}, R_L^{x'x}, \ {}^cR_{LT}^{x'x}, \ {}^sR_{LT'}^{z'x} \right\}.$
- *) In total, we obtain for the first time (!):
 - 64 non-redundant Moravcsik-complete sets composed of 13 observables
 - \hookrightarrow Only one observable more than the minimal number of $2N_A = 12$ observables!

 \hookrightarrow What about problems with large numbers of amplitudes (i.e. $N_A > 6$)?

Clifford algebra $\left\{ \tilde{\Gamma}^{\alpha} \right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^2} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta} \right].$

 \Rightarrow Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

Clifford algebra $\left\{ \tilde{\Gamma}^{\alpha} \right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^{2}} \operatorname{Tr} \left[\tilde{\Gamma}^{\delta} \tilde{\Gamma}^{\alpha} \tilde{\Gamma}^{\eta} \tilde{\Gamma}^{\beta} \right].$

 \Rightarrow Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\begin{array}{l} \underline{\mathsf{E.g.:}} \ \pi \textit{N-scattering, i.e.} \ \textit{N}_{\mathcal{A}} = 2, \ \{\textit{b}_{1},\textit{b}_{2}\} \ \textit{vs.} \ \textit{N}_{\mathcal{A}}^{2} = 4 \ \textit{obs.'s} \ \{\sigma_{0},\breve{P},\breve{R},\breve{A}\}; \\ \hline \sigma_{0} = \left|\textit{b}_{1}\right|^{2} + \left|\textit{b}_{2}\right|^{2}, \ \breve{P} = \left|\textit{b}_{1}\right|^{2} - \left|\textit{b}_{2}\right|^{2}, \ \breve{R} = -\left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \sin \phi_{21}, \ \breve{A} = \left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \cos \phi_{21} \end{array}$

Clifford algebra $\left\{\tilde{\Gamma}^{\alpha}\right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^{2}} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$.

 \Rightarrow Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\begin{array}{l} \underline{\mathsf{E.g.:}} \ \pi \textit{N-scattering, i.e.} \ \textit{N}_{\mathcal{A}} = 2, \ \{\textit{b}_{1},\textit{b}_{2}\} \ \text{vs.} \ \textit{N}_{\mathcal{A}}^{2} = 4 \ \text{obs.'s} \ \{\sigma_{0},\breve{P},\breve{R},\breve{A}\}; \\ \hline \sigma_{0} = \left|\textit{b}_{1}\right|^{2} + \left|\textit{b}_{2}\right|^{2}, \ \breve{P} = \left|\textit{b}_{1}\right|^{2} - \left|\textit{b}_{2}\right|^{2}, \ \breve{R} = -\left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \sin \phi_{21}, \ \breve{A} = \left|\textit{b}_{1}\right|\left|\textit{b}_{2}\right| \cos \phi_{21} \end{array}$

*) Graphical solution (Moravcsik):

Clifford algebra $\left\{\tilde{\Gamma}^{\alpha}\right\}$ implies so-called 'Fierz-identities': $\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^2} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$.

 \Rightarrow Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\underbrace{\text{E.g.:}}_{\sigma_0} \pi N \text{-scattering, i.e. } N_{\mathcal{A}} = 2, \ \{b_1, b_2\} \text{ vs. } N_{\mathcal{A}}^2 = 4 \text{ obs.'s } \{\sigma_0, \check{P}, \check{R}, \check{A}\}; \\ \overline{\sigma_0} = |b_1|^2 + |b_2|^2, \ \check{P} = |b_1|^2 - |b_2|^2, \ \check{R} = -|b_1| \ |b_2| \sin \phi_{21}, \ \check{A} = |b_1| \ |b_2| \cos \phi_{21}$

*) Graphical solution (Moravcsik):

 $1 \qquad 2 \Leftrightarrow \{\sin \phi_{21}, \cos \phi_{21}\} \Leftrightarrow \text{all 4 obs.'s needed } \checkmark$

*) There exists one relevant Fierz-identity:

$$\sigma_0^2 - \check{P}^2 - \check{R}^2 - \check{A}^2 = 0$$
$$\Leftrightarrow \check{A} = \pm \sqrt{\sigma_0^2 - \check{P}^2 - \check{R}^2}, \checkmark$$

Clifford algebra $\{\tilde{\Gamma}^{\alpha}\}$ implies so-called 'Fierz-identities':

$$\mathcal{O}^{\alpha}\mathcal{O}^{\beta} = \sum_{\delta,\eta} C^{\alpha\beta}_{\delta\eta}\mathcal{O}^{\delta}\mathcal{O}^{\eta}$$
, with $C^{\alpha\beta}_{\delta\eta} := \frac{1}{N_{\mathcal{A}}^2} \operatorname{Tr}\left[\tilde{\Gamma}^{\delta}\tilde{\Gamma}^{\alpha}\tilde{\Gamma}^{\eta}\tilde{\Gamma}^{\beta}\right]$.

⇒ Use these to solve for complete experiments! ('measurement formulation') cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

 $\underbrace{\text{E.g.:}}_{\sigma_0} \pi N \text{-scattering, i.e. } N_{\mathcal{A}} = 2, \ \{b_1, b_2\} \text{ vs. } N_{\mathcal{A}}^2 = 4 \text{ obs.'s } \{\sigma_0, \check{P}, \check{R}, \check{A}\}; \\ \overline{\sigma_0} = |b_1|^2 + |b_2|^2, \ \check{P} = |b_1|^2 - |b_2|^2, \ \check{R} = -|b_1| \ |b_2| \sin \phi_{21}, \ \check{A} = |b_1| \ |b_2| \cos \phi_{21}$

*) Graphical solution (Moravcsik):

*) There exists one relevant Fierz-identity:

$$\sigma_0^2 - \check{P}^2 - \check{R}^2 - \check{A}^2 = 0$$
$$\Leftrightarrow \check{A} = \pm \sqrt{\sigma_0^2 - \check{P}^2 - \check{R}^2}, \quad \checkmark$$

 \hookrightarrow Consistent, but cumbersome, alternative solution-method \Rightarrow Maybe easier to automate in the future ... (?)

The Hanbury-Brown and Twiss experiment

Measure the overall phase via intensity correlations in a *Hanbury-Brown and Twiss-type* experiment [Goldberger, Lewis & Watson, Phys. Rev. 132, 2764 (1963)]

- S_a R_a S_a S_a S_a S_a S_a T D₁ D₁ D₁ D₁ D₁ D₂ Correlator
- *) Two sources, S_a and S_lpha , emitting beam-particles
- *) One single irradiated target T
- *) Two spatially separated detectors, D_l and D_λ
- *) A CORRELATOR, which registers only in case D_l and D_λ count in *coincidence*
- $\hookrightarrow\,$ The correlator counting-rate contains an isolatable term, which is proportional to:

$$\operatorname{Re}\left[\mathcal{T}_{\lambda\leftarrow\alpha}\mathcal{T}_{l\leftarrow\alpha}^{*}\mathcal{T}_{l\leftarrow a}\mathcal{T}_{\lambda\leftarrow a}^{*}\right].$$

The Hanbury-Brown and Twiss experiment

Measure the overall phase via intensity correlations in a *Hanbury-Brown and Twiss-type* experiment [Goldberger, Lewis & Watson, Phys. Rev. 132, 2764 (1963)]

- *) One single irradiated target T
- *) Two spatially separated detectors, D_l and D_λ
- *) A CORRELATOR, which registers only in case D_l and D_λ count in *coincidence*

 $\hookrightarrow\,$ The correlator counting-rate contains an isolatable term, which is proportional to:

$$\operatorname{Re}\left[\mathcal{T}_{\lambda\leftarrow\alpha}\mathcal{T}_{l\leftarrow\alpha}^{*}\mathcal{T}_{l\leftarrow a}\mathcal{T}_{\lambda\leftarrow a}^{*}\right].$$

*) Assuming $|\mathcal{T}_{f\leftarrow i}|$ as known, one can measure cos(Γ), where: $\Gamma := \phi(\mathbf{g}_{la}) - \phi(\mathbf{g}_{l\alpha}) + \phi(\mathbf{g}_{\lambda\alpha}) - \phi(\mathbf{g}_{\lambda a})$, with $\mathbf{g}_{la} \equiv \hat{R}_{a} - \hat{D}_{l}$,

The Hanbury-Brown and Twiss experiment

Measure the overall phase via intensity correlations in a *Hanbury-Brown and Twiss-type* experiment [Goldberger, Lewis & Watson, Phys. Rev. 132, 2764 (1963)]

- *) One single irradiated target T
- *) Two spatially separated detectors, D_l and D_λ
- *) A CORRELATOR, which registers only in case D_l and D_λ count in *coincidence*

 $\hookrightarrow\,$ The correlator counting-rate contains an isolatable term, which is proportional to:

$$\operatorname{Re}\left[\mathcal{T}_{\lambda\leftarrow\alpha}\mathcal{T}_{l\leftarrow\alpha}^{*}\mathcal{T}_{l\leftarrow a}\mathcal{T}_{\lambda\leftarrow a}^{*}\right].$$

*) Assuming $|\mathcal{T}_{f \leftarrow i}|$ as known, one can measure cos (Γ), where: $\Gamma := \phi(\mathbf{g}_{la}) - \phi(\mathbf{g}_{l\alpha}) + \phi(\mathbf{g}_{\lambda\alpha}) - \phi(\mathbf{g}_{\lambda a}), \text{ with } \mathbf{g}_{la} \equiv \hat{R}_{a} - \hat{D}_{l}, \dots$

S,

R,

D)

CORRELATOR

Sa

Ra

₽,

Phys. Rev. 132, 2764 (1963), Fig.3]

*) Varying positions of detectors and sources, do measurements for many angles: $\begin{cases} \boldsymbol{g}_{la}^{(1)}, \boldsymbol{g}_{la}^{(2)}, \dots \end{cases}, \quad \begin{cases} \boldsymbol{g}_{l\alpha}^{(1)}, \boldsymbol{g}_{l\alpha}^{(2)}, \dots \end{cases}, \quad \begin{cases} \boldsymbol{g}_{\lambda\alpha}^{(1)}, \boldsymbol{g}_{\lambda\alpha}^{(2)}, \dots \end{cases}, \quad \begin{cases} \boldsymbol{g}_{\lambda a}^{(1)}, \boldsymbol{g}_{\lambda a}^{(2)}, \dots \end{cases} \end{cases}.$ $\hookrightarrow \text{ Extract: } \phi\left(\boldsymbol{g}_{la}^{(\nu+1)}\right) - \phi\left(\boldsymbol{g}_{la}^{(\nu)}\right) \equiv \delta\phi(\nu) \longrightarrow \underline{\text{Overall phase: }} \phi\left(\boldsymbol{g}\right).$