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A complete picture of nucleon structure 

requires the measurement of all these

distributions
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Generalized Parton Distributions:

✓fully correlated parton distributions in both coordinate
and longitudinal momentum space

✓ linked to FFs and PDFs

✓Accessible in exclusive reactions
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Deeply Virtual Compton Scattering and GPDs

« Handbag » factorization, valid

in the Bjorken regime

(high Q2 and , fixed xB), t<<Q2

• Q2= - (e-e’)2

• xB = Q2/2M   =Ee-Ee’

• x+ξ, x-ξ  longitudinal momentum fractions

• t = 2 = (p-p’)2

•   xB/(2-xB)

GPDs: Fourier transforms of non-local, non-

diagonal QCD operators

4 GPDs for each quark flavor

(leading-order, leading twist, quark-helicity

conservation)

conserve nucleon spin

flip nucleon spin

e’

t

(Q2)

e

g*

x+ξ x-ξ 

H, E, H, E (x,ξ,t)
~~

g

N(p) N(p’)

factorization

Vector Tensor Axial-vector Ps.scalar
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Accessing GPDs through DVCS
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qe  H

sLU~ sinf Im{F1H + (F1+F2)H -kF2E+…}

Polarized beam, unpolarized target: Im{Hp, Hp, Ep}
~

Polarized beam, longitudinal target:

sLL ~ (A+Bcosf)Re{F1H+(F1+F2)(H + xB/2E)+…}
~

Re{Hp, Hp}
~

Im{Hn, Hn, En}

Proton Neutron

~

Re{Hn, En}

~

Unpolarized beam, transverse target:

sUT ~ cosfsin(fs−f)Im{k(F2H – F1E) +… }

Im{Hp, Ep}

Im{Hn}

Unpolarized beam, longitudinal target:

sUL ~ sinfIm{F1H+(F1+F2)(H + xB/2E) –kF2E}
~

Im{Hp, Hp}
~

~
Im{Hn, En}

g

f
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e’

e

( )BHDVCSI

TT BHDVCS
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~

Unpolarized beam and target, different lepton charges:

sC ~ cosf Re{F1H + (F1+F2)H -kF2E+…}
~

Re{Hp, Hp, Ep}
~

Re{Hn, Hn, En}
~
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What have we learned from the first generation of proton-DVCS results?

R. Dupré, M. Guidal, M.Vanderhaeghen, 

PRD95  (2017)

Proton tomography from local fits to 
HERMES, CLAS, and Hall-A data (ImH + 

model dependent assumptions for x 

dependence)

High-momentum quarks (valence) are at 

the core of the nucleon, low-momentum

quarks (sea) spread to its periphery V. Burkert, L. Elouadrhiri, F.X. Girod, 

Nature 557, 396-399 (2018)

CLAS6 uncertainties

Projected CLAS12 

uncertainties

Uncertainties using

previous data

From H-only fit of DVCS BSA and 

cross section from CLAS@6 GeV

(model dependent): an insight in the 

pressure distribution in the proton
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An extensive experimental

program is underway for 

proton DVCS at JLab@12 GeV



Interest of DVCS on the neutron

A combined analysis of DVCS observables for proton and neutron targets

is necessary for the flavor separation of GPDs

Polarized beam, unpolarized target:

Unpolarized beam, transversely polarized target:

Im{Hp, Ep}

Neutron

Proton

Im{Hn, Hn, En}
~

The BSA for nDVCS:

• is complementary to the TSA for pDVCS on transverse target, aiming at E

• depends strongly on the kinematics → wide coverage needed

• is smaller than for pDVCS → more beam time needed to achieve reasonable statistics
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Moreover, the beam-spin asymmetry for nDVCS is the most sensitive observable to the GPD E 

→ Ji’s sum rule for Quarks Angular Momentum
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S. Ahmad et al., PR D75 (2007) 094003

VGG, PR D60 (1999) 094017

DVCS on the neutron in Hall A at 6 GeV

M. Mazouz et al., PRL 99 (2007) 242501

Hall-A experiment E08-025 (2010)
• Beam-energy « Rosenbluth » separation of nDVCS CS 

using an LD2 target and two different beam energies

• First observation of non-zero nDVCS CS

• M. Benali et al., Nature 16 (2020)

sLU~ sinf Im{F1H + (F1+F2)H -kF2E}
~

• E03-106: First-time measurement of sLU for nDVCS, model-dependent

extraction of Ju, Jd
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ed→eγ(np)→

Q2=1.9  GeV2 and xB=0.36
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Extraction of CFFs and flavor separation using 6-GeV JLab data

M. Čuić, K. Kumericki et al. Phys. Rev. Lett.125.232005 (2020) and Arxiv 2007.00029 (2020)

15/03/2024 

CLAS Collaboration meeting March 2024 
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• Proton- and neutron-DVCS data from JLab (CLAS6 and Hall A)

• Up and down contributions to the CFFs of H are separated 

• The CFFs of E are not separated, a significant sign ambiguity remains
9



CLAS12 Run Group B at Jefferson Lab

RICH

Forward Tagger

Central Neutron Detector

BAND

CLAS12 baseline

Central 

Detector

Forward

Detector
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Run infos:

• Feb. 6th – Mar. 25th 2019 + Dec. 3 –20 

2019 +  Jan. 6 – 30 2020 → ~39 PAC days 

(~43% of the approved run time)

• 3 beam energies: 10.6, 10.2, 10.4 GeV

• Average beam polarization ~86% 

• Liquid deuterium target, 5 cm long

• L = ~1.3 1035 cm−2s−1 per nucleon

Electroproduction on 

deuterium with CLAS12

Physics goals: 

• Form factors

• DIS

• SIDIS

• DVCS

• J/psi photoproduction

• Short-Range Correlations



Central Neutron Detector: performances with CLAS12 data

CND design: scintillator barrel - 3 radial 

layers, 48 bars per layer coupled two-by-two 

downstream by a “u-turn” lightguide, 144

long light guides with PMTs upstream

Purpose: detect the recoiling neutron in nDVCS

Requirements/performances:

• good neutron/photon separation for 0.2<pn<1 GeV/c

→ ~150 ps time resolution ✓ (~160 ps)

• momentum resolution dp/p < 10% ✓

• neutron detection efficiency ~10% ✓ S.N. et al., NIM A 904, 81 (2018)

Neutron efficiency from ep→e’n+ (RGA data)Timing resolution per paddle (RGB data)

P. Chatagnon et al., NIM A 959 (2020) 163441
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Channel selection for nDVCS

• Select events with at least one electron, one neutron, one photon

• Final state reconstructed using CLAS12 PID + a dedicated proton veto, based on Machine Learning, for neutron selection 
optimization

• Best candidate in event is selected based on best exclusivity criteria (a multi-dimensional χ2 with all exclusivity variables)

• Fiducial cuts included for: electrons in PCAL and DC, photons in PCAL and protons in DC 

• The nDVCS final state is selected using: 

• Missing masses: ed→enγX , en→enγX , en→enX

• Missing momentum (spectator proton) in ed→enγX

• Δf, Δt: Difference between two ways of calculating f and t

• θ(γ,X): Cone angle between measured and reconstructed photon

• Cuts informed by Monte Carlo simulations:

• GPD-based event generator for DVCS/0 on deuterium

• DVCS amplitude calculated according to the BMK formalism

• Fermi-motion distribution evaluated according to Paris potential

Candidate 1

Electron

Candidate 2

Candidate 1

Proton/Neutron

Candidate 2

Candidate 3

Candidate 1

photon

Candidate 2

Build 

exclusivity 

variables 

of 12 

possible 

candidates
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Proton contamination removal from CND neutrons

• Tracking in the CVT is not 100% efficient: in the dead regions of the Central Vertex Tracker protons can be identified as neutrons

• Protons roughly account for more than 40% contamination in the signal sample 

Approach based on Machine Learning & Multi-Variate Algorithms: 

• Reconstruct nDVCS from DVCS experiment on proton (RG-A) requiring neutron PID: selected neutrons are misidentified protons

• Use this sample to determine the characteristics of fake neutrons in low and high level reconstructed variables

• Based on those characteristics, subtract the fake neutrons contamination from nDVCS

• « Signal » sample in the training of the ML: 𝑒𝑝→𝑒𝑛𝜋+ events from RG-A

Low-efficiency regions of the CVT
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• Using detector variables (CTOF and CND) and one 

exclusivity variable (Δf)

• Directly trained on data

• Better optimization of signal to background ratio than 

straight cuts

• Few percent irreducible contamination corrected for in the 

final BSA
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Proton contamination removal from CND neutrons



77580 eng events

remain after all cuts

• Data

• nDVCS simulation

• ed→en0 simulation

• Sum of the two simulations

Selected nDVCS events sample and background subtraction

• Subtraction of the 0 background from simulation and reconstructed exclusive 0 events from data

• Estimate the ratio R of partially reconstructed enπ0 (1 photon) decay to fully reconstructed enπ0 events in simulation

• Multiply this ratio by the number of reconstructed enπ0 in data to get the number of enπ0 (1 photon) in data

• Subtract this number from DVCS reconstructed decays in data per each kinematical bin and beam helicity 
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ed→eng(p)First-time measurement of BSA for nDVCS with
detection of the active neutron

→

-t bins

xB bins

Q2 bins

CLAS12  nDVCS

(model dependent)Ju = 0.35 Jd = 0.05

Ju = −0.2 Jd = 0.15

Ju = −0.45 Jd = 0.2

VGG model predictions

giving the smallest c2
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M. Vanderhaeghen, P.A.M. Guichon, 

and M. Guidal, PRD 60, 094017 (1999)



Flavor separation of CFFs with Hall A pDVCS and CLAS12 p,n DVCS data

• Global fits of CFF using neural 

networks (K. Kumericki et al., 

JHEP 07, 073531 (2011); M. 

Cuic, K. Kumericki, et al., 

Phys. Rev. Lett. 533 125, 

232005 (2020)).

• Data used: CLAS6 and HERMES 

pDVCS observables, CLAS12 

pDVCS BSA and nDVCS BSA

• Same extraction method applied

to nDVCS Hall-A data, only
separation for ImH

The CLAS12 nDVCS data allow

the quark-flavor separation of 

both ImH and ImE
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Recently run with CLAS12: DVCS (p, n) on longitudinally polarized target

First-time measurement of longitidunal target-spin asymmetry

and double (beam-target) spin asymmetry for nDVCS

sUL ~ sinf Im{F1H+(F1+F2)(H + xB/2E) –kF2 E+…}
~ ~

sLL ~ (A+Bcosf) Re{F1H+(F1+F2)(H + xB/2E) –kF2 E+…}
~ ~

Ran from June 2022 to March 2023

→ 3 observables (including BSA), constraints on real and imaginary CFFs of various neutron GPDs

Ultimate goals: flavor separation of CFFs

& Ji’s sum rule

CLAS12 longitudinally polarized target

Dynamically polarized NH3 and ND3

ep→ epg
ed→ e(p)ng

CLAS12 + Longitudinally polarized

target + CND

→

→→

→
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Thanks to the JLab Target Group

See Noémie Pilleux’s talk



Summary and outlook

• The beam-spin asymmetry for nDVCS is a precious tool to constrain the 

GPD E and for quark-flavor separation of GPDs

• CLAS12 measured the BSA for nDVCS with detected neutron for the first 

time

• The first ~43% of the experiment ran in 2019-2020 at JLab

• The Central Neutron Detector performed according to specifications

• A small but clear BSA was extracted

• Comparison with a model allows to put model-dependent constraints on Jd

• The data, together with the proton DVCS data, allow the quark-flavor

separation of ImH and ImE

• An article is ready for submission to PRL

• A first-time measurement of BSA for incoherent pDVCS on deuterium is in 

progress

➢ Another nDVCS experiment on polarized deuterium target was carried out 

in 2022-2023 with CLAS12

➢ The second half of Run Group B will run with double luminosity following

the CLAS12 high-lumi upgrade

➢ A transversely polarized target pDVCS experiment is foreseen for ~2028 

with CLAS12

➢ The combination of all neutron and proton DVCS data will allow quark-

flavor separation of all CFFs in the valence regime

➢ The Ji’s sum rule is the ultimate, ambitious goal of this program
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