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Introduction: Importance of spin-reactions

) Reactions with spin (e.g. photoproduction) useful in classic N*-physics, but
also for modern physics-topics that go beyond this:
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x) 'T-matrix’ T5 parameterized by N4 spin-amplitudes {b;,i =1,..., N}
%) The usual reactions under study are:

- Pion-Nucleon (7w N-) scattering: 1N — 7N (2 spin-amplitudes)

- Pion photoproduction: YN — 7N (4 spin-amplitudes)

- Pion electroproduction: eN — e’wN (6 spin-amplitudes)

- 2-Pion photoproduction: yN — 7N (8 spin-amplitudes)
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Spin amplitudes

Generic case: Photoproduction:

) General meson-production reaction:
PN — {p;} B, with:

- P: 'probe’-particle (7, v,v*,...),
- N: target-nucleon,
- {¢i}: one or multiple meson(s),

- B: recoil (spin 1/2-) baryon.
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Spin amplitudes

Generic case: Photoproduction:
) General meson-production reaction: «) Produce one pseudoscalar meson ¢:
PN — {p;} B, with: vN — ¢B.
- P: 'probe’-particle (7, v,v*,...),
- N: target-nucleon, *) Then: Ny = %("w"N"gan)
- {¢i}: one or multiple meson(s), — % (2 x2x1X 2) — 4.
- B: recoil (spin 1/2-) baryon. -
) 0 | q %) We have:
%) One can always expand:
T = X}rg[l‘élb1 + Koby 4 K3b3
Tr = Xb | 02 krbi (2
fi = Xp |2_k21 Kkbi (237)] xn, +Kabs]xn, where:

- ki ({pj},{oi}): spin-kinem. operators, - bj = bij(W, 6): transversity amplitudes.
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Spin amplitudes

%) The number of amplitudes N4 is

Generic case: Photoproduction:
) General meson-production reaction: «) Produce one pseudoscalar meson ¢:
PN — {p;} B, with: vN — ¢B.
- P: 'probe’-particle (7, v,v*,...),
- N: target-nucleon, *) Then: Ny = %("wnN"ga"B)
- {¢i}: one or multiple meson(s), — % (2 x2x1X 2) — 4.
- B: recoil (spin 1/2-) baryon. a
) 0 | q %) We have:
%) One can always expand:
; Na o T = XTB[Hlbl + Koby + K3b3
T = Xp |2_k21 krbi (23 )} XN +Kabs]xn, where:
- ki ({pj},{oi}): spin-kinem. operators, - bj = bij(W, 6): transversity amplitudes.
. ney . H ' H ' ' .
- bi ('): spin (‘transversity’) ampl.’s, *) {K1,...,Kq} are complicated, e.g.:
- ng: phase-space for 2 — n¢-reaction. ) 0 (s . 0
K1= 5o [e 2 (k~0'> —e'2 (q-a')]

Ky = ..., where:

determined from spin-multiplicities: _ k. & photon- and meson momentum,

Ny = npnyng, ...Nn,.Ng, - & ~y-polarization,
. . . -6 = (O’X,Uy,O'Z)TZ Pauli-matrices,
with additional factor of (1/2) in - W: CMS-energy,
case of a 2 — 2 reaction (parity!) - : CMS scattering-angle.
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Polarization observables

Generic case:
Observables defined as
bilinear forms:
_ Ca ZNA b* I—a
ij=1
2
fora=1,...,N5.
(c®: normaliz. factors)

%) The ['™ are a set
of complete, or-
thogonal complex
N4 x N-matrices
('Clifford algebra’)

%) The '™ can be
decomposed into
classes according
to their shape
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Polarization observables

Generic case:
Observables defined as
bilinear forms:
_ ca ZNA b* I—a
ij=1
2
fora=1,...,N5.
(c®: normaliz. factors)

%) The ™ are a set
of complete, or-
thogonal complex
N4 x N-matrices
('Clifford algebra’)

%) The '™ can be
decomposed into
classes according
to their shape

Photoproduction observable Class
o0 =3 (1011 + 1522 + b3 2 + |ba[?)

=5 =1 (11 + b2]? — [b3]? — [ba]?) s
T =5 (=1l + 102 + |53 = |4 ?)

P= (— [by]? + |b2|? — |b3|? + |b4|2)

OF, = |b1| |b3|sin ¢13 + | bo| |balsin ¢4 = Im [b] by + by by] = —G

O%_ = |by| |bs|sin 13 — |ba| |ba|sin ¢pog = Im [b} by — b} by] = F a=BT
O3, = |by| |b3| cos ¢13 + || |ba| cos d2a = Re [by by + by by] = —E

O3_ = |by] |bs| cos ¢13 — |by| |ba| cos o4 = Re [b3 by — b by] = H

OF, = |by| |ba| sin p14 + | b |b3|sin ¢3 = Im [b] by + b} bp] = O

OF_ = |by| |ba|sin p1a — |bo| |b3|sindo3 = Im [b7 by — by bo] = —C,»  b=BR
OF, = |by| |bs| cos p1a + |ba| |b3| cos do3 = Re [b] by + b3 by] = —C,s

O3 = |by| |ba| cos p1a — |ba| |bs| cos ¢o3 = Re [b} by — by by] = =0y

Of, = |by| |ba|sin ¢12 + | b3| |ba| sin ¢34 = Im [b3 by + by b3] = —L

Of_ = |by| |ba|sin ¢12 — |b3| |bs|sin 34 = Im [byby — by b3] = =T, c=TR

05, = |by1| |by| cos p12 + | b3| |bs| cos 34 = Re [by by + by b3] = —L,
Of_ = |by| |by| cos 1 — |b3| |ba| cos ¢34 = Re [by by — byb3] =T,
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The complete-experiment analysis (CEA)

CEA: What are the minimal subsets of the
observables O, which allow for the unique
extraction of the amplitudes b; up to one
unknown overall phase ¢ (£257)?

) Analysis operates on each 'bin’ in Q5
individually.

x) Disregard measurement uncertainty!
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The complete-experiment analysis (CEA)

CEA: What are the minimal subsets of the
observables O, which allow for the unique
extraction of the amplitudes b; up to one
unknown overall phase ¢ (Q5)?

) Analysis operates on each 'bin’ in Q5
individually.

x) Disregard measurement uncertainty!

) Initial standard assumption: the moduli |bi|, |b2],...,|bwn| are already known from
a certain subset of N4 'diagonal’ observables. _
= Have to determine a minimal set of relative phases ¢; := ¢; — ¢; (bj = |bj| €'%)

*) From 'heuristic’ arguments: complete sets have minimal length of 2N 4 observables.
— We know how many observables we have to select. But which ones?

) Simplest (formal) solution: O% = ¢ Z;\”j:l b,-*f?}bj can be ’inverted’ (using the

completeness of the f—matrices): ) .

b =30 (7)) (%) -
= Obtain moduli from |bi| = \/b; b; and rel.-phases from a 'minimal’ set of b; b,
= Obtain (quite large) over-complete set {O%} determined via the RHS
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Truncated partial-wave analysis (TPWA)

Generic case: partial-wave exp. for 2 — 2 spin-reaction in helicity-formalism:
Tiapzaira (S, ) = emmo Zﬁmax(|>\\;|u|)(2j T 1)7;1)\(5) dlji)\(a)’

where A := XAy — Ao, o= p1 — pp and {b;} & {Hi} = {Tox 24}
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Truncated partial-wave analysis (TPWA)

Generic case: partial-wave exp. for 2 — 2 spin-reaction in helicity-formalism:
77“#2,)\1)\2(57 t) = el=m)? Zj.imax(|A\’|H|)(2j + 1)71)\(5) di)\(e)'

where X := A\ — A\, M= 1 — U2 and {b,} 4 {H,} = {7;|::|:,:i::t}-

E.g.: for photoproduction (N4 = 4), one has the multipole-series (x = cos 6):

#olmax

FL(W,0)= > [(Mer (W) + Eos (W)] Py (x) + [(€+ 1) Mp— (W) + Eo— (W)] Pp_y (x),
£=0

#olmax
Fa(W,0)= > [Mer (W) — Epy (W) — Mo (W) — Ep— (W)] P, (x), where {F;} & {b},

=2
%) 4lmax complex multipoles present in every truncation-order £y, > 1:
M[ = {E0+? E1+7 M1+a M1—7 E2+a E2—7 RS Mémax—}-
(Generic case: N g * £nax Waves for every order £y > 1.)

*) M, determined up to 1 overall phase = 8, — 1 real par.’s in TPWA.
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Complete experiments

Complete experiments: 'amplitude formulation’

A complete experiment is a minimum subset selected from entire set of N¢24
polarization observables that allows for an unambiguous extraction of the complex
amplitudes describing the process (either b; or My), up to one unknown overall
phase (¢(W,0) for the CEA, ¢(W) for the TPWA).
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A complete experiment is a minimum subset selected from entire set of Nil
polarization observables that allows for an unambiguous extraction of the complex
amplitudes describing the process (either b; or My), up to one unknown overall
phase (¢(W,0) for the CEA, ¢(W) for the TPWA).

Complete experiments: 'measurement formulation’

A complete experiment is a set of measurements that is sufficient to predict all
other possible experiments. For polarization experiments, this means a subset of
all existing polarization observables that is capable of determining all the
remaining observables.  cf.: [L. Tiator, AIP Conf. Proc. 1432, no.1, 162-167 (2012)]
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Complete experiments

Complete experiments: 'amplitude formulation’

A complete experiment is a minimum subset selected from entire set of N,24
polarization observables that allows for an unambiguous extraction of the complex
amplitudes describing the process (either b; or My), up to one unknown overall
phase (¢(W,0) for the CEA, ¢(W) for the TPWA).

Use set of 'inversion formulas’,

Predict all remaining observables . . . . .
f determined litudes ./ which yield unique solutions using
rom determined amplitudes all observables (v, for CEA)

Complete experiments: 'measurement formulation’

A complete experiment is a set of measurements that is sufficient to predict all
other possible experiments. For polarization experiments, this means a subset of
all existing polarization observables that is capable of determining all the
remaining observables.  cf.: [L. Tiator, AIP Conf. Proc. 1432, no.1, 162-167 (2012)]

— d solution-methods for both CEA and TPWA
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CEA-solution: Moravcsik's Theorem

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)],
based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:
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From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)],
based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:
"Geometrical (graphical) analog’: Represent each amplitude by, ..., by, by a point
and every product b; bj, or rel.-phase ¢;;, by a line connecting points 'i" and 'j'.
Furthermore: — Represent every Re [b} b;] o< cos ¢j; by a solid line,
— Represent every Im [b} bj] o sin ¢jj by a dashed line.

Moravcsik's Theorem (modified): The thus constructed graph is fully complete,
i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

(i) the graph is fully connected and all points have to Example:
have order two (i.e. are attached to two lines):
- all continuous ambiguities are resolved,

- existence of consistency relation is ensured.
< crucial for resolving discrete ambiguities

& P13+ P32 + Pos + P41 =0
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CEA-solution: Moravcsik's Theorem

From [YW, P. Kroenert, F. Afzal, A. Thiel, Phys. Rev. C 102, no.3, 034605 (2020)],
based on [Moravcsik, J. Math. Phys. 26, 211 (1985).]:
"Geometrical (graphical) analog’: Represent each amplitude by, ..., by, by a point
and every product b; bj, or rel.-phase ¢;;, by a line connecting points 'i" and 'j'.
Furthermore: — Represent every Re [b} b;] o< cos ¢j; by a solid line,
— Represent every Im [b} bj] o sin ¢jj by a dashed line.

Moravcsik's Theorem (modified): The thus constructed graph is fully complete,
i.e. it allows for neither any continuous nor any discrete ambiguities, if it satisfies:

(i) the graph is fully connected and all points have to Example:
have order two (i.e. are attached to two lines):
- all continuous ambiguities are resolved,

- existence of consistency relation is ensured.
< crucial for resolving discrete ambiguities

& P13+ P32 + Pos + P41 =0

. . Eg: @ ——89
(ii) the graph has to have an odd number of dashed lines, '
as well as any number of solid lines: /
- all discrete ambiguities are resolved. 0 ) @
is complete v/
7/13
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Moravcsik's Th. applied to photoproduction (N4 = 4)

1 2 3

For N4 = 4, one gets
N4—1)!
(Na=1)! 45 1) :%:3pos-

sible graph-topologies :

< Each of these topologies can be used as a starting point to derive complete sets, ...
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Moravcsik's Th. applied to photoproduction (N4 = 4)

1 2 3

For N4 = 4 one gets
(Na—1l 3t 3 pos-
sible graph topolog|es

< Each of these topologies can be used as a starting point to derive complete sets, ...
1.1

e.g., example 1.1:
(fully complete)

— {sin ¢12, cos ¢4, COS P34, COS P13 }

= Map relative-phases to observables
(1] 2| sin 12 = (1/2) [~ L = Tr], |bal ] cos e = (1/2) [~E — FI],
‘b3| |b4|COS¢34 = (1/2) [—Lzl — Ty ], |b1| |b3|COS¢13 = (1/2) [ + H]

= Extract 'Moravcsik-complete’ set: {00, %, T, P, E, H, L, T, L, T }.

E-
E
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Moravcsik's Th. applied to photoproduction (N4 = 4)

1 2 3

For N4 = 4, one gets

(Na—! 3 =3 pos-

sible graph-topologies :

< Each of these topologies can be used as a starting point to derive complete sets, ...

1.1

e.g., example 1.1:
(fully complete)

— {sin (1512, cos (Z5247 cos ¢34, cos (]313}

= Map relative-phases to observables:

|by| |b2| sin g2 = (1/2) [~Le — T./], |b2||ba| cos oa = (1/2) [—E — H]
|bs| | ba| cos ¢aa = (1/2) [—L,s — T,r], |b1| |bs| cos 13 = (1/2) [—E + H]
= Extract 'Moravcsik-complete’ set: {00, %, T, P, E, H, L, T, L1, T

}.

= For N4 = 4: obtain 12 Moravcsik-complete sets of length 10 > 2N 4

8.

Y. Wunderlich Complete experiments
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Cases with larger numbers of Ny > 6 amplitudes

Two-meson photoproduction

«) 8 amplitudes vs. 64 observables

«) Typical complete graph:
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%) [Phys. Rev. C 103, 1, 014607 (2021)]
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Cases with larger numbers of Ny > 6 amplitudes

Two-meson photoproduction Vector-meson photoproduction

«) 8 amplitudes vs. 64 observables *) 12 amp.’s vs. 144 observables
«) Typical complete graph: *) Example for start-topology:

® @

7 I
~sin(das) | ~SiF1(Q56)
s | N

T
! I
~sinE¢14) ~sin(gss)
|

@ - - - - —singmrr R @
N I

b ! ~sin(re)
® @
) [Phys. Rev. C 103, 1, 014607 (2021)]  *) No. of start-topologies:
WazDt — 19958400, (demanding!)

[P. Kroenert et al. (2021)]
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Cases with larger numbers of Ny > 6 amplitudes

Two-meson photoproduction Vector-meson photoproduction

«) 8 amplitudes vs. 64 observables *) 12 amp.’s vs. 144 observables

«) Typical complete graph: *) Example for start-topology:

® @

Ve I
~sin(us) | | sihigse)
7 N

I
| I
‘ \ COS(¢h3s) T
! :
-sini(bm) ~sin(se)
I
I

I
@---*+ sy - - - -
N I

~sif(grz) !
N |
® ®

) [Phys. Rev. C 103, 1, 014607 (2021)]  *) No. of start-topologies:
WazDt — 19958400, (demanding!)
Observation: Moravcsik-complete sets tend to be slightly over-complete, i.e. to
contain more than 2N 4 observables, for problems with N4 > 4 amplitudes

~sin(dre)
7

@
[P. Kroenert et al. (2021)]

Y. Wunderlich Complete experiments 9/13



Cases with larger numbers of Ny > 6 amplitudes

Two-meson photoproduction Vector-meson photoproduction

«) 8 amplitudes vs. 64 observables *) 12 amp.’s vs. 144 observables
«) Typical complete graph: *) Example for start-topology:

® @

Ve I
~8in(®ss)
7

I
I
|
| COS(¢36)

I

T

! :
~sinE¢14) ~sin(se)

X I

|

@---*+ sy - - - -
N I

~sif(grz) !
N |
® ®

) [Phys. Rev. C 103, 1, 014607 (2021)]  *) No. of start-topologies:
WazDt — 19958400, (demanding!)
— Improvement using new graphs, containing additional directional information.
cf.: [YW, Phys. Rev. C 104, no.4, 045203 (2021)]

~sin(dre)
7

©
[P. Kroenert et al. (2021)]
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Complete experiments for the TPWA

%) Example: photoproduction (N4 = 4). Consider group S {09, %, T, 15},
i.e. 'diagonal’ observables: 0% oc + | by |* + |by|” =+ | bs|* + | ba|”.

Y. Wunderlich Complete experiments 10/13



Complete experiments for the TPWA

%) Example: photoproduction (N4 = 4). Consider group S {09, %, T, 15},
i.e. 'diagonal’ observables: 0% oc + | by |* + |by|” =+ | bs|* + | ba|”.

= Use t :=tan (g) and write linear factorizations (for finite Zmax)'

: Q) 2€max : 2€max

exp (—i% . o)
by(8) = by(—0), ba(6) = bs(—0).

with 445, roots {a, B} € C equivalent to multipoles: {Egs, My }.
[A. S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981)]
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Complete experiments for the TPWA

%) Example: photoproduction (N4 = 4). Consider group S {09, %, T, 15},
i.e. 'diagonal’ observables: 0% oc + | by |* + |by|” =+ | bs|* + | ba|”.

= Use t :=tan (g) and write linear factorizations (for finite Zmax)'
9) 24 max 2Lmax

exp (—i% .
T E (), b0 1+t2)£"‘“ H (e,

ba(0) = by(—0), ba(6) = bs(—0).

with 445, roots {a, B} € C equivalent to multipoles: {Egs, My }.
[A. S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981)]

— Study discrete ambiguities of group S, generated by (i € {1,...,20max}):

(t—ai) (t— ) —— (t=[afT) (t—af) = (t— o) (t — ).

= Surprise: all ambiguites can be resolved using less than 2/N 4 = 8 observables!
[YW, R. Beck and L. Tiator PRC 89, no.5, 055203 (2014)]

[R. L. Workman, et al., PRC 95, no.1, 015206 (2017)]

[YW, arXiv:2008.00514 [nucl-th]]
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Complete experiments for the TPWA

x) Example: photoproduction (N4 = 4). Consider group S {Jo, >, T, I5}
i.e. 'diagonal’ observables: 0% oc + | by |* + |by|” =+ | bs|* + | ba|*.
= Use t := tan () and write linear factorizations (for finite lrnax):

_s0Y) 2€max : 2€max
by (0) x =P T2)

(1_|_t2)fmax H (t+5), bs(0) x 1+t2)e"‘ax H (t+ i),

Jj=1

ba(6) = by(—6), ba(6) = bs(—9).

with 40« roots {ax, B;} € C equivalent to multipoles: {Epy, Mo }.
[A. S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981)]

— Study discrete ambiguities of group S, generated by (i € {1,...,

@

2lmax }):

a;j—
(t—af)(t—ai)) —— (t =[] ) (t—af) = (t —of) (t — ).
Generic observable in TPWA

Generic observable in CEA

Comment: number of A B e e EE oo —o—o—o
completeness has been 318 CRORCECRONCRCHC! Em—.-.-.-.-.-.-.-.—
reduced, but not (!) the 2 ONCHCEORCRONC) | 6006060 0 |
. 1 [ o @ @ 16— @—O—O—O—O@—

number of datapoints! B & M o o o o
1'-1.0 -05 0.0 0.5 1.0 "-1.0 -0.5 0.0 0.5 1.0

cos 6 cos 6
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Testing completeness of photoproduction TPWA

%) 1-O studies using model-data (MAID2007, vp — 7°p), set: {ao,f, TP, I:_}
cf.: [YW, [arXiv:2008.00514 [nucl-th]]

Lmax =1 Lmax =2

=20 1
200 300 400 500 600 200 300 400 500 600 200 300 400 500 600 200 300 400 500 600
E, [MeV] E, [MeV] Ey [MeV] E, [MeV]
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Testing completeness of photoproduction TPWA

%) 1-O studies using model-data (MAID2007, vp — 7°p), set: {ao,i, T,P, ff}
cf.: [YW, [arXiv:2008.00514 [nucl-th]]

Lmax =2

ReM;, € [mFm]

-2
0 400 500 600 200 300 400 500 600 400 500 600 200 300 400 500 600
E, [MeV] E, [MeV] E, [MeV] E, [MeV]

200

«) Bayesian inference for (real) yp — np data, set {00, %, T, E, F, G}
cf.: [P. Kroenert, YW, F. Afzal and A. Thiel, Phys. Rev. C 109, no.4, 045206 (2024)]

Jiilich-Bonn-2022 (dash-dotted);
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TPWA for 2-meson photoproduction (preliminary!!) - |

- b-dimensional phase-space:
{S, t7 m2cszv Q#PZB = (04/’237 ¢4PZB)}
- 8 helicity-configurations:
_ _ 41 _ a1
Ay =21, Ay = £35, Ap = £5.
- 2B angular-momentum Q.N.’s:

J:%’%aga'“aooandM:_J""’+J'

[cf. Talk by V. Mathieu (Monday)]
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TPWA for 2-meson photoproduction (preliminary!!) - |

- b-dimensional phase-space:
{S, t7 m2cszv Q#PZB = (04/’237 ¢4PZB)}
- 8 helicity-configurations:
_ _ 41 _ a1
Ay =21, Ay = £35, Ap = £5.
- 2B angular-momentum Q.N.’s:

J=L135 " ocoandM=—J ... +J.

20202
= TPWA: [cf. Talk by V. Mathieu (Monday)]
Jmax +J I
2 2 J
Ax, anrs (s, t, m¢2B,Q¢,ZB) = > > e (s, t, mmB) D s, (p6) -
=13, M=—J
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TPWA for 2-meson photoproduction (preliminary!!) - |

- b-dimensional phase-space:
{57 t, m2<sz? Q#PZB = (990233 ¢4PZB)}
- 8 helicity-configurations:
_ _ 41 _ a1
Ay =21, Ay = £35, Ap = £5.
- 2B angular-momentum Q.N.’s:

J=L135 " ocoandM=—J ... +J.

292529
= TPWA: [cf. Talk by V. Mathieu (Monday)]
Jmax +J I
2 _ 2 J
Axyianrs <S, t, m(pQB,QmB) = > > TN Manre (57 t, mms) Dii—xg (2p,8) -
IR

«) Assume: 8 functions |A>‘7?>\N>\B|2 uniquely fixed from 8 pol.-measurements:

{Mbis P 1A P LA P Lo, Pay Pty Ot 19, PE, PG, O

2/ Yz [

— Forget dependence on (Ay; AnAg) from now on (fix Ag = 1/2 in D-fct.)
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TPWA for 2-meson photoproduction (preliminary!!) - |

- b-dimensional phase-space:
{S t, m2<sz? Q#PZB = (94;0233 ¢<PZB)}

- 8 helicity-configurations:
Ay ==£1, Ay = £3, A\g = £1.

- 2B angular-momentum Q.N.’s:

J=313 5 . ccand M=—J,... +J.
[cf. Talk by V. Mathieu (Monday)]

= TPWA:
anax
Axyianre (5 £ mmB’szB) = Z Z )\,Y,M AnAg (5 t m<p2B) D} —xg (Qpz8) -
543 =
«) Assume: 8 functions |AA '>‘N>\B| uniquely fixed from 8 pol.-measurements
P@ O® }

(AP A= A2 P (o, Py Py O 19, P2, PS,

— Forget dependence on (Ay; AnAg) from now on (fix Ag = 1/2 in D-fct.)

= Consider discrete partial-wave ambiguities for the squared-modulus function
A(QMB) A* (QeozB)-

12/13
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TPWA for 2-meson photoproduction (preliminary!!) - 1|

%) Introduce new angular variables u := e/%#28 and v := e/%+25

Jmax (J) J - 1 2Jmax k
= A(Qep5) = > Ty Dii 172 (Qp,8) = A(u,v) = VS - Cr,qu VY.
J,M k,q=0

Y. Wunderlich Complete experiments 13/13



TPWA for 2-meson photoproduction (preliminary!!) - 1|

%) Introduce new angular variables u := e/%#28 and v := e/%+25

I 2J
max N - 1 max
= A (Qp,8) = Z TA(/IJ)DMJ,—1/2 (Qp8) = A(u,v) = 7

y/max vJmax

J,M k,q=0

Ck7qukvq.

) Factorize the amplitude, e.g. for u-dependence (also possible for v):

1 2Jmax 2Jmax

| e kya = @2max (V) _
A(U7 V) B UJrnax V'Irnax kZO Ck’qu = quax VJmax Hl [Ll Un(V)] ’
,q=! n=
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TPWA for 2-meson photoproduction (preliminary!!) - 1|

%) Introduce new angular variables u := e/%#28 and v := e/%+25

o ) 1 2Umax .
= AQp8) = D Tai Dji 172 (Upr8) = Alu,v) = mar y Jmax Chqtt v
J,M k,q=0

) Factorize the amplitude, e.g. for u-dependence (also possible for v):

1 2Jmax 2Jmax

/| S kyd = @2max (V) _
A(U7 V) n LlJrnax VJmax kZO Ck’qu = Ll‘/max VJmax ]T‘[l [U Un(V)] ’
»g= n=

2Jmax
= A () = [ P TT T a5 = 0300

n=1
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TPWA for 2-meson photoproduction (preliminary!!) - 1|

%) Introduce new angular variables u := e/%#28 and v := e/%+25

doe ) 1 P
= AQp8) = D Tai Dji 172 (Upr8) = Alu,v) = mar y Jmax Chqtt v
Y k,q—=0

) Factorize the amplitude, e.g. for u-dependence (also possible for v):

. 1 2Jmax . ay V) 2Jmax
_ q = _
Al V) = Z Chgt v = e H [u = un(V)],
k,q=0

2Jmax
= () A (0, ) = |ay, (V)P H U — un(V)] [, (v )}

) For every n € {1,...,2Jpax}, there is a "choice’:

I [u— un(v)] (it un(v) = un(v)) or II: [1 iy (v)] (.e.: un(v) = u;‘tv))'
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TPWA for 2-meson photoproduction (preliminary!!) - 1|

%) Introduce new angular variables u := e/%#28 and v := e/%+25

doe ) 1 P
= AQp8) = D Tai Dji 172 (Upr8) = Alu,v) = mar y Jmax Chqtt v
Y k,q—=0

) Factorize the amplitude, e.g. for u-dependence (also possible for v):

. 1 2Jmax . ay V) 2Jmax
_ q = _
Al V) = Z Chgt v = e H [u = un(V)],
k,q=0

2Jmax
= () A (0, ) = |ay, (V)P H U — un(V)] [, (v )}

) For every n € {1,...,2Jpax}, there is a "choice’:

I [u— un(v)] (it un(v) = un(v)) or II: [1 iy (v)] (.e.: un(v) = u*tv)).

n

) Additional constraint: Ambiguity-transformed amplitude has to be a
polynomial in u and v!!
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TPWA for 2-meson photoproduction (preliminary!!) - 1|

%) Introduce new angular variables u := e/%2& and v := e/¢+25

J 2/
o i 1 i
= A(Qp8) = D T Dif _1jp (Uns) = Al v) = =g D7 i qutv.
M K,q=0

) Factorize the amplitude, e.g. for u-dependence (also possible for v):

1 2max . (v) e
T _ kg — “2Jmax\"/ _
A(u,v) = yImax yJmax A Ck,qu™ Vv o S — H [u— un(V)],
2max
= A A @) =l WP T e w5 - i)
n=1
x) For every n € {1,...,2Jnax}, there is a "choice’:

L [u— un(v)] (it un(v) = un(v)) or IL: E - u:(v)] (i.e.: un(v) = ﬁ) .

) Additional constraint: Ambiguity-transformed amplitude has to be a
polynomial in u and v!!

= 2-meson TPWA is much better constrained, most likely unique!
cf.: [I. S. Stefanescu, J. Math. Phys. 26 (9), 2141-2160 (1985)]
& [W. A. Smith et al. [JPAC], Phys. Rev. D 108, no.7, 076001 (2023)]
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Additional Slides



CEA-solution using new 'directional’ graphs

< One can improve the situation using new kind of graphs, containing additional
directional information. [YW, Phys. Rev. C 104, no.4, 045203 (2021)]




CEA-solution using new 'directional’ graphs

< One can improve the situation using new kind of graphs, containing additional
directional information. [YW, Phys. Rev. C 104, no.4, 045203 (2021)]

) Example:

< complete photoproduction-set (2N = 8 obs.’ svmv
combination with 4 'diagonal’ obs s {00, 2, T,P}):

{03,,03_,05,,05_} = {E L, TX/}



CEA-solution using new 'directional’ graphs

< One can improve the situation using new kind of graphs, containing additional
directional information. [YW, Phys. Rev. C 104, no.4, 045203 (2021)]
) Example:

< complete photoproduction-set (2N = 8 obs.’ svlnv
combination with 4 'diagonal’ obs s {00, 2, T,P}):

{02+’027>01+’027}—{E L, TX’}

y
A

@
- Single-lined arrows: same as in Moravcsik's Theorem on.

- Double-lined arrows: 'crossed’ selection Of. @ 05, \
' Vs T . Wros
- 'Outer’ direction < 'directional convention’ for -

—0oo o7, oo

consistency rel.: ¢12 + ¢oa + a3z + P31 = 0.
- Direction of 'inner’ arrows: sign of 'C-angle’ (cf.
Figure on the right) in discrete-ambiguity formulas

—001




CEA-solution using new 'directional’ graphs

— One can improve the situation using new kind of graphs, containing additional
directional information. [YW, Phys. Rev. C 104, no.4, 045203 (2021)]

) Example:

< complete photoproduction-set (2N = 8 obs.’ svlnv
combination with 4 'diagonal’ obs.'s {00, 2, T, P}):

{O2+7027701+7O27} = {E’ H’ LX/’ TX/}'

y
A

@ 1o

- Single-lined arrows: same as in Moravcsik's Theorem

- Double-lined arrows: 'crossed’ selection Of. @ 05,

- 'Outer’ direction < 'directional convention’ for
consistency rel.: ¢12 + ¢2a + a3 + P31 = 0.

- Direction of 'inner’ arrows: sign of 'C-angle’ (cf.
Figure on the right) in discrete-ambiguity formulas

—0oo o7, oo

—001

— Confirm min. sets of 2N 4 = 8 for photoproduction ;
Obtain new sets of 2N 4 = 12 for e~ -production!
For N4 > 6, sets still (slightly) over-complete ...




Physical significance of the overall phase

We have new standard-approaches in place to determine complete experiments, and
thus |bi| and ¢j;, for reactions with any number of amplitudes N 4!



Physical significance of the overall phase

We have new standard-approaches in place to determine complete experiments, and
thus |bi| and ¢j;, for reactions with any number of amplitudes N 4!

However: the unknown phase ¢ (2;7) remains a problem, because:

Im
by 5 b
d)32 (‘)(W,())
b3
P43 Re
by
Na
Ta an bi ( :¢,,( )B Qf
fi ( =Xk an k X=Xk | Y Kxe k(7)) | xn
k=1

lof, |:Z K/kbk (Q :| IOﬂ(Q;f)ﬁi (ng) ,

= Complete experiment fixes only 'internal spin-structure’ Tal



Physical significance of the overall phase

We have new standard-approaches in place to determine complete experiments, and
thus |bi| and ¢j;, for reactions with any number of amplitudes N 4!
However: the unknown phase ¢ (€,") remains a problem, because:

Ny N
XN = XB |:Z nke'w( Zf)bk (ng):| XN

k=1

Thi (Q257) XB {Z Kb (2

_ el@fr |:Z K/kbk (Q :| XN = eiéﬂ»(Q;f)ﬁi (Qgr’) ,

= Complete experiment fixes only 'internal spin-structure’ Tl
The phase has physical significance, because:
- (Perfect) knowledge of the phase = project-out partial waves to all orders!

- Analytically continue part. waves away from physical region = unique resonance-poles!



Measuring the overall phase

Measure the overall phase in scattering experiments using vortex beams
= beams of particles with intrinsic orbital angular momentum (L) = k¢ along the axis of
propagation (i.e. z-axis) cf. [lvanov, Phys. Rev. D 85, 076001 (2012)], [lvanov, arXiv:2205.00412 [hep-ph] (2022)]



Measuring the overall phase

Measure the overall phase in scattering experiments using vortex beams
= beams of particles with intrinsic orbital angular momentum (L) = k¢ along the axis of
propagation (i.e. z-axis) cf. [lvanov, Phys. Rev. D 85, 076001 (2012)], [lvanov, arXiv:2205.00412 [hep-ph] (2022)]

[arXiv:2205.00412, Fig.1]




Measuring the overall phase

Measure the overall phase in scattering experiments using vortex beams
= beams of particles with intrinsic orbital angular momentum (L) = k¢ along the axis of
propagation (i.e. z-axis) cf. [lvanov, Phys. Rev. D 85, 076001 (2012)], [lvanov, arXiv:2205.00412 [hep-ph] (2022)]

[arXiv:2205.00412, Fig.1]

x

Proposal [lvanov, Phys. Rev. D 85, 076001 (2012)]: for the example vyp — 7p, consider
double-twisted ~yp-collision (i.e. both v and p are in a [Bessel] vortex-state)

= Measure azimuthal asymmetry A = % (‘sine-weighted’ c.s. Ac; non-weighted o)
dé (HLAB
= Then, one has | A= dOLA - P |, with an "analyzing power’ P.

= For insanely good accuracy and statistics, integration yields: ¢ (657°) + C.

Vortex-beams at the GeV-scale maybe feasible within 10-20 years [ivanov, priv. comm. (2022)]



Measuring the overall phase

Measure the overall phase in scattering experiments using vortex beams
= beams of particles with intrinsic orbital angular momentum (L) = k¢ along the axis of
propagation (i.e. z-axis) cf. [lvanov, Phys. Rev. D 85, 076001 (2012)], [lvanov, arXiv:2205.00412 [hep-ph] (2022)]

[arXiv:2205.00412, Fig.1]

Proposal [lvanov, Phys. Rev. D 85, 076001 (2012)]: for the example vyp — 7p, consider
double-twisted ~yp-collision (i.e. both v and p are in a [Bessel] vortex-state)

= Measure azimuthal asymmetry A = % (‘sine-weighted’ c.s. Ac; non-weighted o)
dé (HLAB
= Then, one has | A= dOLA - P |, with an "analyzing power’ P.

= For insanely good accuracy and statistics, integration yields: ¢ (657°) + C.

Alternative: Hanbury-Brown and Twiss experiment [Goldberger et al. Phys. Rev. 132, 2764 (1963)]



Moravcsik's Th. applied to electroproduction (N4 = 6)

) From the first of 60 topologies, construct example (1.1) (fully complete):
1.1

— {sin ¢12, cos 24, cos Pa, COS P56, COS 35, COS P13}

— In the same way as before, extract the 'Moravcsik-complete’ set (combined
with "diagonal’ observables {R‘%‘L <R RY RO R, Rfy}):
d mh h
{OS+70577 (1:+7 (1:7702a02+3027}

— 0z s pPOx x'z 2’ x x'x cpx'x spz'x
:{RTT'7 RTTvRT vRT 7RL ’ RLT? RLT/ :



Moravcsik's Th. applied to electroproduction (N4 = 6)

) From the first of 60 topologies, construct example (1.1) (fully complete):

1.1
>
® ® — {sin @12, oS o4, COS Pag, COS P56, COS P35, COS P13 }
@ ®

— In the same way as before, extract the 'Moravcsik-complete’ set (combined
with "diagonal’ observables {R%f% <R RY RO R, R{’y}):
{OS+7 0577 f+7 1:77 Og’ OSJH Og*}

— 0z s pPOx x'z 2’ x x'x cpx'x spz'x
:{RTT’7 RTT7RT vRT 7RL ) RLT? RLT/ :

) In total, we obtain for the first time (!):

- 64 non-redundant Moravcsik-complete sets composed of 13 observables
< Only one observable more than the minimal number of 2N 4 = 12
observables!



Moravcsik's Th. applied to electroproduction (N4 = 6)

) From the first of 60 topologies, construct example (1.1) (fully complete):

1.1
>
® ® — {sin @12, oS o4, COS Pag, COS P56, COS P35, COS P13 }
@ ®

— In the same way as before, extract the 'Moravcsik-complete’ set (combined
with "diagonal’ observables {R%f% <R RY RO R, Rfy}):
{OS+7 0577 f+7 1:77 Og’ OSJH Og*}

— 0z s pPOx x'z 2’ x x'x cpx'x spz'x
:{RTT’7 RTT7RT vRT 7RL ) RLT? RLT/ :

) In total, we obtain for the first time (!):

- 64 non-redundant Moravcsik-complete sets composed of 13 observables
< Only one observable more than the minimal number of 2N 4 = 12
observables!

— What about problems with large numbers of amplitudes (i.e. N4 > 6)?



CEA-solution using Fierz identities

Clifford algebra {f“} implies so-called 'Fierz-identities':
0°0% = 5 GO0, with G = g [Fofefs].
N

= Use these to solve for complete experiments! ('measurement formulation’)
cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]



CEA-solution using Fierz identities

Clifford algebra {f"‘} implies so-called 'Fierz-identities':
0°0% = 3 €I OO, with C5f = g T [FoFefnfs).
,n
= Use these to solve for complete experiments! ('measurement formulation’)
cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]
E.g.: mN-scattering, i.e. Ngo =2, {b1, by} vs. N3 = 4 obs.’s {00, P, K’,Z\};
oo = |bi* + |bao?, P = |b1” — |bof*, R = — |by| |bo|sin ¢o1, A = |by| | b cos ¢



CEA-solution using Fierz identities

Clifford algebra {f“} implies so-called 'Fierz-identities':
0°0° =3 Gl 00N, with Cof = ik [FoFefofs].
,n A

= Use these to solve for complete experiments! ('measurement formulation’)
cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

E.g.: mN-scattering, i.e. Ngo =2, {b1, by} vs. N3 = 4 obs.’s {00, P, K’,Z\};
g0 = |b1* + [bof*, P = [bi* = |baf?, R = — |ba| |bo| sin o1, A = |by| |bo| cos don

) Graphical solution (Moravcsik):

M < {sin 1, cos o1} < all 4 obs.’'s needed v



CEA-solution using Fierz identities

Clifford algebra {fo‘} implies so-called 'Fierz-identities':
0°0% = T GO0, with €5 = Ty Fofafars].
N

= Use these to solve for complete experiments! ('measurement formulation’)
cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

E.g.: mN-scattering, i.e. Ngo =2, {b1, by} vs. N3 = 4 obs.’s {00, P, K’,Z\};
g0 = |b1* + [bof*, P = [bi* = |baf?, R = — |ba| |bo| sin o1, A = |by| |bo| cos don

) Graphical solution (Moravcsik):

M < {sin 1, cos o1} < all 4 obs.’'s needed v

) There exists one relevant Fierz-identity:

o2 B2 =

cA=t\Jo PR, v



CEA-solution using Fierz identities

Clifford algebra {f"‘} implies so-called 'Fierz-identities':

8 ; R N I
0"07 = ¥ GO0, with G = T Fofefafe].
"
= Use these to solve for complete experiments! ('measurement formulation’)
cf.: [Chiang & Tabakin, Phys. Rev. C 55, 2054-2066 (1997)]

E.g.: mN-scattering, i.e. Na =2, {b1, bo} vs. N3 =4 obs.’s {a0, P, R, A};
00 = |b1|? + ||, P = |by> = |bo|®, R = — |by| |ba|sin dho1, A = |by||bo|cos poy

) Graphical solution (Moravcsik):

M < {sin 1, cos ¢o1} < all 4 obs.’'s needed v

) There exists one relevant Fierz-identity:
BB =0

SA=+\/03-P2-R2 v

— Consistent, but cumbersome, alternative solution-method
= Maybe easier to automate in the future ... (?)



The Hanbury-Brown and Twiss experiment

Measure the overall phase via intensity correlations in a Hanbury-Brown and Twiss-type
experiment [Goldberger, Lewis & Watson, Phys. Rev. 132, 2764 (1963)]

%) Two sources, S; and S,, emitting beam-particles

w
)
*

Two spatially separated detectors, D; and Dy

*

)
) One single irradiated target T
)
)

A CORRELATOR, which registers only in case D; and Dy
count in coincidence

*

— The correlator counting-rate contains an isolatable term,
which is proportional to:

Re [7-)\%0477:—@ 77‘*37—):—3] :

[Phys. Rev. 132, 2764 (1963), Fig.3]

‘O CORRELATOR



The Hanbury-Brown and Twiss experiment

Measure the overall phase via intensity correlations in a Hanbury-Brown and Twiss-type
experiment [Goldberger, Lewis & Watson, Phys. Rev. 132, 2764 (1963)]

%) Two sources, S; and S,, emitting beam-particles

w
)
*

One single irradiated target T

*

)
)
) Two spatially separated detectors, D; and Dy
)

A CORRELATOR, which registers only in case D; and Dy
count in coincidence

*

— The correlator counting-rate contains an isolatable term,
which is proportional to:

Re [7-)\%0477:—@ 77‘*37—):—3] :

[Phys. Rev. 132, 2764 (1963), Fig.3]

\‘OZORRELATOR
*) Assuming |Tr.| as known, one can measure cos ('), where:
M= ¢(g/a) - ¢(gla) + ¢(g>\a) - ¢)(g)\a)' with 8= Ra - D/' s



The Hanbury-Brown and Twiss experiment

Measure the overall phase via intensity correlations in a Hanbury-Brown and Twiss-type
experiment [Goldberger, Lewis & Watson, Phys. Rev. 132, 2764 (1963)]

%) Two sources, S; and S,, emitting beam-particles

w
)
*

One single irradiated target T

*

)
)
) Two spatially separated detectors, D; and Dy
)

A CORRELATOR, which registers only in case D; and Dy
count in coincidence

*

— The correlator counting-rate contains an isolatable term,
which is proportional to:

Re[Thea T/l o Ti-aTi ]

[Phys. Rev. 132, 2764 (1963), Fig.3]

\‘OZORRELATOR
*) Assuming |Tr.| as known, one can measure cos ('), where:

M=0(g,) — 6 (81.) + 6 (8x.) — ¢(g).) withg, =R — D, ...
x) Varying positions of detectors and sources, do measurements for many angles:

{e0.62...} {el g .} {e6. .} {e0).62. . }.

— Extract: d)( VH)) ¢ (g,a ) = §¢(v) — Overall phase: ¢ (g).



