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ü CLAS collaboration at JLab

ü HADES collaboration at GSI

Both enable studies of hadrons in the few GeV region;
probe electromagnetic couplings with 
short-lived QCD systems.

This talk:
Connects TFF in different kinematic regions 
to obtain Baryon-Photon coupling evolution with 4 momentum transfer.

This evolution informs us on how structure properties of  baryons 
emerge from quarks and gluons.



Spacelike form factors:
• Structure information: 
qqq excitations vs. hybrid, charge and 
magnetization deformations not 
accessible from elastic FF alone

Electromagnetic Transition form factors (TFF)
Baryon resonances transition form factors

Timelike form factors:
• Particle production channels from

scattering reactions
• Spectroscopic information: masses and 

widths
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Table 2.1: Two- to four-star baryon resonances below 2 GeV and up to JP = 5
2

± from the PDG [9], labeled by their quantum numbers
isospin I, strangeness S, spin J and parity P . The four-star resonances are shown in bold font and the two-star resonances in gray.
Historically the N and � resonances are labelled by the incoming partial wave L2I,2J in elastic ⇡N scattering, with L = P, P, F, S,D,D

for JP = 1
2

+
. . . 5

2

� from left to right.

dipole transition GM (Q2
), which is dominated by the spin flip of a quark in the nucleon to produce the �, and

the electric and Coulomb quadrupole ratios REM and RSM . The prediction of the �N ! � transition magnetic
moment was among the first successes of the constituent-quark model, which relates it to the magnetic moment
of the proton via µ(�p ! �) = 2

p
2µp/3 [15]. However, the quark-model prediction also underestimates the

experimental value by about 30% and entails REM (Q2
) = RSM (Q2

) = 0 [16, 17]. Dynamical models assign
most of the strength in the quadrupole transitions to the meson cloud that ‘dresses’ the bare �. We will return
to this issue in Sec. 4.7 and also present a different viewpoint on the matter.

Roper resonance. The lowest nucleon-like state is the Roper resonance N(1440) or P11 with JP
= 1/2+,

which has traditionally been a puzzle for quark models. The Roper is unusually broad and not well described
within the non-relativistic constituent-quark model (see [18] and references therein), which predicts the wrong
mass ordering between the Roper and the nucleon’s parity partner N(1535) and the wrong sign of the �p !

N(1440) transition amplitude. Although some of these deficiencies were later remedied by relativistic quark
models [18–22], they have led to longstanding speculations about the true nature of this state being the first
radial excitation of the nucleon or perhaps something more exotic.

The Jefferson Lab/CLAS measurements of single and double-pion electroproduction allowed for the de-
termination of the electroexcitation amplitudes of the Roper resonance in a wide range of Q2. The helicity
amplitudes obtained from the Jefferson Lab and MAID analyses are shown in Fig. 2.1. They exhibit a strong Q2

dependence of the transverse helicity amplitude A1/2 including a zero crossing, which also translates into a zero
of the corresponding Pauli form factor F2(Q2

). Such a behavior is typically expected for radial excitations and
it has been recovered by a number of approaches, from constituent [23] and light-front constituent-quark mod-
els [24] to Dyson-Schwinger calculations [25], effective field theory [26], lattice QCD [27] and AdS/QCD [28].
Although none of them has yet achieved pointwise agreement with the data they all predict the correct signs
and orders of magnitude of the amplitude. Taken together, consensus in favor of the Roper resonance as pre-
dominantly the first radial excitation of the three-quark ground state is accumulating and we will return to this
point in Sec. 3.6.
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Figure 2.1: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [?,
?]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).

3.1 Notation and conventions

Throughout this paper we use natural units, ~ “ c “ 1, with masses, 3-momenta and energies given in GeV,
1fm » 1{0.197327 GeV´1.

We also follow the covariant dimensional representation of 4-vectors aµ aµ “ pa0,aq, where a0 is the time
component and a is the space component. We adopt the convention for the metric tensor

gµ⌫ “ diagp1,´1,´1,´1q “

¨

˚̊
˝

1 0 0 0
0 ´1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹‹‚, (3.1)

and write the Dirac matrices �µ in the Dirac-Pauli representation [?, ?]

�0 “
ˆ

11 0
0 ´11

˙
, �i “

ˆ
0 �i

´�i 0

˙
, �5 “ i�0�1�2�3 “

ˆ
0 11
11 0

˙
, (3.2)

where 11 is the 2 ˆ 2 unitary matrix, and �i are the Pauli matrices

�1 “
ˆ

0 1
1 0

˙
, �2 “

ˆ
0 ´i
i 0

˙
, �3 “

ˆ
1 0
0 ´1

˙
. (3.3)

The commutation relation

t�µ, �⌫u “ 2gµ⌫ (3.4)

holds, and the �5 matrix is given by �5 “ i
24!"↵��⇢�

↵�����⇢, where "0123 “ 1. Also,

�µ⌫ “ i

2
p�µ�⌫ ´ �⌫�µq. (3.5)

Spin 1
2 and 3

2 states are described by Dirac (u) and Rarita-Schwinger (u↵) spinors, respectively, with the
normalizations [?, ?]

ūpp, squpp, sq “ 1, ū↵pp, squ↵pp, sq “ ´1, (3.6)
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Theoretical tools

• Functional methods in the continuum (Dynamics)  àDyson-Schwinger
Bethe-Salpeter eqs.

• Analyticity à Dispersion theory

• QCD Lagrangean in Space-Time grid & finite volume

Functional methods

Ingredients: QCD’s n-point functions,
Satisfy quantum eqs. of motion (DSEs)

→   Dynamical mass generation, 
     gluon mass gap, confinement, ...

Hadronic bound-state equations
(Bethe-Salpeter & Faddeev eqs)

Structure calculations: form factors, PDFs, GPDs, TMDs,
two-photon processes, ...

=
np

3p

2p

1p

“QFT analogue of Schrödinger eq.”

→ spectroscopy calculations

  

+

→  hadron masses & “wave functions”
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Figs: courtesy of 
Gernot Eichmann

à Lattice QCD

à Effective Field Theory 
à Large Nc limit
à Quark models

Guidance to the limits to the continuum and infinite volume
Identification  of nonperturbative effects, as dynamical mass 
generation, internal clustering decomposition phenomena.



Dyson–Schwinger methods deciphered the baryon spectrum (eg. C. Fischer talk):
𝑁(1440), 𝑁(1535) and N(1650) states correct relative position in the spectrum. 
The combination of different diquark correlations in baryon structure explained it.

A. Torcato, A. Arriaga, G. Eichmann, M. T. P.
Few Body Syst. 64 3, 45 (2023)

Progress in Particle and Nuclear Physics xxx (xxxx) xxx

35

G. Ramalho and M.T. Peña

Fig. 5.1. Baryon spectrum and weight of the different diquark structures in the different baryons: scalar (sc); axial-vector (av); pseudo-scalar (ps); vector (v).
Figure adapted from Ref. [77]. Courtesy of Gernot Eichmann.

5.6. Ads/QCD–Holographic QCD

In the last decades it was demonstrated that string theory or gravity in anti-de-Sitter (AdS) space can provide a description
of lower-dimensional (conformal) gauge theories (CFT) with strong coupling [59,351–353]. This AdS/CFT correspondence can in
certain conditions be applied to QCD-like theories [354–356]. Though the method is based on the semiclassical approximation of
QCD, it can be used to describe many properties of the hadronic systems due to its simplicity.

The AdS/CFT theories are divided in two main categories: the top-down and bottom-up approaches. The top-down approach
is based on first principles and it is related to super symmetric strings based on D-brane physics [355,357–360]. The bottom-up
approach is more phenomenological and derive the QCD properties in the confining regime using 5D-fields in AdS space [59,361–
364].

Most of explicit calculations of transition form factors using holography are based on the bottom-up approach. Within the
bottom-down approach, one can relate the results from AdS/CFT with the results from light-front dynamics based on a Hamiltonian
that include the confining mechanism of QCD [59,361–363]. The correspondence between AdS/QCD and light-front dynamics is a
consequence of mapping the hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical spacetime quantized
on the light-front [59]. The correspondence (duality) in known as light-front holography or holographic QCD. In the limit of the
massless quarks, one can relate the AdS holographic variable z with the impact separation ⇣ , which measures the distance between
constituent partons inside the hadrons [59,361–363].

The light-front holography has been used to study the properties of the hadrons, such as the mass spectrum, parton distribution
functions, and structure form factors of mesons and baryons using different types of confinements, including soft-wall and hard-wall
potentials A review can be found in Ref. [59,365].

In the light-front holography formalism, one can represent the wave functions of the hadrons using an expansion of Fock
states with a well defined number of partons (twist number t) [364,365]. In the case of baryons, the first term corresponds to
the three-quark state (qqq) or the leading twist approximation (t = 3).

Calculations of the nucleon elastic form factors where performed using different confining mechanisms in leading twist
approximation [360,365–369] and also with higher twist corrections [364,370,371]. Holographic calculations of different �<N ô N<

transition form factors can be found in Refs. [365,371–380].
A note about higher order Fock states using holographic QCD, in particular on the contributions from q Ñq pairs: in holographic

QCD the substructure of the q Ñq pair is neglected in first approximation, meaning that the particles in the pair are not correlated as
in a meson state, i.e. one considers two pointlike particles instead of an extended meson. The consequence is that contributions of
the q Ñq pairs to the transition form factors give a much slower falloff with Q2 than explicit calculations of meson cloud corrections
to the three-quark baryon systems [381].

The conclusion is that, on one hand, we must be careful in using holographic QCD models to estimate q Ñq contributions to
transitions form factors, on the other hand, holographic QCD is, for its simplicity, a very promising method to estimate the
contributions of the valence quark degrees of freedom at low Q2, for comparison with other estimates of the bare core effects.

5.7. More on quark models

In addition to the frameworks discussed in the previous sections two other families of quark models that stand out due to the
scope of their results (as shown in the next section).

One is the hypercentral quark model developed by Bijker, Giannini and Santopinto and collaborators [37,51,55] use the
combination of the Jacobi variables (2.5) in terms of hyperspherical coordinates (6D vector) to derive a wave function for the
variable x =

t

⇢2 + �2 with a confining potential V (x) similar to the Isgur–Karl model (see Section 2). Calculations of both the
baryon spectrum and the transition amplitudes between baryon states [37,47–53,55,56] were accomplished.

Another relevant class of models is the light-front quark models discussed in Refs. [86,382–385]. Light-front quark models are
derived in the infinite momentum frame [10,86] and include in first approximation only qqq states. The estimates are expected to be

M.Y. Barabanov et al., Prog. Part. Nucl. Phys 116(2021) 103835 
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Fig. 3 Results for the singly-charmed baryon spectrum including Λc and Σc states compared to experiment [44]
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Fig. 4 Partial-wave contributions to the Λc and Σc states, given as percentages contributing to the total baryon normalization
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Fig. 5 Overlap integrals that enter in the baryon’s normalization, exemplified for the Σc

Also in this case the problem can in principle be solved by residue calculations, but this would pose a substantial
numerical effort which we do not attempt here. On the other hand, there are examples demonstrating that (in
the absence of physical thresholds) extrapolations agree with direct calculations where such a comparison is
possible, see e.g. [45].

3 Results

We show results for the Λc(1/2+) and Σc(1/2+) mass spectra in Fig. 3. As mentioned earlier, all masses
are extrapolated and the bars correspond to the extrapolation errors. The Σc states mirror the results in Refs.
[30,31] for the Σ baryons, which resemble a superposition of octet and decuplet spectra. The 1/2+ channel
features a nucleon-like ground state corresponding to the Σc(2455) and a Roper-like first excitation, and the Λc
channel resembles a superposition of octet and singlet spectra, with the Λc(2286) as the nucleon-like ground
state. Some of the higher-lying excitations also appear to extrapolate into the same mass region, but these are
numerically less reliable and due to the large extrapolation errors we do not include them in the plot.

Recent calculation singly charmed Baryons

n-> u,d 



� For the E.M. matrix element calculation, the Baryon vertex is integrated over 
the spectator quarks variables.
(Covariant Spectator Model, CST) 

�  A reduced quark - diquark Baryon wave function is all that is needed;
it is phenomenologically constructed.

G. Ramalho, TP, Franz Gross, Phys. Rev. D78, 114017 (2008)

E.M. matrix element 2008CST©



§ Nucleon “wavefunction”

�A quark + scalar-diquark component

�A quark+ axial vector-diquark component 

§ Delta (1232)  “wavefunction”

� Only quark + axial vector-diquark term contributes

Phenomenology comes into  “radial” functions

ü The wf is symmetry based only; not dynamically  generated 
ü The Diquark is not pointlike; it encloses structure
      
Eg. S-wave
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Quark E.M. Current

4

FIG. 4: Electromagnetic current to the quark. The first term
is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.

where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
tors ji (i = 1, 2) has an isoscalar and an isovector com-
ponent, respectively fi+ and fi� (functions of Q2, the
4-momentum transfer squared), ji =

1
6fi+ + 1

2fi�⌧3.
The inclusion of the second term in the second equation

in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]

f1±(Q
2) = �q + (1 � �q)

m2
v

m2
v +Q2

+ c±
M2

hQ
2

(M2
h +Q2)2

f2±(Q
2) = ±

⇢
d±

m2
v

m2
v +Q2

+ (1 � d±)
M2

h

M2
h +Q2

�
,

(2.4)

where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z

d4q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z

d4q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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FIG. 4: Electromagnetic current to the quark. The first term
is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.
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factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
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the quark propagator. It becomes clear from (2.5) how
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from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
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connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
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Fig. 3. Magnetic form factor GM , ratio REM and ratio RSM

of the γ∗N → ∆ transition. Vertical dashed line delimit the re-
gion below which the singularities of the quark propagator are
probed. Experimental data are taken from [39–47]. Coloured
bands represent the result of the numerical calculation for
η = [1.6, 2.0] (lower/upper bound).

be much smaller than the experimental ones, it has been
concluded that additional pion cloud effects are manda-
tory. However, as discussed in [53], this is not necessarily
true. In a fully covariant framework, as the one at hand, p-
wave contributions to the nucleon and the ∆ are not only
allowed, but, them being represented by the lower com-
ponents of the four-spinors contained in the amplitude,
and hereby especially also in the leading one, they play a
much bigger role than d-waves which are related to sub-
leading parts of the baryons’ amplitudes. Consequently,
they contribute to REM and have the potential to gen-
erate deviations of REM (0) from zero of the same order

as the experimentally observed ones. This is true for the
diquark-quark approximated framework [53] and also sug-
gested by our results from the three-body calculation. This
observation also extends to the ratio RSM (0), although
here the agreement with experiment is much better in the
diquark-quark framework than for our results presented
in the bottom panel of fig. 3. In general, as already men-
tioned above, both ratios do suffer from uncertainties due
to technical problems with the Chebyshev expansion that
need to be dealt with in future work.

3.2 Hyperon octet-decuplet transition

In the exact SU(3)-isospin limit, the transition γ∗Σ∗+ →
Σ+ would be identical to the γ∗N → ∆ studied in the
previous section (cf. eq. (B.4)). This is indeed manifest in
the magnetic form factor, shown in fig. 4, which is compa-
rable in magnitude to the corresponding one in fig. 3 and
qualitatively identical in shape. Similar remarks apply to
the γ∗Σ∗ 0 → Σ0, also shown in fig. 4, which is however
suppressed by a flavour factor (see eq. (B.5)).

Once again, in the exact SU(3)-isospin limit the
γ∗Ξ∗ 0 → Ξ0 transition would be identical to the N∆
or the Σ∗+Σ+ ones. Comparing the corresponding plots
in fig. 4 we find that their magnetic form factor is indeed
very similar. Since the Ξ is a doubly-strange baryon, this
indicates that the isospin-breaking effects are very small,
as we shall see below.

A good measure of the breaking of SU(3)-flavour sym-
metry is given by the form factors of the γ∗Σ∗− → Σ−

and the γ∗Ξ∗− → Ξ− transitions, since in the limit of ex-
act symmetry these would vanish identically (cf. eq. (B.6)
and eq. (B.9)). We show their magnetic form factors in
the two bottom panels in fig. 4. They indicate a break-
ing of SU(3) symmetry at the level of a few percent. The
smallness of this breaking in the present calculation might
result from the fact that it is only generated by the differ-
ent quark masses of the s- and the u/d-quarks, both the
current quark mass and the dynamically generated one.
Other possible sources of SU(3) breaking would come, for
example, from the weakening of the quark-gluon interac-
tion as a function of the quark mass (see [55]). We should
mention, however, that such an effect was explored in [56]
in relation to the octet and decuplet baryon masses, where
it was found to be sizeable on the level of the propagators,
but extremely small on the level of observables.

We also extrapolated our results for the magnetic form
factors to zero momentum using a dipole fit for the tran-
sitions with positive and neutral charges and a linear ex-
trapolation for the ones with negative charges applied af-
ter the zero crossing. Our results are given in table 1 to-
gether with the corresponding results for the nucleon-∆-
transition. As discussed above, we expect significant ef-
fects due to meson cloud effects at small momenta. This
is reflected in the sizeable underestimation of GM (0) as
compared with extractions from experimental values per-
formed in [57], based on the assumption of the dominance
of GM (0) over GE(0). Compared to the quark model cal-
culation of Ramalho and Tsushima [57,58] we indeed find

Missing strength of GM at the origin is an universal feature, even in
dynamical quark calculations.
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Fig. 6.16. �<N ô �(1232) transition. Left panel: Results from the covariant spectator quark model in the S-state approximation for the magnetic form factor [271].
Data from DESY, SLAC and JLab [136,182,479,480,498]. Right panel: Comparison of the fit of GB

M with the EBAC results (contribution from the core) [226].
The fit varies only the two parameters of the � radial wave functions [155,271].

case that the magnitude of the pion cloud contributions is fundamental to fill the gap between bare and dressed contributions. There
are also estimates of transition form factors based on soliton models [492–494]. The estimates at low Q2 are comparable with the
data but the falloffs are in general slower that the suggested by the physical data [282,492].

There are also calculations of transition form factors based on Generalized Parton Distributions (GPDs). In this approach elastic
and inelastic interactions of baryons with photons are described using structure functions that separate the mechanism of the
interacting parton (quark) from the role of the remaining partons (quarks, antiquarks and gluons) [25,495]. These structure functions
can be measured in deeply virtual Compton scattering �<N ô �N<, where the initial (virtual) photon has a very large virtuality Q2

h.
The GPDs depend on both transitions N ô N or N ô � and on three kinematic variables: the fraction of momentum of the quark
(Bjorken x variable), the transverse component of the Compton scattering transfer momentum and the virtuality of the transition
Q2
h [25]. The applications of the GPD formalism to the �<N ô � transition uses sum rules that relate the GPD functions with the

nucleon elastic and �<N ô � form factors. The estimates are expected to be valid for large Q2, where the single quark-photon
interaction dominates [25,496]. Some applications use �<N ô � and �<N ô N large Nc relations based on the isovector character
of the transition (see Section 6.3.5). The calculations provide a good description of GM at large Q2, but the obtained results lack
strength at low Q2 [9,496]. The results are improved when Regge parametrizations of the GPDs are considered [497]. The GPDs
formalism has also been used to estimate the impact of the two-photon exchange contributions to the �<N ô �(1232) transition
form factors [117].

The limitation of the calculations based on valence quark models in the description of GM can be illustrated in some frameworks.
Within the covariant spectator quark model (Section 5.2), if one takes into account only the contributions associated with the valence
quark degrees of freedom, one can conclude that when the nucleon and �(1232) systems are dominated by quark-diquark S-state
configurations, the quadrupole form factors vanish (GE = 0 and GC = 0). In that case, one obtains for the magnetic dipole form
factor [156,262,271,289]

GB
M (Q2) = 4

3
˘

3
M

M� +M

4

f1*(Q2) +
M� +M

2M f2*(Q2)
5

 k
 �(P�, k) N (PN , k), (6.19)

where fi*(Q2) (i = 1, 2) are the Dirac and Pauli isovector constituent quark form factors and  �,  N are the � and nucleon radial wave
functions, respectively. We assume here that the radial wave functions are non negative functions. In the limit Q2 = 0 the Cauchy–
Schwarz inequality for integrals9 shows that the overlap integral of the two radial wave functions satisfies the relation îk  � N Õ 1.
When we include the values of the quark isovector form factors at Q2 = 0 in Eq. (6.19) one obtains GM (0) Õ 2.07, below the
experimental value from Eq. (6.13) [155,156,271]. This estimate is just an upper limit (see footnote), and lower underestimations
of GM can be obtained [289]. The two independent parameters of the �(1232) radial wave function (see Section 5.2) are adjusted
in order to reproduce the EBAC results.

The results from the covariant spectator quark model for the magnetic form factor in the S-state approximation, are presented
in Fig. 6.16 together with the EBAC estimate of the bare contributions (blue bullets). The figure shows that the bare component

9 In the � rest frame, we can use the Cauchy–Schwarz inequality for integrals, valid for real radial functions, to write [156,289]
0

 k
 �(P� , k) N (PN , k)

12
Õ
0

 k
[ �(P� , k)]2

10

 k
[ N (PN , k)]2

1

.

Since the � radial wave function is normalized to unit, when P� = (M� , 0, 0, 0), one has îk[ �(P� , k)]2 = 1. As for the nucleon radial wave function, one has
by construction  N (PN , k) Õ  N ( ÑPN , k), where ÑPN = (M , 0, 0, 0) corresponds to the case q = 0. Thus îk[ N (PN , k)]2 Õ îk[ N ( ÑPN , k)]2 = 1, according with the
normalization of  N . One can then write îk  � N Õ 1, where the equality stands only for the case q = 0, equivalent to the limit M� =M .
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D. Properties of the wave functions under a Lorentz
transformation

The form for the wave functions given in Eq. (2.39)
holds only for the case where the particle is moving along

the z direction [with 4-momentum P¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HþP2
q

;0;0;PÞ].
The generic wave function can be obtained from an arbi-
trary Lorentz transformation !

P0! ¼ !!
"P": (2.46)

Under a Lorentz transformation we obtain

"!P0 ¼!!
" ""P w0

#ðP0Þ ¼!#
$Sð!Þw$ðPÞ

u0ðP0Þ ¼ Sð!ÞuðPÞ D$#ðP0; k0Þ ¼!$
%!#

&D%&ðP;kÞ
S%1ð!ÞðP 0

SÞ$#Sð!Þ ¼!$
%!#

&ðP SÞ%&; (2.47)

where u0 and w0
# represent the states in the arbitrary frame.

For simplicity, the dependence of the spinor states on the
Wigner rotations acting on the polarization vectors has not
been shown explicitly, and ðP SÞ are the projectors of (2.25)
with ðP 0

SÞ the same projectors with P0 ¼ !P, one obtains
the transformation law

Z 0
#ðP0; k0Þ ¼ Sð!Þ!#

$Z$ðP; kÞ (2.48)

for any vector-spinor state Z. Finally, from (2.48) the
transformation laws for the total " wave function follows

#0
"ðP0; k0Þ ¼ Sð!Þ#"ðP; kÞ: (2.49)

In conclusion, we may derive the baryon wave function
in any frame, where the four-momentum P is arbitrary, by
means of a Lorentz transformation ! on the wave function
defined in the baryon rest frame.

III. FORM FACTORS FOR THE !N ! !
TRANSITION

A. Definitions

The electromagnetic N" transition current is

J! ¼ $w#ðPþÞ%#!ðP; qÞ'5uðP%Þ(I0I; (3.1)

where Pþ (P%) is the momentum of the " (nucleon), I0 (I)
the isospin projection of the " (nucleon), and the operator
%#" can be written in general [93] as

%#!ðP; qÞ ¼ G1q
#'! þG2q

#P! þG3q
#q! %G4g

#!:

(3.2)

Although we have omitted the helicity indices for these
states, the transition current depends on both the helicities
of the final and initial baryons and on the photon helicity.
The variables P and q are, respectively, the average of
baryon momenta and the absorbed (photon) momentum

P ¼ 1

2
ðPþ þ P%Þ q ¼ Pþ % P%: (3.3)

The form factors Gi, i ¼ 1; . . . ; 4 are functions of Q2 ¼
%q2 exclusively. Because of current conservation,
q!%

#! ¼ 0, only three of the four form factors are inde-
pendent. In particular, we can writeG4 in terms of the other
three form factors as

G4 ¼ ðMþmÞG1 þ
M2 %m2

2
G2 %Q2G3; (3.4)

and adopt the structure originally proposed by Jones and
Scadron [93]. Alternatively (see below), we can writeG3 in
terms of the other three

G3 ¼
1

Q2

"
ðMþmÞG1 þ

M2 %m2

2
G2 %G4

#
: (3.5)

The parametrization (3.2) in terms of the form factorsGi

is not the most convenient one for comparison with the
experimental data. More convenient are the magnetic di-
pole (M), electric quadrupole (E), and Coulomb quadru-
pole (C) form factors. These can be defined directly in
terms of helicity amplitudes [16,93]. Note that the form
factor G3 does not enter directly into the expressions for
the helicity amplitudes because )!&

* q! ¼ 0 for all *. But, if
we use the constraint (3.4) to eliminate G4, G3 appears in
these expressions and we obtain

G&
MðQ2Þ ¼ +

$
½ð3MþmÞðMþmÞ þQ2(G1

M

þ ðM2 %m2ÞG2 % 2Q2G3

%
; (3.6)

G&
EðQ2Þ ¼ +

$
ðM2 %m2 %Q2ÞG1

M
þ ðM2 %m2ÞG2

% 2Q2G3

%
; (3.7)

G&
CðQ2Þ ¼ +f4MG1 þ ð3M2 þm2 þQ2ÞG2

þ 2ðM2 %m2 %Q2ÞG3g; (3.8)

where

+ ¼ m

3ðMþmÞ : (3.9)

These three form factors G&
a (a ¼ M, E, C) are, respec-

tively, the magnetic, electric and Coulomb (or scalar)
multipole transition form factors.
As G&

M dominates at low momentum Q2, the following
ratios are useful

REMðQ2Þ ¼ % G&
EðQ2Þ

G&
MðQ2Þ ; (3.10)

and

RSMðQ2Þ ¼ % jqj
2M

G&
CðQ2Þ

G&
MðQ2Þ ; (3.11)
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More in talk of Gilberto Ramalho

Q2
0 = �(MR �MN )2 ; | ~Q| = 0



• Bare quark model gives good description in the  
high momentum transfer region.

    Consistent with Aznauryan and Burkert, 
     PRC 85 055202  2012 and PDG

G. Ramalho, M. T. P. , PHYSICAL REVIEW D 95 014003 (2017)

In our first work in Ref. [20] the meson cloud was
different than the one that we are using here. The reason is
that the meson model associated with Fig. 2(b) was,
meanwhile, reparametrized in Ref. [7] to fix the incorrect
position of the rho mass pole given by our first model, as
well as by other popular parametrizations [7]. In addition,
we notice that, in this new parametrization, the γ!N → Δ
transition pion cloud is directly connected to the pion
electromagnetic form factor Fπðq2Þ, which is well estab-
lished experimentally in the timelike region [7].
The parameters used in the formulas (5.22)–(5.24) were

determined by their fit to the γ!N → N!ð1520Þ spacelike

form factors, giving aM ¼ 5.531 GeV−2, λð4Þπ ¼ −1.019,
λMπ ¼ −0.323, λCπ ¼ −1.678, Λ2

4 ¼ 10.2 GeV2, Λ2
M ¼

1.241 GeV2, and Λ2
C ¼ 1.263 GeV2. The results are pre-

sented in Fig. 3 as a function of Q2 ¼ −q2 and compared
with the spacelike data [48–50]. Check Ref. [20] for a more
detailed discussion of the data. In the figure we also show
the valence quark contributions (the dashed line) and the
meson cloud contributions (the dashed-dotted line) based
on the parametrizations described above.
In the Appendix, we discuss the technical aspects of

the regularization of the singularities appearing in the
multipoles of Eqs. (5.22)–(5.24).

VI. RESULTS

We present in this section our predictions for the
γ!N → N!ð1520Þ transition form factors in the timelike
region. Using these results, we also calculate the γN and
eþe−N decay widths.

A. Form factors

The predictions for the absolute values of the form
factorsGM,GE, andGC in the timelike region are presented
in Fig. 4 for the cases W ¼ 1.52, 1.8, and 2.1 GeV. The
valence quark core contributions are given by the thin lines.
They stand very near the horizontal axis and vanish in the
upper limit, q2 ¼ ðW −MÞ2, by kinematic constraints. The
same result was observed in the quadrupole form factors of
the γ!N → Δð1232Þ transition for the physical case, when
W ¼ MΔ ≃ 1.232 GeV [51].
Figure 4 shows that the meson cloud contribution largely

dominates. Only near the ω pole (q2 ≃ 0.6 GeV2) is there a
significant contribution from the quark core for the absolute
value of the form factors GM and GE. This effect is very
concentrated near q2 ≃m2

ω as a consequence of the small ω
width, Γωðm2

ωÞ.
InGC the effect of the ω pole is not observed. This is due

to the cancellation of the isoscalar contributions to the form
factorGC. This cancellation is obtained analytically and can
be confirmed by substituting the form factors G1, G2, G3

given by Eqs. (5.14)–(5.16) into the formula of Eq. (5.10)
for GC. One concludes that only the quark isovector form
factors, f1− and f2−, contribute to GC.
From Fig. 4, one concludes that a fairly good description

of the γ!N → N!ð1520Þ transition can be obtained without
the valence quark core contributions, which are very small.
The almost perfect coincidence, both forGM andGE, of the
lines corresponding to different values of W is also a
consequence of the dominance of the meson cloud com-
ponent since only the valence part depends on W. Only for
GC can one distinguish a slight W dependence, and this is
evident because the valence quark contributions are non-
zero when q2 ¼ 0. The main role of the mass dependence
W in the behavior of the form factors is then to constrain
them for q2 ≤ ðW −MÞ2.
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FIG. 3. Valence quark core plus meson cloud contributions to
the spacelike form factors as a function of Q2 ¼ −q2. Data come
from Ref. [48] (the full circles), Ref. [49] (the empty circles), and
PDG [50] (the square).
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• For low      , failure of description 
       hints to meson effects.

Q2



Dominance of iso-vector channel concurs 
to the interpretation of low Q2 effects as  “pion cloud effects”

PDG data at the photon point:

3

adjustable parameters, since the quark current was deter-
mined in the study of the nucleon electromagnetic form
factors [28] and the radial wave functions are correlated
with the nucleon radial wave functions.

To complement the effect of the valence quark contri-
butions we consider in Sec. III additional contributions
associated with the meson cloud effects.

γ∗N → N(1535) form factors

The γ∗N → N(1535) transition current can be ex-
pressed using units of elementary charge (e), in the form

Jµ = ūR

[

F ∗
1

(

γµ −
#qqµ

q2

)

+ F ∗
2

iσµνqµ
MR +MN

]

γ5uN ,

(2.10)

where uR and uN are the resonance and nucleon spinors,
respectively. Equation (2.10) defines the elementary form
factors, Dirac (F ∗

1 ) and Pauli (F ∗
2 ) [18, 20, 22].

In the semirelativistic limit, we obtain the following
results [20]:

F ∗
1 (Q

2) =
1

2
(3jS1 + jA1 )IR (2.11)

F ∗
2 (Q

2) = −
1

2
(3jS2 − jA2 )IR. (2.12)

For a detailed discussion of the results check Refs. [20,
21]. The numerical results are presented in Fig. 1.

γ∗N → N(1520) form factors

The γ∗N → N(1520) transition current can be ex-
pressed, in units e, as [23, 24]:

Jµ = ūα [G1 q
αγµ +G2 q

αPµ +G3 q
αqµ −G4g

µν ]uN ,

(2.13)

where uα is the Rarita-Schwinger of the R state, uN is
the nucleon spinor, P = 1

2 (PR + PN ), and the dots in-
dicate gauge terms that are not relevant to the present
discussion. The functions Gi (i = 1, 2, 3) are the elemen-
tary form factors of the transition. The function G4 is a
linear combination of the first three form factors.

Details about the general γ∗N → N(1520) transition
form factors and their relations with the helicity ampli-
tudes are presented in Appendix A. Here we consider the
results in the semirelativistic approximation.

The results for the elementary form factors in the
semirelativistic approximation are [20]:

G1 = −
3

2
√
2

[(

jA1 +
1

3
jS1

)

+

(

jA2 +
1

3
jS2

)]

IR
|q|

,

G2 = +
3

2
√
2M

[

jA2 +
1

3

1− 3τ

1 + τ
jS2 +

4

3
jS1

]

IR
|q|

,

G3 = 0. (2.14)

A1/2(0) F ∗

2 (0) A(0)/B(0)

p 0.150±0.015 0.97±0.14 0.14±0.12

n −0.075±0.020 −0.69±0.19 0.83±0.12

TABLE I: γ∗N → N(1535) transition. Amplitude A1/2(0)

and results for F ∗

2 (0). A1/2(0) is in units 10−3GeV−1/2.

A1/2 A3/2 |A|2

p −0.025±0.005 0.140±0.005 20.2±1.4

n −0.050±0.005 −0.120±0.005 15.7±1.3

TABLE II: N(1520) → γN amplitudes in units 10−3 GeV−1/2

(case Q2 = 0). |A|2 ≡ A2

1/2 +A2

3/2 is in units 10−3 GeV−1.

Based on the expression for G4, given by Eq. (A1) we
conclude that G4 = 0. This result is very important
because it implies that there is no contribution of the
valence quark core to G4, in the context of the covariant
spectator quark model.

For the purpose of the discussion, we note that G1 and
G2 are proportional to IR

|q| and are therefore well defined

at the photon point, according with Eq. (2.8).
The multipole form factors are obtained using the re-

lations [20]

GM = −RQ2
−
G1

MR
, (2.15)

GE = −R
[

4Gmc
4 −Q2

−
G1

MR

]

, (2.16)

GC = −R
[

4MRG1 + (3M2
R +M2

N +Q2)G2

]

,

(2.17)

where R = 1
3

MN

MR−MN
. The relations (2.15)-(2.17) are

converted to the Devenish representation [2], and differ

from the results from Refs. [20, 23, 24] by the factor
√

2
3 .

In Eq. (2.16) we include a term in Gmc
4 , which can

be interpreted as the meson cloud contribution to the
function G4 and it is discussed in Sec. III B.

AV
3/2 ⇡ 0.13 ;AS

3/2 ⇡ 0.01 (GeV �1/2)

N→ N *(1520)



N(1535)

Jµ = ūR

[

F ∗

1

(

γµ −
"qqµ

q2

)

+ F ∗

2

iσµνqν
MN +MR

]

γ5uN

Phenomenology

! F ∗
1 has important valence quark contributions

! F ∗
2 seems to have relevant meson cloud contributions

Spectator: partial description of the transition
Use QM to estimate meson cloud parametrization from the data

N→ N *(1535) JP=1/2-  I=1/2
~50% decay to    N
~50% decay to    N

⇡
η

• It dominates F1*  for large

• Meson effects in F2* extend to high      region.

• Again good agreement of bare
quark core with data in the large      region.

Q2

Effect from the      N  together  with     N channelη

Q2

TFFs

1 Introduction

The present work is a concise review of the recent theoretical and experimental results about the electromagnetic
structure of the baryons and baryon excitations. Our main focus is the nucleon excitations, since are the systems
that have been studied in more detail with increasing precision. Nevertheless, we present also a summary of
the recent results for baryons with strange and heavy quarks.
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Figure 1.1: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [9,
10]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).
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Figure 1.2: Representation of the transverse �p Ñ ⇡`n cross section with Q2 “ 1 GeV2. Notice the bumps
associated to the first, second and third resonance region. Calculation using the MAID 2007 parametrization [9,
10]. The vertical lines indicate some of the more relevant nucleon resonances (N˚).

The present structure is based on the preliminary reading of the Refs. [1, 2, 3, 4]. More references can be
found in biblo.bib in the BiBTeX format.

Along this work we use the PDG 2020 [5] as reference to experimental results. In the cases there was
modification in the lastest version of PDG we mention the current PDG 2002 publication [6].
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N(1535) – proton target – infered meson cloud
G Ramalho and MT Peña, in preparation

FMC
1 = Q2C̃(Q2)τ3 FMC

2 = A(Q2) +B(Q2)τ3

Isovector dominance: (B ! A)
AV

1/2(0) = 0.090± 0.013 GeV−1/2; AS
1/2(0) = 0.015± 0.013 GeV−1/2
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Extension to the Timelike region

(a)                   (b)

Timelike: |G∗M | - new model

New model: consider the explicit connection with the

microscoptic pion cloud structure – quarks with structure

(a) Coupling with pion on the air:
related with pion electromagnetic form factor Fπ(q2)

(b) Coupling with intermediate baryon states (octet/decuplet):
parametrized effectively by [G̃D(q2)]2 ∝ 1/Q8

G̃D(q2) =
Λ4
D

(Λ2
D − q2) + Λ2

DΓ2
D(q2)

,

Λ2
D cutoff: parametrize mass scale of intermediate reson. (Λ2

D ≈ 1 GeV2)
ΓD(q2) effective width, constraint to ΓD(0) = 0

Gilberto Ramalho (IIP/UFRN, Natal,Brazil) SL and TL e.m. baryon FF Estoril, October 9, 2015 37 / 55

+ +
(a)                   (b)

The residue of the pion from factor Fπ(q2)  at the timelike      pole 
 is proportional to the                            decay

Diagram (a) related with pion electromagnetic form factor Fπ(q2) 

⇢ ! ⇡⇡
⇢

Fπ(q2) 

See Izabela Ciepal



γN→Δ
Ramalho, Pena, Weil, Van Hees, Mosel, 
Phys.Rev. C93 033004 (2016)

time
like

spacelike

space
like

(1232) Dalitz decay �

Timelike: |G∗M | - new model (3)

Fρ(q
2) =

m2
ρ

m2
ρ − q2 − 1

π
Γ0
ρ

mπ
q2 log q2

m2
π
+ i

Γ0
ρ

mπ
q2
−→ Fπ(q

2)

Fiting the |Fπ(q2)|2 data

Fπ(q
2) =

α

α− q2 − 1
πβq

2 log q2

m2
π
+ iβq2

α = 0.696 GeV2

β = 0.178 -0.5 0 0.5 1
q2  (GeV2)
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Parametrization of pion Form Factor

Extension to Timelike

Parametrization of 
pion Form Factor

Extension to the Timelike region

TFF restricted to the kinematic region 
that depends on the resonance mass 
W.



Dilepton mass spectrum

HADES Collaboration, Phys.Rev. C95 0652205 (2017)
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Fig. 10 At the right: Calculation of |G∗

M
| in timelike region in terms of W [30]. At the

left: ∆(1232) Dalitz decay cross-sections from HADES [77]. See discussion in the main text.

case the functions are represented in terms of q2 = −Q2, in order to facilitate
the discussion in the timelike regime. The new parametrization improves the
previous one, because it clearly separates the contributions from the photon
coupling with the pion from the photon coupling with intermediate baryon
states (see Fig. 9).

The motivation to the use of the parametrization (16) is based on the
diagrammatic representation of Fig. 9, and in the results of the study of the
octet to decuplet transition from Ref. [32]. In that work a microscopic meson
cloud contribution based on the cloudy bag model [73] was used in combination
with the covariant spectator quark model for the quark core. It was found that
in the case of the γ∗N → ∆(1232) transition each diagram contribute with
about 50% to the pion cloud effect.

In the new representation only a part (50%) of the contribution is then
linked with the photon coupling with the pion, as expected in a realistic de-
scription. The second term, which describes the coupling with intermediate
baryons is now represented phenomenologically, using an effective generaliza-
tion of G2

D to the timelike region, where the pole q2 = Λ2
D is regularized [29,

30].

The present representation of Gπ
M is particularly useful for studies in

the timelike region, in particular to the study of the ∆(1232) Dalitz decay:
∆→ γ∗N → e+e−N , where the final state has a dilepton pair [30,74]. Those
processes have been studied at HADES [74,75,76,77]. This topic was discussed
also in the presentation of B. Ramstein [78].

In timelike region one can calculate the G∗
M form factor, which is complex,

in terms of the running mass W that can differ from the mass of the pole M∆.
The results of |G∗

M | for different values of W are presented in the left panel of
Fig. 10. For kinematic reason the functions are limited by q2 ≤ (W −M)2 [29,
30]. The model for |G∗

M | was used to estimate the∆(1232) Dalitz cross-sections
and it was compared with the results from HADES [77]. The results are pre-
sented in the right panel of Fig. 10. The covariant spectator quark model

(1232) Dalitz decay �

Dalitz decay branching ratio extracted 4.19 x 10-5�

proton-proton collisions @1.25 GeV

γ∗N → ∆: timelike region – ∆ Dalitz decay – PDG

HADES is planning to measure Dalitz decay widths of hyperons
Σ∗0 → e+e−Λ, Σ∗+ → e+e−Σ+, ...

HADES EPJA 57, 139 (2021); GR PRD 102, 054016 (2020)

Gilberto Ramalho (OMEG/SSU) Covariant quark model calculations... Jeju, Korea, July 11, 2022 19 / 47

Entry  in PDG

Signature of adequate TFF form factor q2 dependence

True CST prediction:
 Red line



JP=3/2-  I=1/2
60% decay     N
30% decay to 

Radiative decay widths N*(1520)

Result Consistent with PDG value for    N decay width.
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Radiative decay widths N*(1535)   

Different results for proton and neutron electromagnetic widths
due to iso-scalar term in the eta meson cloud.

Timelike results give information on the neutron.

VI. RESULTS FOR THE RADIATIVE
AND DALITZ DECAY WIDTHS

We present in this section the observables associated
with the timelike region. First, we present our results for the
radiative decay widths (ΓγN). Next we discuss our results
for the dilepton decay rates d

dqΓeþe−Nðq;WÞ. We also show
the results for the Dalitz decay widths (Γeþe−N), as function
of W. We consider the proton and neutron cases.

A. Radiative decay widths

The radiative decay widths for the proton and neutron are
determined by the function Γγ$Nðq;WÞ as defined by
Eq. (5.1) in the limit q2 ¼ 0, when the virtual photon
became real.
The results for ΓγN are presented in Fig. 12, for the

proton and neutron cases. Our results differ significantly
from the results of a model with constant form factors.
Notice that the result for ΓγN is related to jGTð0;WÞj2.

The results of the function jGTð0;WÞj are presented
in Fig. 13. From the figure it is clear that the constant

form factor, i.e., a W independent form factor, is a bad
approximation.
The results for ΓγNðWÞ for the physical point (W ¼ MR)

compare well with experimental values presented in
Table III. The data presented in Fig. 12 are PDG results
based on the amplitudes A1=2ð0Þ (fourth column of
Table III). The uncertainties in the widths are the conse-
quence of limits on A1=2ð0Þ [proportional to GEð0Þ]. Note
that there is some overlap between the data results for the
proton and neutron, meaning that the data are compatible
with an identical result for both decays (exact isospin
symmetry).
In our model, the isospin symmetry is clearly broken in

the Nð1535Þ → γN decay. The good agreement between
model and data is a consequence of the accurate description
of the transition form factor GE at q2 ¼ 0, for both isospin
channels.

B. Dalitz decay rates

The dilepton decay rate d
dqΓeþe−Nðq;WÞ can be calcu-

lated combining Eq. (5.3) with Eq. (5.1). The results for
W ¼ 1.2, 1.4 and 1.535 GeVare presented in Fig. 14 for the
proton (left panel) and neutron (right panel) cases. The
upper limit in q is determined by q ¼ W −MN, as before.
From Fig. 14, we can conclude that the more relevant

kinematic regions, for both channels, is the low-q region or
near the pseudothreshold for large W, where there is a
substantial enhancement of the decay rate. In the figure,
one can also notice that the magnitude of the decay rates
near q2 ¼ 0 is larger for the proton.

C. Dalitz decay widths

The function Γeþe−NðWÞ is determined by the integral of
the dilepton decay rate according to Eq. (5.4). The results
for the proton and neutron cases are presented in Fig. 15.
In the figure we can notice a dominance of the

proton decay width up to W ¼ 1.4 GeV and very close
values for proton and neutron cases near W ¼ 1.5 GeV.
Above 1.5 GeV, close to the ρ meson mass pole
(W ¼ MN þmρ ≃ 1.7 GeV) the effect of the correspond-
ing pole starts to manifest. The main effect is the enhance-
ment of Γeþe−NðWÞ. We have a glimpse of this effect in the
graph for the neutron decay (dashed line).
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FIG. 12. Radiative decay width as a function of W for the
proton and neutron cases. The data (W ¼ MR) are determined
from the PDG data for the amplitude A1=2ð0Þ.
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TABLE III. Nð1535Þ → γN decay widths. The estimate repre-
sents the PDG result calculated from the amplitude A1=2ð0Þ. The
results for the PDG limits are obtained from the branching ratios.

A1=2ð0Þ [GeV−1=2] ΓγN [MeV]

Data Model Estimate PDG limits Model

p 0.105& 0.015 0.101 0.49& 0.14 0.19–0.53 0.503
n −0.075& 0.020 −0.074 0.25& 0.13 0.013–0.44 0.240
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VI. RESULTS FOR THE RADIATIVE
AND DALITZ DECAY WIDTHS

We present in this section the observables associated
with the timelike region. First, we present our results for the
radiative decay widths (ΓγN). Next we discuss our results
for the dilepton decay rates d

dqΓeþe−Nðq;WÞ. We also show
the results for the Dalitz decay widths (Γeþe−N), as function
of W. We consider the proton and neutron cases.

A. Radiative decay widths

The radiative decay widths for the proton and neutron are
determined by the function Γγ$Nðq;WÞ as defined by
Eq. (5.1) in the limit q2 ¼ 0, when the virtual photon
became real.
The results for ΓγN are presented in Fig. 12, for the

proton and neutron cases. Our results differ significantly
from the results of a model with constant form factors.
Notice that the result for ΓγN is related to jGTð0;WÞj2.

The results of the function jGTð0;WÞj are presented
in Fig. 13. From the figure it is clear that the constant

form factor, i.e., a W independent form factor, is a bad
approximation.
The results for ΓγNðWÞ for the physical point (W ¼ MR)

compare well with experimental values presented in
Table III. The data presented in Fig. 12 are PDG results
based on the amplitudes A1=2ð0Þ (fourth column of
Table III). The uncertainties in the widths are the conse-
quence of limits on A1=2ð0Þ [proportional to GEð0Þ]. Note
that there is some overlap between the data results for the
proton and neutron, meaning that the data are compatible
with an identical result for both decays (exact isospin
symmetry).
In our model, the isospin symmetry is clearly broken in

the Nð1535Þ → γN decay. The good agreement between
model and data is a consequence of the accurate description
of the transition form factor GE at q2 ¼ 0, for both isospin
channels.

B. Dalitz decay rates

The dilepton decay rate d
dqΓeþe−Nðq;WÞ can be calcu-

lated combining Eq. (5.3) with Eq. (5.1). The results for
W ¼ 1.2, 1.4 and 1.535 GeVare presented in Fig. 14 for the
proton (left panel) and neutron (right panel) cases. The
upper limit in q is determined by q ¼ W −MN, as before.
From Fig. 14, we can conclude that the more relevant

kinematic regions, for both channels, is the low-q region or
near the pseudothreshold for large W, where there is a
substantial enhancement of the decay rate. In the figure,
one can also notice that the magnitude of the decay rates
near q2 ¼ 0 is larger for the proton.

C. Dalitz decay widths

The function Γeþe−NðWÞ is determined by the integral of
the dilepton decay rate according to Eq. (5.4). The results
for the proton and neutron cases are presented in Fig. 15.
In the figure we can notice a dominance of the

proton decay width up to W ¼ 1.4 GeV and very close
values for proton and neutron cases near W ¼ 1.5 GeV.
Above 1.5 GeV, close to the ρ meson mass pole
(W ¼ MN þmρ ≃ 1.7 GeV) the effect of the correspond-
ing pole starts to manifest. The main effect is the enhance-
ment of Γeþe−NðWÞ. We have a glimpse of this effect in the
graph for the neutron decay (dashed line).
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TABLE III. Nð1535Þ → γN decay widths. The estimate repre-
sents the PDG result calculated from the amplitude A1=2ð0Þ. The
results for the PDG limits are obtained from the branching ratios.
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FIG. 2. (a) d�/dMe+e� for the ⇡�+CH2 reaction integrated
in the HADES acceptance over the missing mass range [900-
1030] MeV/c2. Full triangles: total yields, full squares: after
subtraction of the ⇡0 Dalitz decay contribution (⇡0[�e+e�]).
The curves display the simulations for point-like baryon Dalitz
decay (”QED reference”, orange dashed-dotted curve), ⇡0

Dalitz decay (black dotted curve) and the sum (black solid
curve). (b) d�/dMe+e� for the quasi-free ⇡�p! ne+e�

reaction integrated over the missing mass range [900-1030]
MeV/c2after normalisation by the number of e↵ective protons
and acceptance corrections. Gray triangles up (blue triangles
down): e+e� yields deduced from the ⇡�p ! ⇢n PWA con-
tribution [36] using VMD2 (VMD1). Orange dashed-dotted
curve: QED reference (d�/dMe+e�)QED, gray dashed area:
VMD2 model with d-wave contribution varied from 0 (full
curve) to 10% (dashed curve), blue colored area (cyan curve):
same for VMD1 models with constructive (incoherent) sum of
⇢ and � contributions, long dash-dot-dot-dashed blue curve:
⇢ contribution to the VMD1 model. Calculations using the
timelike Form-Factor model (red solid curve) and the La-
grangian model (green long dashed curve) are also shown. (c)
Ratios (d�/dMe+e�)/(d�/dMe+e�)QED. The same marker
and curve styles apply as in panel (b). Symbols with vertical
and horizontal bars show the data with total and systematic
point-to-point errors, respectively and curves display simula-
tions with absolute normalisation in all panels.

Our results are also compared to the microscopic calcu-
lation of [46] based on an e↵ective Lagrangian approach,
taking into account various resonant and non-resonant
amplitudes in a coherent way using the N?N⇢ couplings

derived from the PWA [36]. A salient feature of this
model is the application of the two-component VMD1
model to all baryon-photon couplings. Choosing a rel-
ative phase of 90� between the resonant � and ⇢ am-
plitudes, a good description of the e+e� production is
achieved, as shown by the green long dashed curve in
Figs. 2b and c. The calculation was performed for the free
⇡�p! ne+e� reaction which might explain the peak-like
structure at large invariant masses. One has however to
consider that these calculations have not yet been con-
fronted with the measured two-pion production. More-
over, this model accommodates a strong contribution of
non-resonant Born terms in the dilepton production, in
contrast to the PWA analysis of the ⇡�p ! n⇢ channel
[36], where the main contributions are due to N(1520)
and (to a smaller extent) to N(1535) excitation in the
s-channel.
Simulations based on the eTFF model [47, 48] for

these resonances also give a satisfactory description of
the data, which demonstrates that the dominant meson
cloud contribution is taken into account in a realistic
way. As the evolution of the e↵ective eTFF is mainly
driven by the pion electromagnetic form factor, this cal-
culation provides an independent VMD approach for the
⇡�p! ne+e� reaction.
The measured e+e� cross section for Me+e� ⇡ 500

MeV/c2 is more than two orders of magnitude larger than
the calculations of [51], which were based on a very low
o↵-shell ⇢ cross section and strong destructive interfer-
ences with o↵-shell ! production. The calculations of
[52], which were performed for

p
s larger than 1.6 GeV,

also predicted large negative interferences between ⇢ and
!, though with a larger ⇢ yield.
The ”QED reference” model was used to extrapolate

the experimental di↵erential cross section at small in-
variant masses (Me+e� < 100 MeV/c2). In this way, a
total cross section for the free ⇡�p! ne+e� reaction of
� = (2.97 ± 0.07data ± 0.21acc ± 0.31Zeff )µb can be de-
duced, where the errors are due to uncertainties of the
measurement, the acceptance correction and the e↵ective
number of protons, respectively. The ratio of the inte-
grated experimental and ”QED reference” cross sections,
which can be attributed to an e↵ective eTFF, amounts
to 1.35 ± 0.03 (data) ± 0.02 (acceptance).
Angular distributions. Further information on the

nature of the timelike electromagnetic transitions in the
⇡�p! ne+e� reaction can be obtained from the angu-
lar distributions. A convenient parameterization of the
di↵erential cross sections d4�/d⇥�⇤dMe+e�d cos⇥ d� /
|A|2 is provided by the density matrix formalism [46, 53,
54] with the relevant dependencies of the mod-squared
amplitude at given value of Me+e� and polar angle (⇥�⇤)
of the virtual photon in the center-of-mass frame:

|A|2 / 8k2
⇥
1� ⇢11 + (3⇢11 � 1) cos2 ⇥.

+
p
2Re⇢10 sin 2⇥ cos�+Re⇢1�1 sin

2 ⇥ cos 2�
⇤
. (3)

Dilepton mass spectrum N*(1520) + N*(1535) 
Dalitz decay

True CST prediction: Red line

HADES Collaboration 
“First measurement of massive virtual photon emission from N* baryon 
resonances”  e-Print: 2205.15914 [nucl-ex], 2022

@1.49 GeV

Simulations based on the CST model 
(red line) for these resonances also give 
a satisfactory description of
the data.

Below 200 MeV/c2 , ratio agrees with a 
pointlike baryon-photon vertex (QED 
orange line) .

At larger invariant masses, data  is  
more than 5 times larger than the 
pointlike result, showing a strong effect 
of the transition form factor evolution.

See also talk by Izabela Ciepal



True CST prediction: Pink line

HADES Collaboration 
“Inclusive e+e− production in collisions 
of pions with protons and nuclei 
in the second resonance region of baryons”
 e-Print 2309.13357 [nucl-ex], 2023
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To deduce from the CH2 measurements a cross section
comparable to a free cross section, we define a ”quasi-
free” cross section as:
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with RCH2/H = 2 + RC/H, following from Eq.(16). Tak-
ing RC/CH2

= 0.59, as found experimentally, one obtains
RC/H= 2.9 and RCH2/H = 4.9. The distributions for
the quasi-free process were calculated for the CH2 target
within the missing mass cut (900 < Mmiss(MeV/c2) <
1030 ) and normalized by Ze↵ + 2 = 4.9. As one can see
in Figs. 5 and 6, the quasi-free distributions (solid lines)
are very similar to the ones for the ⇡� + p reaction (long
dashed), except for invariant masses above 400 MeV/c2

where the aforementioned e↵ects of high momentum tails
in the proton momentum distribution in carbon is still
visible. Below this value, the shapes of the distribution
are very similar and the di↵erence is about 20 %. The ra-
tios of the simulated dielectron di↵erential yields from C
and CH2 targets are shown in Fig. 2 for the eTFF, VMD2
and VMD1 models in comparison to the data. Solid lines
represent the ratio for the inclusive distributions, while
the dotted lines show the ratio after the missing mass
cut. One can note that the missing mass cut reduces
the ratio for the VMD2. The higher value of the ratio
for the VMD2 model is due to the phase space e↵ect, as
discussed above.

V. RESULTS

A. Inclusive distributions

Dielectron di↵erential cross sections in the HADES ac-
ceptance as a function of the e+e� invariant mass for ⇡�

+ p (top panel), ⇡� + C (middle panel) and ⇡� + CH2

(bottom panel) reactions are shown by symbols in Fig. 7.
Total and systematic errors are shown by vertical bars
and boxes, respectively. For the ⇢ decay, the two versions
of VMD were considered in our simulations and are com-
pared separately to the data: VMD1 (dot-dashed green)
and VMD2 (dashed black). In case of VMD1, the dielec-
tron mass distribution is vanishing at the two-pion mass
threshold while in the other one it is strongly increas-
ing with the decreasing invariant mass according to the
1/M3 dependence of the partial decay width. The data
are compared to simulations described above and to the
eTFF model of [16, 33] (dashed magenta) with added
contributions from the meson Dalitz decays (solid ma-
genta). The QED reference representing the contribution
expected for point-like baryons is shown by a dot-dashed
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FIG. 7. Inclusive di↵erential cross sections, in the HADES
acceptance and corrected for e�ciency, as a function of the
e+e� invariant mass for ⇡� + p , ⇡� + C and ⇡� + CH2

reactions are shown by symbols. Total and systematic un-
certainties are shown by bars and boxes, respectively. The
black, green and magenta solid curves display the results of
the simulations for the ”VMD2”, ”VMD1 constr.” and ”eTFF
model”, which use the same ⇡0 and ⌘ contributions (dashed
cyan and dashed orange curves, respectively). Contributions
from ⇢ decay are shown separately for VMD2 (black dashed)
and VMD1 (green dot-dashed). VMD1 constr. is a coherent
sum of the QED reference (dot-dashed blue) and ⇢ decay. For
the eTFF model, the contribution of the baryon Dalitz decay
with eTFF (dashed magenta) is also displayed.
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dashed), except for invariant masses above 400 MeV/c2
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of VMD were considered in our simulations and are com-
pared separately to the data: VMD1 (dot-dashed green)
and VMD2 (dashed black). In case of VMD1, the dielec-
tron mass distribution is vanishing at the two-pion mass
threshold while in the other one it is strongly increas-
ing with the decreasing invariant mass according to the
1/M3 dependence of the partial decay width. The data
are compared to simulations described above and to the
eTFF model of [16, 33] (dashed magenta) with added
contributions from the meson Dalitz decays (solid ma-
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expected for point-like baryons is shown by a dot-dashed

0 200 400 600
]2 [MeV/c-e+eM

1−10

1

10

210

)]2
 [n

b/
(M

eV
/c

- e+ e
/d

M
σd

X -e+ e→+p-π = 685 MeV/c-π
p

0 100 200 300 400 500 600

1−10

1

10

210

)]2
 [n

b/
(M

eV
/c

- e+ e
/d

M
σd

X -e+ e→+C-π
 0π

η
QED reference
 VDM2ρ
 VDM1ρ

eTFF model
total (VDM2)
total (VDM1 constr.)
total (eTFF model)

0 200 400 600
]2 [MeV/c-e+eM

1−10

1

10

210

)]2
 [n

b/
(M

eV
/c

- e+ e
/d

M
σd

X -e+ e→2+CH-π

FIG. 7. Inclusive di↵erential cross sections, in the HADES
acceptance and corrected for e�ciency, as a function of the
e+e� invariant mass for ⇡� + p , ⇡� + C and ⇡� + CH2

reactions are shown by symbols. Total and systematic un-
certainties are shown by bars and boxes, respectively. The
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the simulations for the ”VMD2”, ”VMD1 constr.” and ”eTFF
model”, which use the same ⇡0 and ⌘ contributions (dashed
cyan and dashed orange curves, respectively). Contributions
from ⇢ decay are shown separately for VMD2 (black dashed)
and VMD1 (green dot-dashed). VMD1 constr. is a coherent
sum of the QED reference (dot-dashed blue) and ⇢ decay. For
the eTFF model, the contribution of the baryon Dalitz decay
with eTFF (dashed magenta) is also displayed.
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Extension to the Strange Baryon Sector

Extend the parametrization of the e.m. current to the valence quark 
d.o.f of the whole baryon octet.

single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1

6
fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ð uds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
"
3

2
jA1 þ 1

2

3% (

1þ (
jS1 % 2

(

1þ (

MB

MN
jS2

#
;

(19)

~%0B ¼ BðQ2Þ (
$"

3

2
jA2 %

1

2

1% 3(

1þ (
jS2

#
MB

MN
% 2

1

1þ (
jS1

%
;

(20)

TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1

6 ðfiþ þ 3fi%Þ
n 1

6 ðfiþ þ fi%Þ 1
6 ðfiþ % 3fi%Þ

%0 1
6 fiþ

1
18 ðfiþ % 4fi0Þ

&þ 1
18 ðfiþ þ 3fi% % 4fi0Þ 1

6 ðfiþ þ 3fi%Þ
&0 1

36 ð2fiþ % 8fi0Þ 1
6 fiþ

&% 1
18 ðfiþ % 3fi% % 4fi0Þ 1

6 ðfiþ % 3fi%Þ
'0 1

18 ð2fiþ þ 6fi% % 2fi0Þ % 1
3 fi0

'% 1
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single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1

6
fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ðuds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
"
3

2
jA1 þ 1

2

3% (

1þ (
jS1 % 2

(

1þ (

MB

MN
jS2

#
;

(19)

~%0B ¼ BðQ2Þ (
$"

3

2
jA2 %

1

2

1% 3(

1þ (
jS2

#
MB

MN
% 2

1

1þ (
jS1

%
;

(20)

TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1

6 ðfiþ þ 3fi%Þ
n 1

6 ðfiþ þ fi%Þ 1
6 ðfiþ % 3fi%Þ

%0 1
6 fiþ

1
18 ðfiþ % 4fi0Þ

&þ 1
18 ðfiþ þ 3fi% % 4fi0Þ 1

6 ðfiþ þ 3fi%Þ
&0 1

36 ð2fiþ % 8fi0Þ 1
6 fiþ

&% 1
18 ðfiþ % 3fi% % 4fi0Þ 1

6 ðfiþ % 3fi%Þ
'0 1

18 ð2fiþ þ 6fi% % 2fi0Þ % 1
3 fi0

'% 1
18 ð2fiþ % 6fi% % 2fi0Þ % 1

3 fi0
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Parameters determined by  a global fit to 
baryon octed lattice data for the 
e.m. form factors

Lattice data: 
H.W. Lin and K. Orginos, 
Phys. Rev. D 79, 074507 (2009).
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CST compared to very
recent Hyperon FF data

Uncertainty:
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G(q2) = G(2M2 � q2)

G(q2) = G(4M2 � q2)

G(q2) = G(�q2)

2

in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy

 Guidance for determination of 
 onset of ”reflection” symmetry 

Use S.Pacetti, R. Baldini Ferroli
and E. Tomasi-Gustafsson, 
Phys. Rept. 550-551,1 (2015): 

Unitarity and Analyticity 
demand that  for            q2 ! 1



CST phenomenological ansatz for the baryon wave functions describes

different excited states of the nucleon, with a variety of spin and orbital motion.

Combination with LQCD data is key for predictive power.

1 Descriptions consistent with spacelike TFF experimental data at high Q2=-q2;
Spacelike e.m. transition FFs for:  
N*(1440), N*(1520), N*(1535), …, baryon octet, etc. (see Gilberto Ramalho talk)

2 Model made consistent with LQCD in the large pion mass regime through VMD.

3 VMD enables also extension to timelike e.m. transition FFs for dilepton mass 
spectrum and decay widths, and hyperon form factors; predictive power 
demonstrated.

Summary



Memories of Murray and the Quark Model
George Zweig, Int.J.Mod.Phys.A25:3863-3877,2010

“Murray looked at two pieces of paper, looked at me and said 
‘In our field it is costumary to put theory and experiment 
on the same piece of paper’.”

Zweig quark or the constituent quark

Our approach is phenomenological, 
in the  best tradition of the beginnings of Hadron Physics 
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How low in Q2 one can go for a partonic interpretation of the 
meson  electroproduction scattering data to be valid? 

Progress in Particle and Nuclear Physics xxx (xxxx) xxx
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G. Ramalho and M.T. Peña

Fig. 3.3. The experimental helicity amplitudes A1_2 and S1_2 multiplied by Q3 for the states �(1232), N(1440), N(1520) and N(1535). Most of the data are from
JLab/CLAS [89]. For N(1440) and N(1520), we include the results from JLab/CLAS for two pion production [90,93]. We include also data from JLab/Hall C for
larger values of Q2 for the �(1232) [135,136] and N(1535) [92]. The results, combine statistical and systematic errors.

A1_2 ◊ 1_Q3 and A3_2 ◊ 1_Q5. One has then for JP = 5
2
*
, 7

2
+
,…

GM = *lGE + O

0

1
Q2l+4

1

, (3.67)

and for the cases JP = 5
2
+
, 7

2
*
,…

GE = *lGM + O

0

1
Q2l+4

1

. (3.68)

It is important to mention, however, that the relations (3.60) and (3.65) are derived under very general assumptions One
important assumption is that the kinematic-singularity-free form factors Gi are non zero. A simple illustration of a deviation from
the expected leading order behavior can be obtained for instance for the JP = 3

2
±
resonances if G1 í 0. According to the relations

(3.41), if G1 vanish, we would have GM í GE for JP = 3
2
+
, and GM í 0 for JP = 3

2
*
. As a consequence, from Eqs. (3.38) one

obtains the relation A3_2 = -
˘

3A1_2 ◊ 1_Q5, in contradiction with the relations (3.61) for JP = 3
2
±
This illustrates that deviations

of the general power laws in some particular cases can be expected.
The study of the falloff tail of transition form factors and of the helicity amplitudes at large Q2 is important because it enables

us to deduce the contribution from higher order Fock states, namely the ones associated to quark–antiquark excitations. At very
large Q2, one expects the leading order form factors F1 = Q2G1 for J = 1

2 and G1 for J = 3
2 to be dominated by terms on 1_Q2(n*1),

where n is the number of effective constituents [126,128]. The power of the asymptotic falloff is associated with the minimum
number of gluons exchanged between the constituents. When the change from n = 3 (falloff 1_Q4) to a system of three quarks
and a quark–antiquark pair, one has 5 constituents (n = 5), and expect than that the asymptotic behavior follows 1_Q8. The price
of the change from (qqq) to (qqq)q Ñq is then the extra 1_Q4 suppression. The previous estimate can be generalized for next leading
order form factors (F2, G2 and G3) accounting for the faster falloffs (1_Q6, 1_Q8, etc.) The test of the asymptotic behavior of the
amplitudes or of the multipole form factors can then be useful to establish the range where the valence quark degrees of freedom
start to dominate, since the relations are based on the properties of the valence quarks.

Concerning logarithmic contributions to the leading order from Eqs. (3.61), there are attempts to parametrize these corrections
by Vereshkov and collaborators [109,110]. We notice, however, that although the corrections may be relevant for some amplitudes,
to find their explicit experimental signals may require much larger values for Q2 and broader distributions of data.

3.6. Empirical parametrizations of the helicity amplitudes

In theoretical and phenomenological calculations, it is convenient to use parametrizations of the data obtained for the helicity
amplitudes or for the transition form factors (G1, and G2 for J = 1

2 , and GE , GM or GC for J Œ 3
2 ) based on simple analytic

functions of Q2. Examples of successful parametrizations of the data are the MAID parametrizations [78,137,138], rational
parametrizations [108], parametrizations based on the JLab/CLAS data for the resonances N(1535) and N(1520) presented in
Refs. [8,89], and more recently a complete set of parametrizations of 12 N< states below 1.8 GeV associated with states J = 1

2
±
,

3
2
±
and 5

2
±
based on JLab/CLAS data [139]. A collection of the JLab/CLAS data and relevant data from other groups can be found

in Ref. [140].
In this section, we discuss the constraints on the helicity amplitudes and transition form factors that should be taken into account

near the pseudothreshold, where the photon 3-momentum vanishes q ô 0 and Q2 ô *(MR*M)2. As discussed in Sections 3.3 and
3.4, the helicity amplitudes and the multipole form factors are linear combinations of the unconstrained kinematic-singularity-
free form factors Gi. Near the pseudothreshold, however, there are constraints on the helicity amplitudes and the multipole

Region  Q2 < 2 GeV2 dominated by nonperturbative long-distance multiquark correlations to 
the resonances;
Higher Q2 region described through single parton processes. 
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Leading order dependence on Q2

V. Mokeev, https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

A.N. Hiller Blin et al.
Phys. Rev  C 104, 025201 (2021) 

Application to inclusive nucleon structure functions 
from exclusive meson electroproduction data



� For the E.M. matrix element calculation, the Baryon vertex is integrated over 
the spectator quarks variables.
(Covariant Spectator Model, CST) 

�  A reduced quark - diquark Baryon wave function is all that is needed;
it is phenomenologically constructed.

G. Ramalho, TP, Franz Gross, Phys. Rev. D78, 114017 (2008)

E.M. matrix element 2008CST©
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Fig. 3. Magnetic form factor GM , ratio REM and ratio RSM

of the γ∗N → ∆ transition. Vertical dashed line delimit the re-
gion below which the singularities of the quark propagator are
probed. Experimental data are taken from [39–47]. Coloured
bands represent the result of the numerical calculation for
η = [1.6, 2.0] (lower/upper bound).

be much smaller than the experimental ones, it has been
concluded that additional pion cloud effects are manda-
tory. However, as discussed in [53], this is not necessarily
true. In a fully covariant framework, as the one at hand, p-
wave contributions to the nucleon and the ∆ are not only
allowed, but, them being represented by the lower com-
ponents of the four-spinors contained in the amplitude,
and hereby especially also in the leading one, they play a
much bigger role than d-waves which are related to sub-
leading parts of the baryons’ amplitudes. Consequently,
they contribute to REM and have the potential to gen-
erate deviations of REM (0) from zero of the same order

as the experimentally observed ones. This is true for the
diquark-quark approximated framework [53] and also sug-
gested by our results from the three-body calculation. This
observation also extends to the ratio RSM (0), although
here the agreement with experiment is much better in the
diquark-quark framework than for our results presented
in the bottom panel of fig. 3. In general, as already men-
tioned above, both ratios do suffer from uncertainties due
to technical problems with the Chebyshev expansion that
need to be dealt with in future work.

3.2 Hyperon octet-decuplet transition

In the exact SU(3)-isospin limit, the transition γ∗Σ∗+ →
Σ+ would be identical to the γ∗N → ∆ studied in the
previous section (cf. eq. (B.4)). This is indeed manifest in
the magnetic form factor, shown in fig. 4, which is compa-
rable in magnitude to the corresponding one in fig. 3 and
qualitatively identical in shape. Similar remarks apply to
the γ∗Σ∗ 0 → Σ0, also shown in fig. 4, which is however
suppressed by a flavour factor (see eq. (B.5)).

Once again, in the exact SU(3)-isospin limit the
γ∗Ξ∗ 0 → Ξ0 transition would be identical to the N∆
or the Σ∗+Σ+ ones. Comparing the corresponding plots
in fig. 4 we find that their magnetic form factor is indeed
very similar. Since the Ξ is a doubly-strange baryon, this
indicates that the isospin-breaking effects are very small,
as we shall see below.

A good measure of the breaking of SU(3)-flavour sym-
metry is given by the form factors of the γ∗Σ∗− → Σ−

and the γ∗Ξ∗− → Ξ− transitions, since in the limit of ex-
act symmetry these would vanish identically (cf. eq. (B.6)
and eq. (B.9)). We show their magnetic form factors in
the two bottom panels in fig. 4. They indicate a break-
ing of SU(3) symmetry at the level of a few percent. The
smallness of this breaking in the present calculation might
result from the fact that it is only generated by the differ-
ent quark masses of the s- and the u/d-quarks, both the
current quark mass and the dynamically generated one.
Other possible sources of SU(3) breaking would come, for
example, from the weakening of the quark-gluon interac-
tion as a function of the quark mass (see [55]). We should
mention, however, that such an effect was explored in [56]
in relation to the octet and decuplet baryon masses, where
it was found to be sizeable on the level of the propagators,
but extremely small on the level of observables.

We also extrapolated our results for the magnetic form
factors to zero momentum using a dipole fit for the tran-
sitions with positive and neutral charges and a linear ex-
trapolation for the ones with negative charges applied af-
ter the zero crossing. Our results are given in table 1 to-
gether with the corresponding results for the nucleon-∆-
transition. As discussed above, we expect significant ef-
fects due to meson cloud effects at small momenta. This
is reflected in the sizeable underestimation of GM (0) as
compared with extractions from experimental values per-
formed in [57], based on the assumption of the dominance
of GM (0) over GE(0). Compared to the quark model cal-
culation of Ramalho and Tsushima [57,58] we indeed find
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of the γ∗N → ∆ transition. Vertical dashed line delimit the re-
gion below which the singularities of the quark propagator are
probed. Experimental data are taken from [39–47]. Coloured
bands represent the result of the numerical calculation for
η = [1.6, 2.0] (lower/upper bound).
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and eq. (B.9)). We show their magnetic form factors in
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ing of SU(3) symmetry at the level of a few percent. The
smallness of this breaking in the present calculation might
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current quark mass and the dynamically generated one.
Other possible sources of SU(3) breaking would come, for
example, from the weakening of the quark-gluon interac-
tion as a function of the quark mass (see [55]). We should
mention, however, that such an effect was explored in [56]
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it was found to be sizeable on the level of the propagators,
but extremely small on the level of observables.

We also extrapolated our results for the magnetic form
factors to zero momentum using a dipole fit for the tran-
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ter the zero crossing. Our results are given in table 1 to-
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Extension to the Strange Baryon Sector

Extend the parametrization of the 
e.m. current to the valence quark 
d.o.f of the whole baryon octet.

single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1

6
fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ðuds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
"
3

2
jA1 þ 1

2

3% (

1þ (
jS1 % 2

(

1þ (

MB

MN
jS2

#
;

(19)

~%0B ¼ BðQ2Þ (
$"

3

2
jA2 %

1

2

1% 3(

1þ (
jS2

#
MB

MN
% 2

1

1þ (
jS1

%
;

(20)

TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1

6 ðfiþ þ 3fi%Þ
n 1

6 ðfiþ þ fi%Þ 1
6 ðfiþ % 3fi%Þ

%0 1
6 fiþ

1
18 ðfiþ % 4fi0Þ

&þ 1
18 ðfiþ þ 3fi% % 4fi0Þ 1

6 ðfiþ þ 3fi%Þ
&0 1

36 ð2fiþ % 8fi0Þ 1
6 fiþ

&% 1
18 ðfiþ % 3fi% % 4fi0Þ 1

6 ðfiþ % 3fi%Þ
'0 1

18 ð2fiþ þ 6fi% % 2fi0Þ % 1
3 fi0

'% 1
18 ð2fiþ % 6fi% % 2fi0Þ % 1

3 fi0
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electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients
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jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
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Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
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Parameters determined by 
a global fit to 
octet baryon lattice data for the 
e.m. form factors
and physical magnetic moments. 

system at the physical point, given by the last column in
Table V (!2 per data point ¼ 1:93). Then, we can con-
clude that the nucleon data are described better than the
lattice data (!2 per data point of 2.9 and 5.2 for the sets
m" ¼ 354 and 495 MeV, respectively).

Since we cannot isolate the pion cloud contributions
from the valence quark contributions in the experimental
data, we analyze the pion cloud effects by comparing the
individual components of the nucleon form factors with the
full result. The results for the nucleon are presented in
Fig. 11, where the form factors are renormalized by the

dipole form factor GD ¼ ð1þ Q2

0:71Þ%2. The exception is the

neutron electric form factor. In the figure, the contributions
of the pion cloud are represented by the bands that fill the
difference between the valence quark contributions
(ZBGX0B) and the full result (GXB, solid line).

Observing the pion cloud contributions for the nucleon
electromagnetic form factors in Fig. 11, we conclude that
the contributions are similar for both the proton and neu-
tron magnetic form factors. In both cases contributions
amount to 10–14% in the region of Q2 ¼ 0–0:5 GeV2,

and fall to less than 5% around Q2 ¼ 2 GeV2, and even
become less than 1% for Q2 > 5 GeV2.
The analysis for the electric form factors is more deli-

cate. For the proton there are & 12% contributions from
the pion cloud near Q2 ¼ 0, and they fall to 1% near
Q2 ¼ 1 GeV2, and stabilize to 5% negative contributions
for Q2 & 5 GeV2. In the larger Q2 region one must be
careful, since GE approaches zero and the ratio is not
meaningful. For Q2 ¼ 10 GeV2 the valence quark contri-
butions are larger than 90%. As for the neutron near
Q2 ¼ 0, where GEnð0Þ ¼ 0, the pion cloud contributions
dominate. Near Q2 ¼ 1 GeV2, the pion cloud effects are
about 10% and drop to less than 4% forQ2 ¼ 4 GeV2, and
even smaller for larger Q2. For Q2 ¼ 10 GeV2 the valence
quark contributions dominate to give more than 98%.
The slow falloff of the pion cloud contributions for

the electric form factors compared with those for the
magnetic ones is due to the enhancement of the F2 con-
tributions forGE by the prefactorQ

2, and the function form
for the pion cloud contributions. Since the pion cloud
contributions are regulated by the cutoff !2 ¼ 1:24 GeV
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FIG. 6 (color online). "þ bare electromagnetic form factors determined by the global fit. The lines are the lattice regime (solid line)
and the physical regime (dashed line). The lattice data are from Ref. [52].
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Lattice data: 
H.W. Lin and K. Orginos, 
Phys. Rev. D 79, 074507 (2009).

Two examples:

from the experimental result for GMð0Þ, and also from the
lattice data. We recall again that this can be a consequence
of the difficulty in describing the ! lattice data. [See
Figs. 9 and 10.]

E. Electric charge and magnetic dipole radii

The electric charge squared radius for a charged particle
is usually defined as4

hr2Ei ¼ $ 6

GEBð0Þ
dGEB

dQ2

!!!!!!!!Q2¼0
: (71)

For a neutral particle the same expression can be used but
setting GEBð0Þ ! 1. The definition (71) has advantages for
comparing the radii of particles with different charges such
as p and "$, and one can relate the corresponding baryon
electric charge radii. As for the magnetic dipole squared
radius, the most common definition5 is

hr2Mi ¼ $ 6

GMBð0Þ
dGMB

dQ2

!!!!!!!!Q2¼0
: (72)

We assume in this case thatGMBð0Þ is not zero, neither very
small. The results for the electric charge squared radii and
the magnetic squared radii are, respectively, presented in
Tables VI and VII (see columns hr2Ei and hr2Mi).
Experimental values [51,66–71] are also included in
Table VI for hr2Ei, and in the caption of Table VII for hr2Mi.
Since in the present approach we can identify the va-

lence quark (bare) contributions and the pion cloud
contributions in the form factor GXB (X ¼ E, M), we
follow Eq. (67) and decompose GXB into

GXBðQ2Þ ¼ Gb
XBðQ2Þ þG!

XBðQ2Þ; (73)

where Gb
XBðQ2Þ ¼ ZBGX0BðQ2Þ and G!

XBðQ2Þ ¼
ZB"GXBðQ2Þ, are, respectively, the bare and pion cloud
contributions. Based on the decomposition (73) and the
definitions of radii (71) and (72), we can write

hr2Ei ¼ hr2Eib þ hr2Ei!; (74)

hr2Mi ¼ hr2Mib þ hr2Mi!; (75)
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FIG. 8 (color online). "$ bare electromagnetic form factors determined by the global fit. The lines are the lattice regime (solid line)
and the physical regime (dashed line). The lattice data are from Ref. [52].

4Some authors [65] exclude the factor GEBð0Þ from the hr2Ei
definition.

5Some authors [65] define hr2Mi without the factor GMBð0Þ, but
use

hr2Mi
GMBð0Þ to compare the values of different baryons.
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Red line: lattice
Blue line: physical regime
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Fig. 3.4. Test of consistency of amplitudes with Siegert’s theorem for �(1232) (at the left) and N(1535) (at the right). The amplitudes S1_2 (solid lines) are
compared with �R E q (dot-dashed lines), where �R = 1_(

˘

2(MR *M)) for both cases (see Table 3). The electric amplitude is defined by E = A1_2 * A3_2_
˘

3
for the �(1232) and E = A1_2 the for N(1535). Helicity amplitudes in 10*3 GeV*1_2. Upper panel: Results of the MAID2007 parametrization [153]. Data from
MAID [78,137,138,154]. Lower panel: On the left: calculations of a quark model with pion cloud dressing for the �(1232) [148]. Data from Refs. [140,148]. On
the right: MAID type parametrization compatible with Siegert’s theorem [149]. Data from MAID [78,137,138,154]. The figures of the upper panel are a courtesy
of Lothar Tiator..
Source: Reprinted with permission from L. Tiator, Few Body Syst. 57, 1087 (2016).
© 2016 by Springer.

can be written in the general form A1_2 *
l
Cl
A3_2 ◊ ql+1. The relations for the multipole form factors can be also derived from

expressions for the multipole form factors in terms of the form factors Gi, presented in Appendix B, considering expansions in powers
of q [150]. In the following, and along the article, we focus on the parametrizations for J = 1

2 ,
3
2 . In the states with J > 3

2 the
pseudothreshold Q2 = *(MR*M)2 is more distant from the photon point, and there is also a lack of data below Q2 = 0.5 GeV2 [140].

A note on the possible analytical form of the helicity amplitudes is in order. Parameterizations based on smooth analytical forms,
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+
and �(1232) 32

+
, even

when compatible with the pseudothreshold constraints [141]. This happens because of the proportionality to q, due to the difficulty
of approximating the factor

t

Q2
* by a rational function, for light resonances (small MR *M). Recall that near the pseudothreshold

q ◊
t

Q2
*. This effect is illustrated in Section 6.3.4 for the �(1232) helicity amplitudes.

As mentioned, the constraints described above are not always considered in parametrizations of the data, that erroneously
considered the amplitudes as independent functions in the whole region of Q2. Even the parametrizations developed by the MAID
group [78,137,138], that take into account some features of the helicity amplitudes [151–153], with particular emphasis on the
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and some of the relations displayed in columns one, two, three and four of Table 3 are violated. The MAID parametrizations are
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data analysis, collected in the website [154], as MAID data. Some of these issues are discussed by Tiator in Ref. [153] within the
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Fig. 6.8. �<N ô N(1535) transition form factors. Calculations of from LFQM 1 [384], LFQM 2 [382], holographic QCD [376], unitary chiral model [105] and
light-cone sum rules [462]. The estimates are also compared with the meson cloud contributions calculations of the ANL-Osaka DCC model [5,189,228]. The
data are from JLab/CLAS (÷) [89], JLab/Hall C (∑) [92] and PDG 2022 (˝) [1]. We present also the data analysis of MAID ( ) [78,154].

Fig. 6.9. �<N ô N(1535) transition form factor. Results form the covariant spectator quark model [103]. Data as in Fig. 6.8.
Source: The EBAC data are from Refs. [234,467].

Fig. 6.10. �< ô N(1535) transition. Discussion about the low-Q2 region and the constraints of Siegert’s theorem. The figure illustrates the uncertainty in the
related shapes and signs of the two amplitudes in the vicinity of the photon point (Q2 = 0) and at the pseudothreshold point (Q2 = *(MR *MN )2). At Q2 = 0,
we include data from PDG 2012 ( ) [468], PDG 2016 (˝) [469] and PDG 2022 (÷) [1]. The values are shifted from Q2 = 0 for a better visualization. The
finite-Q2 data are from JLab/CLAS [89]. Thick and thin lines on both the left and right panels are two sets of consistent extrapolations of the two related
amplitudes into the timelike region.
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the same value, providing accurate predictions that can
be tested by experimental data.

To finish the present discussion, we recall that the mea-
sured form factors in the timelike region are characterized
by |GE |, |GM | and phases that can be reduced to a rela-
tive phase between GE and GM . The model calculation
are real functions because are based on the results in the
q2 ≤ 0 region. This means that we calculate GE and GM

including the sign of those functions. To compare with
the |GE/GM |, we take the absolute value of GE/GM . In
principle, for very large q2, the experimental values for
GE/GM can determined, since the relative phase should
be reduced to ∆Φ = 0 or ∆Φ = π.

IV. NUMERICAL RESULTS FOR |GE/GM |

In this section we present our calculations for the ra-
tio |GE/GM | for large q2. The calculations of the form
factors GE and GM for the octet baryon in the timelike
region are discussed in detail in Ref. [3]. We consider the
covariant spectator quark model formalism [2, 61, 69, 70].
In the formalism the baryons are described as three-quark
systems that can be regarded as a quark-diquark config-
urations. Model based on constituent quarks ruled by
the SU(3) flavor symmetry [62, 69, 71]. The structure
of the quarks is the consequence of the gluon and quark-
antiquark dressing. The SU(3) symmetry is broken at
the level of the baryon radial wave functions and the
constituent quark current. The baryon radial wave func-
tions are represented in terms of short range and long
range scale parameters consistently with the expected
size of the systems (baryons with strange quarks more
compacted than baryons with light quarks) [63, 64]. The
quark current is parametrized according with a vector
meson dominance mechanism regulated by light (ρ, ω)
and intermediate (φ) vector meson mass poles.

The free parameters of the model are determined
by the study of the nucleon and octet and decu-
plet systems [61–64, 71–75]. In particular we use the
parametrization of the octet baryon from Ref. [62]. In
addition to the valence quark contributions we consider
also an effective description from meson cloud dressing
processes [72, 74–76]. The formalism has been used to
describe the electromagnetic structure of baryons includ-
ing nucleon resonances [1, 70].

The results of the calculations for the for the ratio
|GE/GM | based on the formalism for large q2 discussed
in Sec. III are in Figs. 1 and 2. Recall that the estimates
are valid only for large q2 and that deviations from the
data close to the threshold q2 = 4M2

B are expected. At
the threshold one should have |GE/GM | = 1. Our cal-
culations deviate in general from that result due to the
nature of the approximation. Nevertheless, in the figures
we start our calculations at the threshold in order to in-
dicate the physical region where data can be expected.

The uncertainty bands included in the graphs in the
low q2−4M2

B region provide only qualitative limits in an

interval of 2M2
B , since the upper and lower discussed in

Sec. III are only justified for large q2. In the cases our
model estimate predict an zero for the ratio GE/GM we
present the upper and lower limits for the magnitude of
GE/GM based the intervals of variation of the functions
GE and GM . Notice that we are not attempting to pre-
dict the zeros of GE/GM , only the magnitude. In the
present formalism the zeros can only be determined with
an uncertanity of 4M2

B for q2. Our goal is to predict the
magnitude of the ratio at sufficient large q2.

The calculations of the Λ, Ξ−,0 and the Σ0,± ratios are
presented in Figs. 1 and 2 respectively. In the graphs for
the Λ and Σ+ we include the available data for |GE/GM |.

In complete experiments the ratio GE/GM is deter-
mined, and can be repŕesented in the form

GE

GM
=

|GE |
|GM |

ei∆Φ, (4.1)

where |G!| represent the magnitude of the complex form
factor G! and ∆Φ is the phase between GE and GM .
Notice that one can decompose GE/GM into its real and
imaginary parts. Once the phase is measured, we can
determine the real part of the ratio and write

∣

∣

∣

∣

Re

(

GE

GM

)
∣

∣

∣

∣

=
|GE |
|GM |

| cos(∆Φ)|, (4.2)

which is a fraction of the measured value to |GE/GM |.
The result (4.2) can be compared directly with model

calculations where the GE and GM are real functions (as
in our case in the asymptotic limit). The comparison of
(4.2) with model calculations for |GE/GM | is justified in
a regime where the imaginary components of the form
factors are expected to be small.

Another way to look to the problem is that in a region
close to the threshold the ratio (4.1) will provide an upper
limit to model calculations of |GE/GM |, when the form
factors are real, because the imaginary components of
form factors will increase the value of |GE/GM |.

The conclusion is then that, model calculations of
|GE/GM | based on real form factors are better compared
with the modulo of the real part of GE/GM , when the
imaginary parts are discarded.

We consider the absolute value of the ratio because the
model calculations are also performed using the absolute
values of GE and GM . The sign of the form factors are
known and their signs for asymptotic large q2 are dis-
played on the graphs from Figs. 1 and 2.

The comparison of the model calculations for |GE/GM |
(model with real form factors) with the experimental val-
ues for |Re(GE/GM )| from Refs. [12, 15] where the an-
gles are measured, are displayed in Fig. 3. In the graphs
one can notice the closeness between the highest q2 value
(q2 # 14.3 GeV2 for the Λ and q2 # 8.4 GeV2 for the Σ+)
and the intervals of values estimated by our model. In
this representation we ignore the uncertainties of the an-
gles∆Φ for simplicity and focus on the central value. The
consideration of the uncertainties on ∆Φ only increase
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Fig. 3. Magnetic form factor GM , ratio REM and ratio RSM

of the γ∗N → ∆ transition. Vertical dashed line delimit the re-
gion below which the singularities of the quark propagator are
probed. Experimental data are taken from [39–47]. Coloured
bands represent the result of the numerical calculation for
η = [1.6, 2.0] (lower/upper bound).

be much smaller than the experimental ones, it has been
concluded that additional pion cloud effects are manda-
tory. However, as discussed in [53], this is not necessarily
true. In a fully covariant framework, as the one at hand, p-
wave contributions to the nucleon and the ∆ are not only
allowed, but, them being represented by the lower com-
ponents of the four-spinors contained in the amplitude,
and hereby especially also in the leading one, they play a
much bigger role than d-waves which are related to sub-
leading parts of the baryons’ amplitudes. Consequently,
they contribute to REM and have the potential to gen-
erate deviations of REM (0) from zero of the same order

as the experimentally observed ones. This is true for the
diquark-quark approximated framework [53] and also sug-
gested by our results from the three-body calculation. This
observation also extends to the ratio RSM (0), although
here the agreement with experiment is much better in the
diquark-quark framework than for our results presented
in the bottom panel of fig. 3. In general, as already men-
tioned above, both ratios do suffer from uncertainties due
to technical problems with the Chebyshev expansion that
need to be dealt with in future work.

3.2 Hyperon octet-decuplet transition

In the exact SU(3)-isospin limit, the transition γ∗Σ∗+ →
Σ+ would be identical to the γ∗N → ∆ studied in the
previous section (cf. eq. (B.4)). This is indeed manifest in
the magnetic form factor, shown in fig. 4, which is compa-
rable in magnitude to the corresponding one in fig. 3 and
qualitatively identical in shape. Similar remarks apply to
the γ∗Σ∗ 0 → Σ0, also shown in fig. 4, which is however
suppressed by a flavour factor (see eq. (B.5)).

Once again, in the exact SU(3)-isospin limit the
γ∗Ξ∗ 0 → Ξ0 transition would be identical to the N∆
or the Σ∗+Σ+ ones. Comparing the corresponding plots
in fig. 4 we find that their magnetic form factor is indeed
very similar. Since the Ξ is a doubly-strange baryon, this
indicates that the isospin-breaking effects are very small,
as we shall see below.

A good measure of the breaking of SU(3)-flavour sym-
metry is given by the form factors of the γ∗Σ∗− → Σ−

and the γ∗Ξ∗− → Ξ− transitions, since in the limit of ex-
act symmetry these would vanish identically (cf. eq. (B.6)
and eq. (B.9)). We show their magnetic form factors in
the two bottom panels in fig. 4. They indicate a break-
ing of SU(3) symmetry at the level of a few percent. The
smallness of this breaking in the present calculation might
result from the fact that it is only generated by the differ-
ent quark masses of the s- and the u/d-quarks, both the
current quark mass and the dynamically generated one.
Other possible sources of SU(3) breaking would come, for
example, from the weakening of the quark-gluon interac-
tion as a function of the quark mass (see [55]). We should
mention, however, that such an effect was explored in [56]
in relation to the octet and decuplet baryon masses, where
it was found to be sizeable on the level of the propagators,
but extremely small on the level of observables.

We also extrapolated our results for the magnetic form
factors to zero momentum using a dipole fit for the tran-
sitions with positive and neutral charges and a linear ex-
trapolation for the ones with negative charges applied af-
ter the zero crossing. Our results are given in table 1 to-
gether with the corresponding results for the nucleon-∆-
transition. As discussed above, we expect significant ef-
fects due to meson cloud effects at small momenta. This
is reflected in the sizeable underestimation of GM (0) as
compared with extractions from experimental values per-
formed in [57], based on the assumption of the dominance
of GM (0) over GE(0). Compared to the quark model cal-
culation of Ramalho and Tsushima [57,58] we indeed find
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In the exact SU(3)-isospin limit, the transition γ∗Σ∗+ →
Σ+ would be identical to the γ∗N → ∆ studied in the
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rable in magnitude to the corresponding one in fig. 3 and
qualitatively identical in shape. Similar remarks apply to
the γ∗Σ∗ 0 → Σ0, also shown in fig. 4, which is however
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γ∗Ξ∗ 0 → Ξ0 transition would be identical to the N∆
or the Σ∗+Σ+ ones. Comparing the corresponding plots
in fig. 4 we find that their magnetic form factor is indeed
very similar. Since the Ξ is a doubly-strange baryon, this
indicates that the isospin-breaking effects are very small,
as we shall see below.

A good measure of the breaking of SU(3)-flavour sym-
metry is given by the form factors of the γ∗Σ∗− → Σ−

and the γ∗Ξ∗− → Ξ− transitions, since in the limit of ex-
act symmetry these would vanish identically (cf. eq. (B.6)
and eq. (B.9)). We show their magnetic form factors in
the two bottom panels in fig. 4. They indicate a break-
ing of SU(3) symmetry at the level of a few percent. The
smallness of this breaking in the present calculation might
result from the fact that it is only generated by the differ-
ent quark masses of the s- and the u/d-quarks, both the
current quark mass and the dynamically generated one.
Other possible sources of SU(3) breaking would come, for
example, from the weakening of the quark-gluon interac-
tion as a function of the quark mass (see [55]). We should
mention, however, that such an effect was explored in [56]
in relation to the octet and decuplet baryon masses, where
it was found to be sizeable on the level of the propagators,
but extremely small on the level of observables.

We also extrapolated our results for the magnetic form
factors to zero momentum using a dipole fit for the tran-
sitions with positive and neutral charges and a linear ex-
trapolation for the ones with negative charges applied af-
ter the zero crossing. Our results are given in table 1 to-
gether with the corresponding results for the nucleon-∆-
transition. As discussed above, we expect significant ef-
fects due to meson cloud effects at small momenta. This
is reflected in the sizeable underestimation of GM (0) as
compared with extractions from experimental values per-
formed in [57], based on the assumption of the dominance
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DS-BS calculations with a ladder kernel given 
by dressed one-gluon exchange
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with

gρ,λ
i (p2, q2, z0, z1, z2) =∫

k

[
τ̄ i
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Here the factor C = −2/3 stems from colour traces. The
flavour matrices F , the rotation matrices H1,2 and the
different momenta are defined in appendix A. The dressed
quark propagators S and the Bethe-Salpeter kernels K are
discussed below.

Covariant bases for the Dirac structure of the Bethe-
Salpeter amplitudes (2) can be obtained using symmetry
requirements only; for positive-parity spin-1/2 baryons it
contains 64 elements [17,18] whereas for spin-3/2 baryons
it contains 128 elements [19]. In this way, one only needs
to solve for the scalar functions f . The index λ runs over
all elements in a given flavour state and the quark at the
position $ in each term of the flavour wave function is
denoted by the superindex λ& to keep track of the dif-
ferent flavours. The internal relative momenta p(3), q(3)

(and analogously for z(3)
0 , z(3)

1 and z(3)
2 ) are defined in ap-

pendix A. The conjugate of the covariant basis τ̄ has been
defined in [17, 19] and it is assumed that the basis {τ} is
orthonormal.

The interaction kernel K in the most general three-
body Bethe-Salpeter equation (see fig. 1) consists of an
irreducible three-body part and (permutations of) two-
body interactions

K = K(3) +
∑

a

S−1
a K(2)

a . (5)

In the Faddeev approximation the three-body part K(3)

is neglected, and we refer to the simplified BSE as the
Faddeev equation (FE). This approximation is probably
justified, since what would be the leading contribution to
K(3) vanishes identically due to colour algebra and the
subleading terms give a negligible contribution [20]. In this
work we truncate the two-body kernel K(2) to a ladder
kernel, which consists of a single dressed gluon-exchange
with vector coupling to the quark legs:

K(2)
a = Z2

2
4παeff (k2)

k2
Tµν(k)γµγν (6)

with Tµν(k) = δµν − k̂µk̂ν the transverse projector. This
interaction is then specified by an effective coupling [21,22]
which has been employed frequently in hadron studies
within the rainbow-ladder BSE/DSE framework. This
model performs very well for phenomenological calcula-
tions of ground- and excited-state meson and baryon prop-
erties in selected channels including the octet and decuplet

baryons studied in this work [15,16]. It is defined as

αeff(k2) = πη7

(
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e−η2 k2
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. (7)

with k the momentum of the exchanged gluon. This in-
teraction reproduces the one-loop QCD behaviour of the
quark propagator at large momenta and the Gaussian
distribution of interaction strength in the intermediate
momentum region provides enough strength for dynam-
ical chiral symmetry breaking to take place. The scale
Λt = 1GeV is introduced for technical reasons and has
no impact on the results. For the anomalous dimension
we use γm = 12/(11NC − 2Nf ) = 12/25, corresponding
to Nf = 4 flavours and Nc = 3 colours. The scale in the
ultraviolet part of the coupling is set to ΛQCD = 0.234
GeV. In the infrared momentum region, the interaction
strength is characterised by a scale Λ and a dimension-
less parameter η that controls the width of the inter-
action. The scale Λ = 0.72GeV is adjusted to repro-
duce the experimental pion decay constant from the trun-
cated pion BSE. This as well as many other pseudo-scalar
ground-state observables, such as the masses of ground-
state mesons and baryons, turn out to be almost insensi-
tive to the value of η in the range of values of η between
1.6 and 2.0 (see, e.g. [11, 23, 24]). The u/d and s current-
quark masses are fixed to reproduce the physical pion and
kaon masses, respectively. The corresponding values are
mu/d(µ2) = 3.7MeV and ms(µ2) = 85MeV. The renor-
malisation scale is chosen to be µ2 = (19GeV)2.

The remaining necessary element in eq. (4) is the full
quark propagator S (omitting now Dirac indices) for the
quark flavours of interest. These are obtained as solutions
of the quark DSE

S−1(p)=S−1
0 (p) + Z1fg2CF

∫

q
γµDµν(p− q)Γ ν(p, q)S(q),

(8)
which also contains the full quark-gluon vertex Γ ν and the
full gluon propagator Dµν ; S0 is the (renormalised) bare
propagator with inverse

S−1
0 (p) = Z2

(
i/p + m

)
, (9)

where m is the bare quark mass and Z1f and Z2 are renor-
malisation constants and g the renormalised strong cou-
pling. This equation is truncated to its rainbow version,
which amounts to the replacement

Z1f
g2

4π
Dµν(k)Γ ν(p, q) = Z2

2Tµν(k)
αeff(k2)

k2
γν , (10)

with Tµν(k) the transverse projector, cf., eq. (6). The
renormalisation constants are chosen such that multiplica-
tive renormalisability is preserved. In combination with
a ladder-truncated meson BSE, this truncation also pre-
serves chiral symmetry and its QCD breaking pattern en-
suring the validity of the Gell-Mann-Oakes-Renner rela-
tion and the (pseudo-)Goldstone nature of the pion.
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§ Nucleon wavefunction

�A quark + scalar-diquark component

�A quark+ axial vector-diquark component 

Phenomenological functions

ü The wf is symmetry based only; not dynamically  generated 
ü The Diquark is not pointlike; it encloses structure
      Eg. S-wave
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Table 3
Constraints on the �<N ô N< helicity amplitudes at the pseudothreshold. The first two columns presents the leading order dependence of the transverse and
scalar amplitudes. The third column shows the correlations between amplitudes at the pseudothreshold. The fourth column translates the correlations between
amplitudes to relations between transition form factors. The relations are similar for the cases J = 3
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form factors, which cannot be ignored when we consider empirical parametrizations of these structure functions. However, some
phenomenological parametrizations of the data ignore those constraints at low Q2, and end up with Q2-dependencies incompatible
with the pseudothreshold constraints. The impact of the constraints on phenomenological parametrizations of the data may be
especially significant for light nucleon resonances because the pseudothreshold Q2 = *(MR *M)2 is very close to the photon point
Q2 = 0. When the parametrizations are implemented on the kinematic-singularity-free form factors Gi or an equivalent kinematic-
singularity-free basis, the pseudothreshold constraints are automatically satisfied [108,141]. An example of such phenomenological
parametrization is in Ref. [108].

The constraints on the helicity amplitudes and multipole form factors are a consequence of the structure of the transition current
and its behavior near the pseudothreshold [84,94,95]. The gauge-invariant structure of the transition current J� , based on the
independent kinematic-singularity-free form factors Gi, and the kinematics in the N< rest frame imply that the helicity amplitudes
near the pseudothreshold must have an explicit dependence on q, and also that some amplitudes are correlated [142–146].

The leading order dependence of the helicity amplitudes in terms of q can be derived from Eqs. (3.14), (3.15) and (3.16) for
JP = 1

2
±
, and Eqs. (3.29), (3.30), (3.43) and (3.44) for J Œ 3

2 , combined with the fact that the form factors Gi are free of singularities
(finite and well defined functions in the limit q = 0). Noticing that for small q, based on Eq. (3.16), we can write B* ◊ q and
B+ ◊ 1, we conclude that the leading order dependence of the amplitudes A1_2 and S1_2 corresponds to the expressions displayed
in the first and second columns of Table 3 for JP = 1

2
±
. From Eqs. (3.30) and (3.44), we can also conclude for l = 1, 2,… that

Al* ◊ ql and Al+ ◊ ql*1 for small q. Using these relations for Al±, we conclude that for JP = 3
2
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,…, we obtain
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The leading order dependencies for J Œ 3
2 are also presented in the first and second columns of Table 3.

The most well known effect related to the constraints at the pseudothreshold is known as Siegert’s theorem or long wavelength
theorem [142–147]. The theorem states that the scalar amplitude S1_2 and the electric amplitude E (combination of the transverse
amplitudes A1_2 and A3_2) are related by S1_2 ◊ E q. A simple consequence of this relation is that the scalar amplitude
S1_2 ◊

⇣

J 0⌘ ◊ qn (n Œ 1), where
⇣

J 0⌘ represents the projection of J 0 between equal spin projections states (Sz = S<
z = ±1

2 ),
vanishes when q ô 0. The condition

⇣

J 0⌘ = 0, when both states are at rest (q = 0), is equivalent to the orthogonality of the N
and N< states [148,149]. The explicit relations between the scalar amplitude and the electric amplitude, expressed in terms of A1_2
and A3_2, are presented in the third column of Table 3. For the state JP = 1

2
+
there is no relation associated to Siegert’s theorem,

because the electric amplitude is not defined [78,84,102]. At this respect, recall the discussion at the end of Section 3.3. In addition
to the correlation between electric and scalar amplitudes, in the cases JP = 3

2
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*
,…, there is also a correlation between the

transverse amplitudes A1_2 and A3_2, equivalent to the condition that the magnetic amplitude vanishes at the pseudothreshold. This
condition is included in the last line of the third column of Table 3, for JP = 3

2
*
and for JP = 5

2
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*
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The correlations between amplitudes can be converted into correlations between multipole form factors, using the conversion
formulas of the previous sections. The condition associated with Siegert’s theorem leads to relations between the electric and
Coulomb quadrupole form factors [84,94,95]. The explicit expressions are displayed in the fourth column of Table 3. The condition
for JP = 1

2
*
is also the consequence of the definitions (3.22) [103]. The relations for JP = 3
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+
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Safer to use the general forms of the offshell nucleon-to-resonance transition vertices 
that implement electromagnetic and spin-3/2 gauge invariance, 
and automatically define on-shell transition form factors free of kinematic constraints. 
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Table 3
Constraints on the �<N ô N< helicity amplitudes at the pseudothreshold. The first two columns presents the leading order dependence of the transverse and
scalar amplitudes. The third column shows the correlations between amplitudes at the pseudothreshold. The fourth column translates the correlations between
amplitudes to relations between transition form factors. The relations are similar for the cases J = 3
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form factors, which cannot be ignored when we consider empirical parametrizations of these structure functions. However, some
phenomenological parametrizations of the data ignore those constraints at low Q2, and end up with Q2-dependencies incompatible
with the pseudothreshold constraints. The impact of the constraints on phenomenological parametrizations of the data may be
especially significant for light nucleon resonances because the pseudothreshold Q2 = *(MR *M)2 is very close to the photon point
Q2 = 0. When the parametrizations are implemented on the kinematic-singularity-free form factors Gi or an equivalent kinematic-
singularity-free basis, the pseudothreshold constraints are automatically satisfied [108,141]. An example of such phenomenological
parametrization is in Ref. [108].

The constraints on the helicity amplitudes and multipole form factors are a consequence of the structure of the transition current
and its behavior near the pseudothreshold [84,94,95]. The gauge-invariant structure of the transition current J� , based on the
independent kinematic-singularity-free form factors Gi, and the kinematics in the N< rest frame imply that the helicity amplitudes
near the pseudothreshold must have an explicit dependence on q, and also that some amplitudes are correlated [142–146].

The leading order dependence of the helicity amplitudes in terms of q can be derived from Eqs. (3.14), (3.15) and (3.16) for
JP = 1

2
±
, and Eqs. (3.29), (3.30), (3.43) and (3.44) for J Œ 3

2 , combined with the fact that the form factors Gi are free of singularities
(finite and well defined functions in the limit q = 0). Noticing that for small q, based on Eq. (3.16), we can write B* ◊ q and
B+ ◊ 1, we conclude that the leading order dependence of the amplitudes A1_2 and S1_2 corresponds to the expressions displayed
in the first and second columns of Table 3 for JP = 1

2
±
. From Eqs. (3.30) and (3.44), we can also conclude for l = 1, 2,… that

Al* ◊ ql and Al+ ◊ ql*1 for small q. Using these relations for Al±, we conclude that for JP = 3
2
+
, 5

2
*
, 7

2
+
,…, one has
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*
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+
, 72

*
,…, we obtain
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The leading order dependencies for J Œ 3
2 are also presented in the first and second columns of Table 3.

The most well known effect related to the constraints at the pseudothreshold is known as Siegert’s theorem or long wavelength
theorem [142–147]. The theorem states that the scalar amplitude S1_2 and the electric amplitude E (combination of the transverse
amplitudes A1_2 and A3_2) are related by S1_2 ◊ E q. A simple consequence of this relation is that the scalar amplitude
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J 0⌘ = 0, when both states are at rest (q = 0), is equivalent to the orthogonality of the N
and N< states [148,149]. The explicit relations between the scalar amplitude and the electric amplitude, expressed in terms of A1_2
and A3_2, are presented in the third column of Table 3. For the state JP = 1

2
+
there is no relation associated to Siegert’s theorem,

because the electric amplitude is not defined [78,84,102]. At this respect, recall the discussion at the end of Section 3.3. In addition
to the correlation between electric and scalar amplitudes, in the cases JP = 3
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*
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*
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transverse amplitudes A1_2 and A3_2, equivalent to the condition that the magnetic amplitude vanishes at the pseudothreshold. This
condition is included in the last line of the third column of Table 3, for JP = 3
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*
and for JP = 5
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The correlations between amplitudes can be converted into correlations between multipole form factors, using the conversion
formulas of the previous sections. The condition associated with Siegert’s theorem leads to relations between the electric and
Coulomb quadrupole form factors [84,94,95]. The explicit expressions are displayed in the fourth column of Table 3. The condition
for JP = 1

2
*
is also the consequence of the definitions (3.22) [103]. The relations for JP = 3

2
+
are equivalent for the states
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2
*
, 72

+
,…. Similarly, the relations for JP = 3

2
*
are equivalent for JP = 5
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+
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*
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GM ◊ q2 for JP = 3
2
*
is also valid for the states JP = 5

2
+
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*
,…. In this case the relation between the transverse amplitudes
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Fig. 6.20. �<N ô �(1232) transition. Electric and Coulomb quadrupole form factor GE and GC (multiplied by  = M�*M
2M�

) compared with the data and the
covariant spectator quark model [148] constrained by (quenched) lattice QCD data from Ref. [292] for m⇡ = 411, 490 and 563 MeV (represented by squares,
upper triangles and lower triangles, respectively). The thick line represents the combination of bare an pion cloud contributions and the thin lines the bare
contributions. Data from PDG, JLab/CLAS, MAMI and MIT-Bates [1,89,170,172–174,180] (˝) and JLab/Hall A [181] (÷). In the conversion of the REM and
RSM data to the GE and GC we use the MAID parametrization of GM [78].

bare contribution accounts also only for a fraction of the measured form factors at low Q2. The two graphs feature the gap between
the bare contributions and the total (bare quark plus pion cloud, given by the thick lines), which is close to the physical data. What
are the pion cloud contributions shown in the figure? Following Eq. (6.1) the decomposition of the quadrupole form factors GE
and GC form factors into valence quark and pion cloud components, would allow us to extract the meson cloud effects (defined by
construction as the missing strength of both form factors) from both the experimental and lattice data. Nevertheless, in the case of
the �<N ô �(1232) transition, the necessary pion cloud contributions can be estimated using large Nc relations, discussed in detail in
Section 6.3.5. The large Nc limit relations have no adjustable parameters, apart from the connection with the neutron electric form
factor, which is really a strong motivation of the interpretation in terms of the pion cloud contribution. In Fig. 6.20, we combine
the valence quark contributions (thin lines) with these large Nc pion cloud parametrizations from Eqs. (6.23) and (6.27), to obtain
the final result for the form factors GE and GC (thick lines), where  = M�*M

2M�
. We also show the lattice QCD data used in the fits

of the valence quark contributions of the model.11

The use of GC instead of GC is done to simplify the discussion of the quadrupole form factors at low Q2, and to make the
connection with Siegert’s theorem (see Section 3.6) that establishes that at the pseudothreshold, the lowest value of Q2 in the graphs,
the results of the two functions converge, GE = GC . It can be shown that bare contributions for GE and GC are proportional to the
angular integral of Y20(z), as a consequence of the orthogonality of the �(1232) D-states with the nucleon S-state [156,483]. Near
the pseudothreshold the overlap integrals of the radial wave functions are proportional to q and vanish in the limit q = 0. The
corollary of this result is that the bare contributions to GE and GC vanish at the pseudothreshold [483]. This property is responsible
by the soft behavior of the bare contributions near Q2 = 0 and the smooth turning point, a necessary condition to obtain zero
contributions at the point q = 0. Notice that the smooth transition from the pseudothreshold (Q2 Ù *0.09 GeV2) and the region
Q2 Ù 0.3 GeV2 is also observed in the lattice QCD data. For future reference, it is important to keep in mind that since the bare
contributions vanish at the pseudothreshold (as shown in Fig. 6.20) the constraints at the pseudothreshold are transferred to the
pion cloud contributions.

When we overlap the two graphs of Fig. 6.20, we conclude that GE Ù GC is a good approximation to the bare contributions
for finite Q2 [148,483,508]. A close relation, which can be derived from the large Nc limit is GE (Q2) = M2

�*M
2

4M2
�

GC (Q2) [40] (see
Section 6.3.5 for more details) and deviates from GE (Q2) Ù GC (Q2) by a term of the order 1_N2

c of about 12%.
12 Some models,

like the Sato–Lee model, use the relation GE = M2
�*M

2

4M2
�

GC to estimate the bare contribution of GC from the result for GE [223,226].
These relations can also be used to justify the order of magnitude between GC and GE : GE ˘ 0.1 GC , for any component (bare or
pion cloud) near Q2 = 0.

For future reference, we point out that according to the results from Fig. 6.20 the bare contributions became comparable to the
physical data for Q2 > 0.9 GeV2 for GE and for Q2 > 1.1 GeV2 for GC .

11 Notice, however, that the thin line does not represent the direct fit to the lattice data, but are the results of the extrapolation of the lattice parametrization
to the physical limit [155].
12 Notice that M2

�*M
2

4M2
�

= 
⇠

1 * M�*M
2M�

⇡

Ù , a correction of the order 1_N2
c .

Quenched Lattice data

Experimental data
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FIG. 4: Electromagnetic current to the quark. The first term
is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.

where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
tors ji (i = 1, 2) has an isoscalar and an isovector com-
ponent, respectively fi+ and fi� (functions of Q2, the
4-momentum transfer squared), ji =

1
6fi+ + 1

2fi�⌧3.
The inclusion of the second term in the second equation

in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]

f1±(Q
2) = �q + (1 � �q)

m2
v

m2
v +Q2

+ c±
M2

hQ
2

(M2
h +Q2)2

f2±(Q
2) = ±

⇢
d±

m2
v

m2
v +Q2

+ (1 � d±)
M2

h

M2
h +Q2

�
,

(2.4)

where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z

d4q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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To parametrize the current use Vector Meson Dominance at the quark level
a truncation to the rho and omega  poles of the full meson spectrum 
contribution to the quark-photon coupling.
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anomalous magnetic moment, c±, d± are mixture coeffi-
cients, and λq is a high-energy parameter related to the
quark density number in the deep inelastic limit [21]. For
the isoscalar functions one has mv+ = mω (ω mass) and
for the isovector functions one uses mv− = mρ (ρ mass).
The term inMh = 2M simulates the effects of the heavier
mesons and, therefore, all short range physics.
Specifically, we used the quark current parametrization

of model II from Ref. [21]: λq = 1.21, c+ = 4.16, c− =
1.16, d+ = d− = −0.686, κ+ = 1.639 and κ− = 1.833.
The values were adjusted in order to describe the nucleon
elastic form factor data in the spacelike region. (The
radial wave functions are described later). Its behavior
in that region was tested by taking it to the lattice QCD
regime [34, 35], and also to the nuclear medium [38], both
implemented with success.
However, some discussion is necessary for the timelike

situation q2 > 0. As seen from Eq. (4.5), singularities
will appear when q2 = m2

v±. Physically they correspond
to the ρ and ω poles. Another singularity appears from
the pole at q2 = M2

h , but only for very large q2 (" 3.5
GeV2). The Mh-pole was introduced for phenomenologi-
cal reasons to parametrize the short range physics in the
spacelike region [21]. For calculations with largeW (large
q2) the Mh-pole has to be regularized as discussed in the
Appendix.
The spacelike parametrization of the quark current in

terms of the ω and ρ poles assumes that those particles
are stable particles with zero decay width Γv = 0. In the
extension of the quark form factors to the timelike regime
we give them a width and use instead the substitution

m2
v

m2
v − q2

→
m2

v

m2
v − q2 − imvΓv(q2)

, (4.6)

where the index v is used for either ρ or ω as before. In
r.h.s. Γv denotes the vector meson decay width function
in terms of q2.
In the application to the ∆(1232) Dalitz decay [7] only

the ρ pole was taken because in the γ∗N → ∆ transition
only the isovector components contribute (given by the
functions fi−).
The function Γρ(q2) represents the ρ→ 2π decay width
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where Γ0
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For the application in this paper, however, we also have
to include the ω pole. To this end, the function Γω(q2)
will include the decays ω → 2π (function Γ2π) and ω →
3π (function Γ3π). The case ω → 3π can be interpreted as
the process ω → ρπ → 3π, and therefore we decomposed
Γω(q2) into [44]

Γω(q
2) = Γ2π(q

2) + Γ3π(q
2), (4.8)
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FIG. 1: Γω as a function of q. The 2π, 3π channels are indicated by
the long-dashed and dotted-dashed lines respectively. The solid line
represents the sum of the two channels. The short-dashed vertical
and horizontal lines indicate the ω mass point and the ω-physical
width (8.4 MeV).
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where Γ0
2π = 1.428× 10−4 GeV. Note that Γ2π is similar

to the function Γρ except for the constant Γ0
2π (about 103

smaller) and the mass. For the function Γ3π we use the
result from Ref. [44]
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With this parametrization we obtain Γω(m2
ω) "

Γ3π(m2
ω) = 7.6 MeV, which is consistent with the data.

Note that the total width of the ω comprises the de-
cays into γπ, 2π and 3π, and is 8.4 MeV. The remaining
contribution to the ω decay width comes from the decay
ω → γπ0. The 3π decay corresponds to a branching ratio
of about 90%.
The result of the calculation of Γω as a function of q

is shown in Fig. 1. Note in this figure the dominance of
the 3π channel for q > 0.55 GeV.
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will include the decays ω → 2π (function Γ2π) and ω →
3π (function Γ3π). The case ω → 3π can be interpreted as
the process ω → ρπ → 3π, and therefore we decomposed
Γω(q2) into [44]

Γω(q
2) = Γ2π(q

2) + Γ3π(q
2), (4.8)

0.2 0.4 0.6 0.8 1
q (GeV)

0.001

0.01

0.1

1

10

100

Γ
(M

eV
)

2π 3 π

FIG. 1: Γω as a function of q. The 2π, 3π channels are indicated by
the long-dashed and dotted-dashed lines respectively. The solid line
represents the sum of the two channels. The short-dashed vertical
and horizontal lines indicate the ω mass point and the ω-physical
width (8.4 MeV).

The function Γ2π can be represented as [44, 46]

Γ2π(q
2) = Γ0

2π
m2

ω

q2

(

q2 − 4m2
π

m2
ω − 4m2

π

)

3
2

θ(q2 − 4m2
π), (4.9)

where Γ0
2π = 1.428× 10−4 GeV. Note that Γ2π is similar

to the function Γρ except for the constant Γ0
2π (about 103

smaller) and the mass. For the function Γ3π we use the
result from Ref. [44]

Γ3π(q
2) =

∫ (q−mπ)
2

9m2
π

ds Aρ(s)Γ̄ω→ρπ(q
2, s), (4.10)

where q =
√

q2, s the mass of the virtual ρmeson, Γ̄ω→ρπ

is the decay width of ω to a π and a virtual ρ and Aρ

is the ρ-spectral function. The functions Γ̄ω→ρπ and Aρ

are [44]

Γ̄ω→ρπ(q
2, s) =

3

4π

(

g′

mπ

)2 [ (q2 − s−m2
π)

2 − 4sm2
π

4q2

]

5
2

×θ(q2 − 9m2
π), (4.11)

with g′ = 10.63 MeV and

Aρ(s) =

√
s

π

Γρ(s)

(s−m2
ρ)

2 + sΓ2
ρ(s)

. (4.12)

With this parametrization we obtain Γω(m2
ω) "

Γ3π(m2
ω) = 7.6 MeV, which is consistent with the data.

Note that the total width of the ω comprises the de-
cays into γπ, 2π and 3π, and is 8.4 MeV. The remaining
contribution to the ω decay width comes from the decay
ω → γπ0. The 3π decay corresponds to a branching ratio
of about 90%.
The result of the calculation of Γω as a function of q

is shown in Fig. 1. Note in this figure the dominance of
the 3π channel for q > 0.55 GeV.

4

anomalous magnetic moment, c±, d± are mixture coeffi-
cients, and λq is a high-energy parameter related to the
quark density number in the deep inelastic limit [21]. For
the isoscalar functions one has mv+ = mω (ω mass) and
for the isovector functions one uses mv− = mρ (ρ mass).
The term inMh = 2M simulates the effects of the heavier
mesons and, therefore, all short range physics.
Specifically, we used the quark current parametrization

of model II from Ref. [21]: λq = 1.21, c+ = 4.16, c− =
1.16, d+ = d− = −0.686, κ+ = 1.639 and κ− = 1.833.
The values were adjusted in order to describe the nucleon
elastic form factor data in the spacelike region. (The
radial wave functions are described later). Its behavior
in that region was tested by taking it to the lattice QCD
regime [34, 35], and also to the nuclear medium [38], both
implemented with success.
However, some discussion is necessary for the timelike

situation q2 > 0. As seen from Eq. (4.5), singularities
will appear when q2 = m2

v±. Physically they correspond
to the ρ and ω poles. Another singularity appears from
the pole at q2 = M2

h , but only for very large q2 (" 3.5
GeV2). The Mh-pole was introduced for phenomenologi-
cal reasons to parametrize the short range physics in the
spacelike region [21]. For calculations with largeW (large
q2) the Mh-pole has to be regularized as discussed in the
Appendix.
The spacelike parametrization of the quark current in

terms of the ω and ρ poles assumes that those particles
are stable particles with zero decay width Γv = 0. In the
extension of the quark form factors to the timelike regime
we give them a width and use instead the substitution

m2
v

m2
v − q2

→
m2

v

m2
v − q2 − imvΓv(q2)

, (4.6)

where the index v is used for either ρ or ω as before. In
r.h.s. Γv denotes the vector meson decay width function
in terms of q2.
In the application to the ∆(1232) Dalitz decay [7] only

the ρ pole was taken because in the γ∗N → ∆ transition
only the isovector components contribute (given by the
functions fi−).
The function Γρ(q2) represents the ρ→ 2π decay width

for a virtual ρ with momentum q2 [44, 45]

Γρ(q
2) = Γ0

ρ

m2
ρ

q2

(

q2 − 4m2
π

m2
ρ − 4m2

π

)

3
2

θ(q2 − 4m2
π), (4.7)

where Γ0
ρ = 0.149 GeV.

For the application in this paper, however, we also have
to include the ω pole. To this end, the function Γω(q2)
will include the decays ω → 2π (function Γ2π) and ω →
3π (function Γ3π). The case ω → 3π can be interpreted as
the process ω → ρπ → 3π, and therefore we decomposed
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With this parametrization we obtain Γω(m2
ω) "

Γ3π(m2
ω) = 7.6 MeV, which is consistent with the data.

Note that the total width of the ω comprises the de-
cays into γπ, 2π and 3π, and is 8.4 MeV. The remaining
contribution to the ω decay width comes from the decay
ω → γπ0. The 3π decay corresponds to a branching ratio
of about 90%.
The result of the calculation of Γω as a function of q

is shown in Fig. 1. Note in this figure the dominance of
the 3π channel for q > 0.55 GeV.
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Extension to Strangeness in the timelike region
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in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
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Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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In this work we start with the quark model described in
Ref. [20] for the N!ð1520Þ resonance and extend it to the
region q2 > 0. In addition to the contribution from the
bare core, we take also a meson cloud contribution. This
contribution is modeled within the lines of our previous
study of the Δð1232Þ in the timelike region, i.e., with the
pion-photon coupling parametrized by the pion form factor
data [7].
Three conclusions emerged in the context of our model:

(i) the γ!N → N!ð1520Þ timelike transition form factors are
dominated by the meson cloud contributions; (ii) in the
range q2 ¼ 0–1 GeV2, the constant form factor model
(also known as QED approximation) usually taken in
the literature underestimates the electromagnetic coupling
of the N!ð1520Þ with consequences for the differential
Dalitz decay width; (iii) in addition to the Δð1232Þ
resonance, the N!ð1520Þ has a role in dilepton decay
reactions at intermediate energies.
This article is organized as follows. In Sec. II we describe

the methodology used to extend a valence quark model
fixed in the spacelike region to the timelike region. Next,
in Sec. III, we discuss the relation between the γ!N →
N!ð1520Þ form factors and the formulas for the photon
and Dalitz decay widths of the N!ð1520Þ. The formalism of
the covariant spectator quark model used here is presented
briefly in Sec. IV. In Sec. V we discuss the formulas used to
calculate the γ!N → N!ð1520Þ form factors. The results for
the form factors in the timelike region and the N!ð1520Þ
decay widths are presented in Sec. VI. Outlook and
conclusions are presented in Sec. VII.

II. METHODOLOGY

In the covariant spectator quark model, the application
of impulse approximation to the interaction of a photon
with a baryon, seen as a three quark qqq state, justifies that
one integrates out the relative internal momentum in the
spectator diquark subsystem [21,25,26]. After this internal
momentum integration, in the process of the covariant
integration over the global momentum of the interacting
diquark, one may keep only the main contribution, which is
originated by the on-mass-shell pole of the diquark—while
the remaining quark that interacts with the photon is taken
to be off mass shell [25]. This last integration on the on-
shell diquark internal momenta amounts to having the qqq
system as a quark-diquark system, and to treating the
diquark with an effective average mass mD [21,25,26]. It is
also an ingredient of the model that the electromagnetic
quark current is represented by a parametrization of vector
meson dominance [21,26,34,35]. In addition to the con-
tributions from the core of valence quarks, the covariant
spectator quark model can include also a covariant para-
metrization of the meson cloud effects that are important in
the low momentum transfer region and that depend on the
baryons participating in the reaction [6,7,22,23,31,36–38].

Here, the extension of the model to the timelike regime
requires two important modifications:

(i) The nucleon and the N!ð1520Þ quark core wave
functions have to be calculated in timelike kinematic
conditions, depending on an arbitrary massW which
can differ from the resonance mass, labeled MR.

(ii) The electromagnetic quark current has also to be
extended to the timelike regime. That is done by
introducing finite mass widths for the ρ and ω
mesons.

For the γ!N → Δð1232Þ transition in the timelike region,
we have already found that themeson cloud contributions are
important, in comparison to the valence quark contributions
[7]. It isworthwhile now to testwhether the same phenomena
occurs for the N!ð1520Þ resonance, which carries, in
particular, a different isospin. In our model the valence
quark contributions for themagnetic and electric form factors
vanish at the photon point (q2 ¼ 0) due to the orthogonality
of the initial and final state wave functions [20]. Other
valence quark models estimate them as nonzero contribu-
tions (a discussion can be found in Ref. [20]). Since, in our
model, the valence quark contributions for the electric
and magnetic transition form factors vanish at q2 ¼ 0,
their extension to the q2 > 0 region gives nonzero but
small contributions for those transition form factors.
Nevertheless, our model can provide a good approximation
for the N!ð1520Þ resonance in the timelike region based
on the meson cloud contributions, which dominate in the
timelike region. Moreover, the form factors show a depend-
ence on q2 with consequences for the analysis of reactions in
the timelike region, where the electromagnetic couplings are
often fixed at their value atq2 ¼ 0 (theQEDapproximation).

III. N!ð1520Þ DALITZ DECAY

The N!ð1520Þ resonance is a JP ¼ 3
2
− state, with isospin

I ¼ 1
2. The N

!ð1520Þ Dalitz decay into the nucleon can be
expressed in terms of the decay width [39]

Γγ!Nðq;WÞ¼ 3α
16

ðW−MÞ2

M2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
yþjGTðq2;WÞj2; ð3:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α is the fine-structure constant,

y& ¼ ðW &MÞ2 − q2; ð3:2Þ

and jGTðq2;WÞj2 is a combination of the electromagnetic
transition form factors given by

jGTðq2;WÞj2 ¼ 3jGMðq2;WÞj2 þ jGEðq2;WÞj2

þ q2

2W2
jGCðq2;WÞj2: ð3:3Þ

In the previous equation GM, GE, and GC are, respectively,
the magnetic dipole, electric, and Coulomb quadrupole
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Fig. 6.3. Calculations of �<N ô N(1440) transition form factors. Focus on the bare contributions. The figure includes calculations of light-front quark model
(LFQM 1) [86], covariant spectator quark model (CSQM) [88], and Holographic QCD model in leading order (LO, leading twist) [374]. Comparison with the
MAID parametrization [78,137,138]. The data are from JLab/CLAS, one pion production (÷) [89] and two pion production (∑) [90,93], and PDG 2022 (˝) [1].

The LFQM from Ref. [382] (LFQM 3) follows previous works [407], and takes into account contributions from �N states. The
holographic QCD model (Holographic NNLO) from Refs. [371,373] includes higher Fock states [(qqq)g and (qqq)( Ñqq)] where the
independent couplings are adjusted by the nucleon data and some N(1440) or nucleon to N(1440) transition data. The calculation
from Ref. [373] is calibrated by the experimental result for A1_2(0). The calculation presented in the figure is from Ref. [371], where
the couplings are adjusted by the helicity amplitude data. The models LFQM 2 and Holographic NNLO, include meson cloud effects,
and improve the description of the data based only on valence quark degrees of freedom (Fig. 6.1). One notices, however, that
light-front quark models due to its nature are more appropriate to the region Q2 > 2 GeV2 [86,384].

The second observation on Figs. 6.1 and 6.2, is that the different approaches predict different asymptotic results for large Q2 and
possible data at larger Q2 may discriminate between them. For a more detailed comparison with earlier light-front quark models
from Refs. [107,403,404] and with the gluonic model [411], we suggest the reader the Refs. [8,86,387,408].

On the magnitude of the meson cloud contributions, estimated by the ANL-Osaka DCC model, displayed on Fig. 6.2, we note that
the ANL-Osaka DCC amplitudes are complex due to the opening of the meson production channels, but for simplicity we present
only the real parts. The meson cloud contribution to A1_2 is very small, and the contribution for S1_2 is large, differing in sign in
the vicinity of Q2. However, it is important to mention that the imaginary parts of the meson contributions to A1_2 and S1_2 have
a magnitude similar to the real parts.

We underline that as shown in Fig. 6.1 the MAID parametrization describes well the CLAS data in the range Q2 = 0–4.2
GeV2, its range of validity. Above Q2 = 5 GeV2 the parametrization falls off very fast with an exponential factor. The Rational
parametrization [108] has the advantage of being compatible with the pseudothreshold constraints which are A1_2 ◊ q and
S1_2 ◊ q2, and its slope at small Q2 follows well the data. The band of variation shown is estimated from the uncertainties
obtained from the form factor data. The magnitude of the uncertainties is smaller for the transition form factor data (see next
section). The large uncertainties in the amplitudes are mainly a consequence of the conversion from transition form factors with
the errors calculated in quadrature. In the present case, the inclusion of the uncertainties is important to understand the limits of
the parametrizations, near the pseudothreshold, and also for their large-Q2 predictions.

An important matter is the expected shape of the helicity amplitudes or the transition form factors at low Q2. Comparing Figs. 6.1
and 6.2, one notices the differences between the MAID and the Rational parametrizations, particularly for the amplitude S1_2. Since
S1_2 cannot be measured at Q2 = 0, one has to rely on data near Q2 = 0. One can nevertheless analyze the limit of (3.18)

S1_2(0) = (M2
R *M2)

u

⇡↵K
MMR

4

dF1
dQ2

Û

Û

Û

Û0
*

F2(0)
(MR +M)2

5

, (6.2)

where dF1
dQ2

Û

Û

Û0
represents the first derivative of F1 at Q2 = 0, and can be inferred from the expansion F1(Q2) Ù dF1

dQ2
Û

Û

Û0
Q2. The sign of

S1_2(0) is then determined by
dF1
dQ2

Û

Û

Û0
and by the term on F2(0), which is positive.

The Rational parametrization suggests that S1_2(0) is large and positive, S1_2(0) Ù 30ù 10*3 GeV*1_2, while the data from MAMI
and the MAID parametrization point to a smaller value. But, as we will see in the next section on the form factor data, a smaller
values for S1_2(0) may imply negative values for

dF1
dQ2

Û

Û

Û0
, and consequently an atypical shape for F1 near Q2 = 0, The determination

of the magnitude of S1_2 below Q2 = 0.3 GeV2 is then crucial. Notice also that a consequence of the pseudothreshold constraints is
that both amplitudes, A1_2 and S1_2, must vanish in the limit Q2 = *(MR *M)2. In the Rational parametrization the indications of
the inflection of the amplitude S1_2 is clear already near Q2 = 0, but as for A1_2 the inflection can be seen only below Q2 = 0, as
documented in Ref. [108].

In this presentation we avoid the discussion of calculations based on chiral EFTs, which are valid below Q2 = 0.6 GeV2 [87,400]
due to the lack of data below Q2 = 0.3 GeV2. We report, nevertheless that the chiral model from Mainz [87] provides a good
description of the data once the low energy constants are fixed.
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Kinematics (γ∗N → N ′) R ≡ N ′

R rest frame
PR = (W, 0, 0, 0); PN = (EN , 0, 0,−|q|); q = (ω, 0, 0, |q|)

Timelike q2 > 0

ω =
W 2 −M2 + q2

2W

|q|2 =
[(W +M)− q2][(W −M)2 − q2]

4W 2

EN =
W 2 +M2 − q2

2W

Spacelike −q2 = Q2 > 0

ω =
W 2 −M2 −Q2

2W

|q|2 =
[(W +M) +Q2][(W −M)2 +Q2]

4W 2

EN =
W 2 +M2 +Q2

2W

TL: q2 ≤ (W −M)2 W ≥M
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in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α " 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ % 1), one has C " 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1
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)

−1 [

|GM (q2)|2 +
1
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|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2
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. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) " GSL
M (−q2), (3)

GE(q
2) " GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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Fig. 7 At the right: comparison with EBAC estimate of bare core [34]. At the left:
extrapolation to the lattice QCD regime with mπ = 490 MeV. Lattice data from Ref. [71].

Since the experimental value is G∗
M (0) ! 3.02 [49], one can conclude that

near Q2 = 0, the model underestimate the data in about 37%. Note that this
estimate provide only an upper limit, and that in the numerical calculations,
one can have even larger underestimations [7,31].

From the previous discussion, we can conclude that the covariant spectator
quark model provides a natural explanation for the underestimation of the data
at low Q2, when we consider only the valence quark degrees of freedom. In
order to explain the missing strength, one needs to take into account explicit
contributions of the pion cloud effects, as concluded from the use of dynamical
baryon-meson reaction models [2,7,34,35,36].

Before explaining how one can parametrize the pion cloud effects, one needs
to discuss how we can parametrize the of the nucleon and the ∆(1232) wave
functions. As discussed in Sect. 2, the structure of the nucleon can be described
within the covariant spectator quark model, considering an SU(6) structure
for the S-state wave function, and a parametrization for the quark current
(1) [6]. As for the nucleon, we consider also an S-state structure associated
with a radial wave function ψ∆ [7,8,11]. The question is, how to determine the
function ψ∆, since, contrarily to the nucleon elastic form factors, the radial
wave function cannot be adjusted directly to the empirical data, because the
data is strongly contaminated by pion cloud effects.

One are then left with two options: i) calibrate the data by some estimate
from the valence quark core contributions to the transition form factors; ii)
calibrate the model by lattice QCD simulations for large pion masses, where
the meson cloud effects are suppressed.

The first option can be implemented using the estimate of the quark core
contributions performed with the assistance of the Sato-Lee/EBAC model,
nowadays known as Argonne-Osaka model [33,34,37,46]. The second option
requires an intermediate step, the extension of the covariant spectator quark
model from the physical regime to the lattice QCD regime. This extension
can be performed taking advantage of the definition of the quark currents
in terms of the hadron masses (vector mesons and nucleon mass) and also

Connection to Lattice QCD

G. Ramalho and M. T. Peña, Phys. Rev. D 80, 013008 (2009) 
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CST model and LQCD data are made compatible.

                                    

γN→Δ



E.M. Current  and TFF near the photon point
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An accident of the definition of the Jones and Scadron form 
factors: 

A form of the “Siegert condition”!
This is implied by orthogonality 
of states.
If data analysis proceed through 
helicity  amplitudes 
this behavior may be missed.
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Fig. 4. Electric and Coulomb quadrupole form factors for the γ ∗N → "(1232)

transition. At the top: MAID2007 parametrization [8]. At the bottom: improved 
parametrization consistent with the Siegert’s theorem [11]. Data from Ref. [17]. See 
details in Ref. [11].

MAID-SG parametrization). In this case, one can see the conver-
gence of G E to κ GC at the pseudo-threshold. The γ ∗N → "(1232)

transition form factors and their relation with the Siegert’s theo-
rem are discussed in detail in Ref. [11].

6. Summary and conclusions

In the present article we discuss the implications of the con-
straints in the γ ∗N → N(1535) helicity amplitudes, when the 
nucleon and the resonance N(1535) are both at rest (pseudo-
threshold limit). In this limit the transverse (A1/2) and the longi-
tudinal (S1/2) amplitudes are related by the Siegert’s theorem (2). 
We concluded, that the Siegert’s theorem is the consequence of the 
orthogonality between the nucleon and resonance states.

From the analysis of the structure of the current and the tran-
sition form factors, we conclude also, that, the amplitudes A1/2
and S1/2/|q| are both finite and non-zero in the pseudo-threshold 

limit [recall Eq. (16) with F̃1 = O(1)]. Based on this result, we ex-
plain why the MAID2007 parametrization for the amplitudes A1/2
and S1/2 violates the Siegert’s theorem, and propose an alterna-
tive parametrization, consistent with both the Siegert’s theorem 
and the data. The new parametrization is similar to the MAID2007 
parametrization for both amplitudes when Q 2 > 1.5 GeV2, but 
deviates from MAID2007 for smaller values of Q 2. In the new 
parametrization, the amplitude S1/2 differs more significantly from 
the MAID2007 parametrization for Q 2 < 0, and vanishes at the 
pseudo-threshold as expected (S1/2 ∝ |q|).

We concluded also, that, the Dirac and Pauli form factors are 
free of singularities at the pseudo-threshold as expected from the 
Siegert’s theorem, expressed under the condition A1/2 − λS1/2/
|q| = O(|q|2), near the pseudo-threshold.

The methods proposed in this article to study the structure of 
the helicity amplitudes and the structure of the transition form 
factors in the γ ∗N → N(1535) transition, can be extended for the 
transitions γ ∗N → "(1232), γ ∗N → N(1520) [11] and others.
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Crossing the boundaries to explore baryon resonances

Siegert’s theorem and with the empirical data of the γ!N →
Δð1232Þ quadrupole form factors.
We conclude first that the relations (3)–(4) implies that

Siegert’s theorem is violated by terms Rpt ¼ Oð1=N2
cÞ,

which may be a sizable error in the case Nc ¼ 3. Since the
relations (3)–(4) are extrapolated from large Nc, they can
have relative deviations of the order 1=N2

c. We then use
the constraints of Siegert’s theorem to modify the relation
for GE. We obtain parametrizations for the quadrupole
form factors that violate Siegert’s theorem only by terms
Rpt ¼ Oð1=N4

cÞ. This result is thus compatible with
Siegert’s theorem apart from the higher-order corrections
in 1=N2

c.
We look also for additional contributions for the tran-

sition form factors GE and GC, namely the contributions
from the valence quarks from the nucleon and Δð1232Þ
systems. As mentioned, those contributions are small in the
context of quark models but combined with the para-
metrizations of the pion cloud contributions they can
reduce the gap between theory and data. An interesting
propriety of the valence quark contributions for the electro-
magnetic form factors is that they vanish in the pseudo-
threshold limit, as consequence of the orthogonality
between the nucleon and Δð1232Þ wave functions. As a
consequence, the test of Siegert’s theorem condition
Rpt ¼ 0 needs to be tested only for the pion cloud
contribution of the transitions form factors.
At the end, we combine valence and pion cloud con-

tributions using a model compatible with Siegert’s theorem
apart from the higher-order corrections in 1=N2

c. The results
are then compared with the empirical data for GE and GC,
showing a fair description of the overall data.

II. PION CLOUD CONTRIBUTIONS

We can test the quality of the relations (3)–(4) comparing
those functions with the data based on some parametriza-
tion for GEn. To represent the electric form factor of the
neutron, we consider the Galster parametrization [22]

GEnðQ2Þ ¼ −μn
aτN

1þ dτN
GD; ð5Þ

where μn ¼ −1.913 is the neutron magnetic moment,
τN ¼ Q2

4M2, GD ¼ 1=ð1þQ2=0.71Þ2 is the dipole factor,
and a, d are two dimensionless parameters.
The quadrupole form factors obtained with the param-

eters a ¼ 0.9 and d ¼ 2.8 [11] are presented in Fig. 1. For a
better test of Siegert’s theorem we multiply the functionGC
and the data for GC by κ. The calculations are compared
with the data from Mainz [13], MIT-Bates [23], and
Jefferson Lab [24] for finite square momentum transfer,
Q2, and the world average from the Particle Data Group for
Q2 ¼ 0 [25]. The data are compiled in Ref. [26].

It is clear in Fig. 1 that, the difference between the
parametrizations for GE and κGC is not zero in the
pseudothreshold limit, when Q2 ≃ −0.1 GeV2. This result
implies that Siegert’s theorem is violated, becauseRpt ≠ 0.
The explicit calculation of the deviation using GEnðQ2

ptÞ≃
− 1

6 r
2
nQ2

pt, gives

Rpt ≃ −
!
M
MΔ

"
3=2 r2n

12
ffiffiffi
2

p Q2
pt: ð6Þ

Since Q2
pt ¼ −ðMΔ −MÞ2 and MΔ −M ¼ Oð1=NcÞ, we

can conclude that Rpt ¼ Oð1=N2
cÞ. Although a result

Oð1=N2
cÞ may be seen as a small quantity, the numerical

value is still sizable, as we can see in the graph for
R ¼ GE − κGC at the pseudothreshold (Rpt).

III. VALENCE QUARK CONTRIBUTIONS

Before discussing how to improve the pion cloud para-
metrization of the quadrupole form factors GE and GC, we
may question if Siegert’s theorem can in fact be verified for
the valence quark sector.
We look then for the results obtained within valence

quark models. We consider, in particular, the covariant
spectator quark model developed in Refs. [3,16,27–29] for
the nucleon and Δð1232Þ systems. The basic assumptions
of the model are that (i) in the electromagnetic interaction
the photon couples with the single quark (impulse approxi-
mation) while the other two quarks can be interpreted as an
effective diquark, (ii) the quarks have their own internal
structure (dressed by gluons and quark-antiquark states),
and (iii) the radial quark-diquark wave functions are
calibrated in terms of momentum range parameters that
can be estimated by physical or lattice QCD data.
Concerning the nucleon and Δð1232Þ systems the model

is quite successful in the description of the data. The
parameters associated with the quark structure (quark
electromagnetic form factors) were first fixed by the
nucleon elastic form factor data [28]. After that the model
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Q

2
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2
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0
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GE data
κ GC
κ GC data
GE - κ GC

FIG. 1. γ!N → Δ quadrupole form factors estimated by the
pion cloud parametrization of Eqs. (3)–(4). Data from Ref. [26].
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Large NC limit and SU(6) quark models:

• Suggest that pion cloud effects for GE and GC 
generate deviations from the Siegert condition of the order      
and do not agree to data at low Q2.

Corrected parametrization with deviations                 generated agreement with 
2017 JLAB data
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FIG. 1: GE and GC form factors. Data from Refs. [21, 33, 38–41].

Recall that κ = M∆−M
2M∆

.

(solid circles and diamonds). The results for GC are
multiplied by κ for convenience. In the figure one can
notice the convergence of the two lines at the lowest
Q2 point (pseudothreshold) proving the consistency with
Siegert’s theorem. To this success contribute the pion
cloud parametrizations for the form factors GE and GC

discussed next, as well as the valence quark contributions
discussed later. The inclusion of the valence quark con-
tributions compensates the underestimation associated
with the pion cloud parametrizations [26, 32, 33, 36].
The structure of the internal structure of the baryons

can be interpreted as a combination of the large Nc limit,
with SU(6) quark models with two-body exchange cur-
rents [29, 31]. The SU(6) symmetry breaking induces an
asymmetric distribution of charge in the nucleon which
generates non-zero results for the neutron electric form
factor as shown in constituent quark models such as the
Isgur-Karl model [17, 42] and others [3, 27, 28]. Us-
ing the SU(6) symmetry breaking one can show that
the γ∗N → ∆(1232) quadrupole moments are propor-
tional to the neutron square charge radius (r2n) [16, 26–
28, 30, 43, 44].
Using the low Q2 expansion of the neutron electric

form factor, GEn " − 1
6r

2
nQ

2, we can represent the Q2 de-
pendence of the quadrupole form factors in the form [26–
31]:

Gπ
E(Q

2) =

(

M

M∆

)3/2 M2
∆ −M2

2
√
2

G̃En(Q2)

1 + Q2

2M∆(M∆−M)

,

(2)

Gπ
C(Q

2) =

(

M

M∆

)1/2 √
2M∆MG̃En(Q

2), (3)

where G̃En = GEn/Q2. The previous relations were de-
rived directly from the large Nc limit [26], apart the de-
nominator of the factor G̃En in Eq. (2). This denomi-
nator is included in the present work in order to satisfy

Siegert’s theorem (1), exactly. Note that in the limit
Q2 → 0 the extra factor reduces to the unit, and we
recover the original result from large Nc limit [26]. At

the pseudothreshold: 1 + Q2

2M∆(M∆−M) = M∆+M
2M∆

, which

leads directly to Eq. (1). Since in the large Nc limit
M∆ − M = O(1/Nc), and M∆ = O(Nc), the present
form for Gπ

E corresponds to a correction O(1/N2
c ) rela-

tive to the original form of Gπ
E presented in Ref. [26], at

the pseudothreshold.
In a previous work [32], a similar expression was con-

sidered for Gπ
E , which describes Siegert’s theorem with

an error of the order 1/N4
c . The new expression for Gπ

E
improves the previous result with the exact description
of Siegert’s theorem (all orders of 1/Nc). Compared to
the form presented in Ref. [32], we include a correction
O(1/N4

c ) at the pseudothreshold [45].
To describe the neutron electric form factor we con-

sider the Galster parametrization [46]:

GEn(Q
2) = −µn

aτN
1 + dτN

GD, (4)

where µn = −1.913 is the neutron magnetic moment,

τN = Q2

4M2 , GD = 1/(1+Q2/0.71)2 is the dipole form fac-
tor, and a, d are two dimensionless parameters. In Fig. 1,
we use a = 0.9 and d = 2.8, a parametrization that de-
scribes very well the neutron electric form factor data. In
a separated work we study alternative parametrizations
for GEn [47].
The theoretical estimates presented in Fig. 1 are com-

pared with data from Mainz [21, 38], MIT-Bates [39] and
Jefferson Lab [40] for finite Q2, and the world average
from the Particle Data Group at Q2 = 0 [41] (empty
diamonds and circles). The new data at Q2 = 0.06,
0.13 GeV2 for GE and Q2 = 0.04, 0.06, 0.13 GeV2

for GC are from JLab/Hall A [33] (solid diamonds and
circles). To convert the new data for the electromag-

netic ratios REM ≡ − GE

GM
and RSM ≡ − |q|

2M∆

GC

GM
into

GE and GC , we use the MAID2007 parametrization for
GM : GM = 3

√
1 + τ(1 + a1Q2)e−a4Q

2

GD, where τ =
Q2

(M∆+M)2 , a1 = 0.01 GeV−2 and a4 = 0.23 GeV−2 [35].
The larger errorbars associated with the new data are
mainly the consequence of the different model descrip-
tions of the background [33].
The pion cloud contributions for the γ∗N → ∆(1232)

quadrupole form factors given by Eqs. (2)-(3) can be
complemented by small valence quark contributions to
the respective form factors (around 10%, near Q2 = 0).
As discussed in Ref. [32], those contributions are nat-
urally consistent with Siegert’s theorem. The valence
quark contributions to the γ∗N → ∆(1232) quadrupole
form factors are produced by the high angular momen-
tum components in the nucleon and/or ∆(1232) wave
functions. As a consequence of the orthogonality between
the nucleon and ∆(1232) states, the valence quark con-
tributions to the quadrupole form factors vanish at the
pseudothreshold and the Siegert’s theorem condition is
trivially satisfied [10, 13, 32]. The validity of Siegert’s
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Extension to Timelike

Away from that peak it is the bare quark contribution that
dominates. The flatness of the W ¼ 2.2 GeV curve for
q2 > 1 GeV2 is the net result of the falloff of the pion
cloud and the rise of the quark core terms. In addition, the
figure shows that the dependence on W yields different
magnitudes at the peak, and we recall that this dependence
originates from the bare quark core contribution alone.
This bare quark core contribution is mainly the conse-
quence of the VMD parametrization of the quark current
where there is an interplay between the effect of the ρ pole
and a term that behaves as a constant for intermediate
values of q2 (see Appendix A).
Wewill discuss now the results for the widths Γγ"Nðq;WÞ

of the Δ Dalitz decay, and for the Δ mass distribu-
tion gΔðWÞ.

A. Δ Dalitz decay

The width associated with the Δ decay into γ"N can be
determined from the Δ → γ"N form factors for the Δ mass
W. Assuming the dominance of the magnetic dipole form
factors over the other two transition form factors, we can
write [4,5,34]

Γγ"Nðq;WÞ ¼ α
16

ðW þMÞ2

M2W3

×
ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
y−jG"

Mðq2;WÞj; ð5:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α≃ 1=137 is the fine-structure constant

and y& ¼ ðW &MÞ2 − q2.
At the photon point (q2 ¼ 0), in particular, we obtain the

ΓγN in the limit q2 ¼ 0 from Eq. (5.1) [5,18,35]

ΓγNðWÞ ¼ Γγ"Nð0;WÞ: ð5:2Þ

We can also calculate the derivative of the Dalitz decay
width Γeþe−Nðq;WÞ from the function Γγ"Nðq;WÞ using the
relation [5,18,34,35]

Γ0
eþe−Nðq;WÞ≡ dΓeþe−N

dq
ðq;WÞ

¼ 2α
3πq

Γγ"Nðq;WÞ: ð5:3Þ

The Dalitz decay width Γeþe−Nðq;WÞ is given by

Γeþe−NðWÞ ¼
Z

W−M

2me

Γ0
eþe−Nðq;WÞdq; ð5:4Þ

where me is the electron mass. Note that the integration
holds for the interval 4m2

e ≤ q2 ≤ ðW −MÞ2, where the
lower limit is the minimum value necessary to produce an
eþe− pair, and ðW −MÞ2 is the maximum value available
in the Δ → γ"N decay for a given W value.
The results for dΓeþe−N

dq ðq;WÞ for several mass values W
(1.232, 1.6 and 2.2 GeV) are presented in Fig. 5. These
results are also compared to the calculation given by the
constant form factor model, from which they deviate
considerably.
Also, the Δ decay width can be decomposed at tree level

into three independent channels

ΓtotðWÞ ¼ ΓπNðWÞ þ ΓγNðWÞ þ Γeþe−NðWÞ; ð5:5Þ

given by the decays Δ → πN, Δ → γN and Δ → eþe−N.
The two last terms are described respectively by Eqs. (5.2)
and (5.4). The ΓπN term can be parametrized as in [36,43]

ΓπNðWÞ ¼ MΔ
W

"
qπðWÞ
qπðMΔÞ

#
3 κ2 þ q2πðMΔÞ
κ2 þ q2πðWÞ

Γ0
πN; ð5:6Þ

where Γ0
πN is the Δ → πN partial width for the physical Δ,

qπðWÞ is the pion momentum for a Δ decay with mass W,
and κ a cutoff parameter. Following Refs. [37,38] we took
κ ¼ 0.197 GeV. The present parametrization differs from
other forms used in the literature [5,35] and from our
previous work [4].

FIG. 4. Results for jG"
MðQ2Þj for W ¼ 1.232 GeV,

W ¼ 1.6 GeV,W ¼ 1.8 GeV andW ¼ 2.2 GeV. The thick lines
indicate the final result. The thin lines indicate the contribution of
the core.

FIG. 5. Results for dΓeþe−N
dq ðq;WÞ for three different values of

energies W. The solid line is the result of our model. The dotted
line is the result of the constant form factor model.
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• Extension to higher W shows
effect of the rho mass pole

• In that pole region small
 bare quark contribution (thin lines)

γN→Δ



Crossing the boundaries N*(1535) Dalitz decay

.

N(1535) - Dalitz decay

Γγ∗N (q,W ) =
α

2W 3

√
y+y−y+B‖GT (q2,W )|2,

|GT (q2,W )|2 = |GE(q2,W )|2 +
q2

2W 2
|GC(q2,W )|2

dΓe+e−N

dq
(q,W ) =

2α

3πq3
(2µ2 + q2)

√

1−
4µ2

q2
Γγ∗N (q,W ),
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Single Quark Transition Model [GR, PRD 90, 033010 (2014)]

Input: N(1520), N(1535); Output: N(1650), N(1700),∆(1620),∆(1700)
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——- Good predictions for the amplitudes N(1650),∆(1620)
No large Q2 data for the other cases
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are part of a large supermultiplet
(SU(6) spin-flavor with O(3) symmetry)  D13(J=3/2-)   S11(J=1/2-)     (I=1/2)

S11 S31D13 D33D13 S11

Bare quark CST description 
expected to work well 
in high Q2 region!

Predictive power: 
S. Capstick and W. Roberts, 
Prog. Part. Nucl. Phys. 45, 
S241 (2000);
V. D. Burkert et al. 
Phys. Rev. C 67, 035204 (2003).


