

中国科学院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Light Baryon Spectroscopy from e⁺e⁻ Collision Experiments

Xiaoyan SHEN

Institute of High Energy Physics, Chinese Academy of Sciences

June 17-22, 2024, NSTAR 2024, York, UK

Outline

Introduction

• Selected light baryon results from BELLE

- \succ observation of structures near KN threshold in $\Lambda\pi$ system
- \succ observation of a threshold cusp at the $\Lambda\eta$ threshold in the pK⁻ system
- \succ observation of $\Omega(2012)^{-} \rightarrow \Xi(1530) \text{ K}^{-}$

Selected light baryon results from BESIII

- \succ ψ(3686) → $\Lambda \overline{\Lambda} \pi^0$, $\Lambda \overline{\Lambda} \eta$ and $\Lambda \overline{\Lambda} \omega$
- $> J/\psi \rightarrow \pi \Lambda \overline{\Sigma}$

> Study of excited Ξ states in $\psi(3686) \rightarrow K^- \Lambda \Xi^+ + c.c.$

• Summary

- N^{*} and Δ^* status (PDG 2024)
 - Mostly from PWA of πN scattering data.
 - The dedicated facilities at Bonn, Grenoble, and Mainz, and at the JLab and Spring-8
 - High-precision cross sections and polarization observables provide more information

						Status as seen in						
Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	Nσ	$N\eta$	ΛK	ΣK	Ne	$N\omega$	Nη/
\overline{N}	$1/2^{+}$	****	,									
N(1440)	$1/2^+$	****	****	****	****	***						
N(1520)	$3/2^{-}$	****	****	****	****	**	****					
N(1535)	$1/2^{-}$	****	****	****	***	*	****					
N(1650)	1/2	****	****	****	***	*	****	*	10122			
N(1670) N(1680)	$\frac{5}{2^+}$	****	****	****	****	***	*	*	*			
N(1000)	$3/2^{-}$	***	**	***	***	*	*	T	Ŧ	*		
N(1710)	$1/2^+$	****	****	****	*		***	**	*	*	*	
N(1720)	$3/2^+$	****	****	****	***	*	*	****	*	*	*	
N(1860)	$5/2^+$	**	*	**		*	*					
N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
N(1880)	$1/2^+$	***	**	*	**	*	*	**	**		**	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****
N(1900) N(1000)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**
N(1990) N(2000)	$\frac{1}{2}$	**	**	**	**	*	*	*	*		*	
N(2000)	$3/2^+$	*	ጥጥ	*	ΨΨ	T	Ŧ				Ŧ	
N(2060)	$5/2^{-1}$	***	***	**	*	*	*	*	*	*	*	
N(2100)	$1/2^+$	***	**	***	**	**	*	*		*	*	**
N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
N(2220)	$9/2^+$	****	**	****			*	*	*			
N(2250)	$9/2^{-}$	****	**	****			*	*	*			
N(2300) N(2570)	$1/2^+$	**		**								
N(2570) N(2600)	$\frac{5}{2}$	**		**								
N(2000)	$\frac{11}{2}$	***		***								

3

• Λ^* and Σ^* status (PDG 2024)

Starve for data. Mostly from γp and K-p experiments. New analyses performed by Kent group, JPAC group.....

				di i					Status as seen in —			
		Overall		Status	as seen in —	Particle	J^P	status	$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	- Other channels
Particle	J^P	status	$N\overline{K}$	$\Sigma\pi$	Other channels	$\Sigma(1193)$	$1/2^{+}$	****				$N\pi$ (weak decay)
$\overline{\Lambda(1116)}$	$1/2^{+}$	****			$N\pi$ (weak decay)	$\Sigma(1385)$	$3/2^+$	****		****	****	$\Lambda\gamma$
A(1380)	$1/2^{-}$	**	**	**		$\Sigma(1580)$	$3/2^{-}$	*	*	*	*	
$\Lambda(1405)$	$1/2^{-}$	****	****	****		$\Sigma(1620)$	$1/2^{-}$	*	*	*	*	
A(1520)	$3/2^{-}$	****	****	****	$\Lambda\pi\pi,\Lambda\gamma,\Sigma\pi\pi$	$\Sigma(1660)$	$1/2^{+}$	***	***	***	***	
A(1600)	$1/2^{+}$	****	***	****	$\Lambda\pi\pi, \Sigma(1385)\pi$	$\Sigma(1670)$	$3/2^{-}$	****	****	****	****	
A(1670)	$1/2^{-}$	****	****	****	$\Lambda\eta$	$\Sigma(1750)$	$1/2^{-}$	***	***	**	***	$\Sigma\eta$
A(1690)	$3/2^{-}$	****	****	***	$\Lambda\pi\pi, \Sigma(1385)\pi$	$\Sigma(1775)$	$5/2^{-}$	****	****	****	**	
$\Lambda(1710)$	$1/2^{+}$	*	*	*		$\Sigma(1780)$	$3/2^{+}$	*	*	*	*	
$\Lambda(1800)$	$1/2^{-}$	***	***	**	$\Lambda\pi\pi, N\overline{K}^*$	$\Sigma(1880)$	$1/2^{+}$	**	**	*		
$\Lambda(1810)$	$1/2^{+}$	***	**	**	$N\overline{K}^*$	$\Sigma(1900)$	$1/2^{-}$	**	**	*	**	
$\Lambda(1820)$	$5/2^+$	****	****	****	$\Sigma(1385)\pi$	$\Sigma(1910)$	$3/2^{-}$	***	*	*	**	
$\Lambda(1830)$	$5/2^{-}$	****	****	****	$\Sigma(1385)\pi$	$\Sigma(1915)$	$5/2^{+}$	****	***	***	***	
A(1890)	$3/2^{+}$	****	****	**	$\Sigma(1385)\pi, N\overline{K}^*$	$\Sigma(1940)$	$3/2^{+}$	*	*		*	
A(2000)	$1/2^{-}$	*	*	*		$\Sigma(2010)$	$3/2^{-}$	*	*	*		<u>ت</u>
A(2050)	$3/2^{-}$	*	*	*		$\Sigma(2030)$	$7/2^{+}$	****	****	****	**	$\Delta(1232)K, NK^*, \Sigma(1385)\pi$
$\Lambda(2070)$	$3/2^+$	*	*	*		$\Sigma(2070)$	$5/2^+$	*	*		*	
$\Lambda(2080)$	$5/2^{-}$	*	*	*		$\Sigma(2080)$	$3/2^+$	*		*		
A(2085)	$7/2^+$	**	**	*		$\Sigma(2100)$	$7/2^{-}$	*	*	*	*	
$\Lambda(2100)$	$\frac{7}{2^{-}}$	****	****	**	$N\overline{K}^*$	$\Sigma(2110)$	$1/2^{-}$	*	*	*	*	
A(2100)	5/2+	stesteste	skale	steate	$N\overline{K}^*$	$\Sigma(2230)$	$3/2^{+}$	*	*	*	*	
A(2225)	$\frac{3}{2}$	***	**	**		$\Sigma(2250)$		**	**	*	*	
A(2250)	$\frac{3}{2}$	*	*			$\Sigma(2455)$		*	*			
A(2500)	$9/2^{+}$	***	***	*		$\Sigma(2620)$		*	*			
/1(2080)		*	*			$\Sigma(3000)$		*	*	*		
						$\Sigma(3170)$		*				

• ±* status (PDG 2024)

Most of our present knowledge of Ξ resonances comes from the lowstatistics data samples recorded in
the early days. In Recent years, significant contributions have come from collider experiments.

		_	Status as seen in							
Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$				
$\Xi(1318)$	1/2 +	****								
$\Xi(1530)$	3/2+	****	****							
$\Xi(1620)$		**	**							
$\Xi(1690)$		***	**	***	**					
$\Xi(1820)$	3/2 -	***	**	***	**	**				
$\Xi(1950)$		***	**	**		*				
$\Xi(2030)$		***		**	***					
$\Xi(2120)$		*		*						
$\Xi(2250)$		**								
$\Xi(2370)$		**								
$\Xi(2500)$		*		*	*					

Study light baryons experimentally

- Fixed-target experiments
 - Photo-/electro-production exps., e.g. JLAB, ELSA@Bonn, MAMI, ... $\gamma N (e^N) \rightarrow (e^-) N^* / \Delta^*$ $\gamma N (e^N) \rightarrow (e^-) K \Lambda^* / \Sigma^*$
 - π /K-induced production exps., e.g. HADES@GSI, J-PARC in Japan, JLAB... $\pi N \rightarrow N^*/\Delta^*$, ...
- Collider experiments
 - e⁺e⁻ collision exps., e.g. BESIII, BELLE(2), BaBar, ...
 - directly from $e^+e^- \rightarrow J/\psi$ or $\psi(2S) \rightarrow$ baryon + anti-baryon
 - from c-baryons or b-baryons decay
 - pp collision exps., e.g. LHC from b-baryons decay

BELLE (BELLE II) @KEKB (SuperKeKB)

- Beams: 8 X 3.5 GeV, 22mrad crossing
- Data taking: 1999 2010
- On/off/Scan Υ(nS) peaks
- Total luminosity: 980 fb⁻¹
- 772M $B\overline{B}$ events @Y(4S)

From BELLE to BELLE II

- SuperKEKB
 - higher beam current (× 2)
 - smaller beam focus (×1/20) @IR
 - Belle II upgrades
 In all parts of the detector
 (vertex, resolution, trigger, and DAQ, ...)

Belle, PRL 130, 151903 (2023)

6.2σ

1.45

 $\Lambda\pi^{-}$

1.5

 χ^2/NDF

74.4/68

92.3/68

1.55

 Σ^* : exotic state?

Counts / 1.0 MeV/c²

30 20

Structures near KN threshold in $\Lambda\pi$ system

Belle, PRL 130, 151903 (2023)

Scattering length is larger than previous K-p exps.

Limited by the statistics and the shape of the background, cannot distinguish between Σ resonances and K N threshold cusps.

1.55

A threshold cusp at the Λη threshold in the pK⁻ system

Belle, PRD 108, L031104 (2023)

- Observation of Doubly Cabibbo-Suppressed (DCS) decay $\Lambda_c^+ \rightarrow pK^+\pi^-$ at Belle in 2016.
- Hint of a peaking structure in the pK⁻ mass spectrum near the $\Lambda\eta$ threshold (from Dalitz plot)
 - A similar structure seen by LHCb in $\Lambda_c^{+} \rightarrow pK^{-}\pi^+$

- Narrow peak observed in $\Lambda_{\rm c}{}^{\scriptscriptstyle +}\!\!\to{\rm pK}{}^{\scriptscriptstyle -}\pi{}^{\scriptscriptstyle +}$ at Belle

Belle, PRD 108, L031104 (2023)

Two approaches to describe the narrow peak:

• Breit-Wigner for a new resonance

Adding a complex constant to the nonrelativistic BW coherently to have a better fit. $dN/dm \propto | BW(m) + r e^{i\theta} |^2$

A cusp enhanced by nearby $\Lambda(1670)$ pole, described by a non-relativistic Flatte function

Adding a complex constant to the non-relativistic Flatte function.

1674.4(fix)	27.2±1.9	0.258±0.023	1.06(257/243)	Ċ
Mass (MeV/c ²)	Width (MeV)	${f g}_{\Lambda\eta}$	χ²/ndof	Ctronoth

Flatte function is slightly favored than BW function.

Observation of $\Omega(2012)^{-} \rightarrow \Xi(1530) \overline{K}$

Belle, arXiv:2207.03090

- Only 4 excited Ω⁻ baryons listed on PDG -- Ω(2012)⁻, Ω(2250)⁻, Ω(2380)⁻, Ω(2470)⁻
- Ω(2250)⁻, Ω(2380)⁻, Ω(2470)⁻ observed four decades ago
- $\Omega(2012)^-$ first observed by Belle in 2018, from its decays to $\Xi^0 K^-$ and $\Xi^- K_s^0$

BESIII @ Beijing Electron Positron Collider (BEPC) – charm facility

MDC: spatial reso. 115µm dE/dx reso: 5%
EMC: energy reso.: 2.4%
BTOF: time reso.: 70 ps
ETOF: time reso.: 120 → 60 ps

BESIII Data Samples

Data sets collected so far include

- \succ 10 \times 10⁹ J/ ψ events
- \succ 2.7 \times 10⁹ ψ (2*S*) events
- ➢ 20 fb⁻¹ψ(3770)
- Scan data between

1.84-1.97 GeV (13 points, 25 pb⁻¹)

2.0 and 3.08 GeV,

and above 3.74 GeV

- Large datasets for XYZ studies: scan with >500 pb⁻¹ per energy point space 10 – 20 MeV apart
- Entangled hadron pair-productions near thresholds: form-factors, relative phase, polarization and CP violation.

Hadron structure & dynamics in the non-perturbative QCD regime

$$3W(s) = \frac{1}{M_{\Lambda^*}^2 - s - iM_{\Lambda^*}\Gamma_{\Lambda^*}}$$

M=(1672 ±5 ±6) MeV/c², Γ =(38 ±10 ±19) MeV

 ψ (3686) $\rightarrow \Lambda \Lambda \pi^0$

446M ψ(3686) data

 ψ (3686) $\rightarrow \Lambda \overline{\Lambda} \omega$

- Peaking BG from $\Lambda\Sigma^0\pi^0$ and continuum
- Evidence of isospin violating decay $\psi(3686) \rightarrow \Lambda \Lambda \pi^0$, ~3 σ

- Hint of the excited Λ state in $\Lambda\omega(\Lambda\omega)$ mass spectrum
- 2.7 billion ψ (3686) data will be analyzed

BESIII, PRD 106, 072006 (2022)

۲

BESIII, PRD 106, 112011(2022)

0.9

BC

 $J/\psi \rightarrow \bar{\Lambda}\pi^+\Sigma^- + c.c.$ and $J/\psi \rightarrow \bar{\Lambda}\pi^-\Sigma^+ + c.c.$

BESIII, PRD 108, 112012(2023)

A full partial wave analysis is on the way.

Study of excited Ξ states in ψ (3686) $\rightarrow K^- \Lambda \overline{\Xi}^+ + c.c.$

446M ψ(3686) data

• Partial reconstruction is used to improve the statistics The four-momentum of prompt Λ is

calculated from the recoil of $K^- \overline{\Xi}^+$ system

100 (b)(10.0 MeV/c²) 80 M²(K⁻₸⁺) ДGeV²/c′ 60 Events / 8 10 1.6 1.8 2.2 $M^2(\Lambda \overline{\Xi}^+)$ (GeV²/c⁴) $M(K^{-}\Lambda)$ (GeV/c²) 50 (10.0 MeV/c²) VIeV/C 50 Events 2.2 2.4 2.6 2.4 2.6 2.8 3.2 $M(K^{-}\overline{\Xi}^{+})$ (GeV/c²) $M(\Lambda \overline{\Xi}^+)$ (GeV/c²)

BESIII, PRD 109, 072008(2024)

Partial wave analysis is performed

A partial wave analysis for the full data set (2.7 billion ψ (3686)) is on the way.

Summary

• from BELLE

 \succ the structure near KN threshold in $\Lambda\pi$ mass spectrum, cannot distinguish whether it is a new resonance or a cusp

 \succ a threshold cusp at the $\Lambda\eta$ threshold in the pK⁻ system is observed

 \succ new decay mode of $\Omega(2012)^{-} \rightarrow \Xi(1530) \text{ K}^{-}$ observed

from BESIII

- $\rightarrow \psi$ (3686) $\rightarrow \Lambda \overline{\Lambda} \pi^{0}$, $\Lambda \overline{\Lambda} \eta$ and $\Lambda \overline{\Lambda} \omega$ (448 M data)
- \succ J/ $\psi \rightarrow \pi \Lambda \overline{\Sigma}$, lots of intermediate states, full PWA is on the way
- \succ Ξ(1690) (1/2-) and Ξ(1820)(3/2-) established in ψ(3686) → K⁻ΛΞ⁺ + c.c., PWA to a full data set (2.7 Billion ψ(3686)) on the way
- ✓ Large charmonium data samples from BESIII provide good chances.

Phase space not big enough for high mass excited baryon states.

- ✓ Decays of c-baryons and b-baryons: for light baryon study.
- ✓ Wait for BELLE II and BESIII/BEPCII upgrade.

Thanks for your attention