

Silvia Niccolai (IJCLab Orsay), for the CLAS Collaboration NSTAR 2024, York (UK), 17/6/2024 Analysis done by Adam Hobart (IJCLab)

Laboratoire de Physique des 2 Infinis

Multi-dimensional mapping of the nucleon

Longitudinal

momentum

Transverse

Multi-dimensional mapping of the nucleon

Generalized Parton Distributions: ✓ fully correlated parton distributions in both coordinate and longitudinal momentum space ✓ linked to FFs and PDFs ✓ Accessible in exclusive reactions

Longitudinal

momentum

Transverse

Quark angular momentum (Ji's sum rule)

$$\frac{1}{2}\int_{-1}^{1} x dx (H(x,\xi,t=0) + E(x,\xi,t=0)) = J = \frac{1}{2}\Delta\Sigma + \Delta L$$

Deeply Virtual Compton Scattering and GPDs

Accessing GPDs through DVCS

$$T^{DVCS} \sim \Pr_{q}^{+1} \underbrace{GPDs(x,\xi,t)}_{x\pm\xi} dx \pm i\pi GPDs(\pm\xi,\xi,t) + \dots$$

$$Re\mathcal{H}_{q} = e_{q}^{2} P_{0}^{+1} \Big(H^{q}(x,\xi,t) - H^{q}(-x,\xi,t) \Big) \Big[\frac{1}{\xi-x} + \frac{1}{\xi+x} \Big] dx$$

$$Im\mathcal{H}_{q} = \pi e_{q}^{2} \Big[H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \Big]$$
Polarized beam, unpolarized target:
$$Im\{\mathcal{H}_{p}, \mathcal{I}_{r}\} + \xi(F_{1}+F_{2})\widetilde{\mathcal{H}} - kF_{2}\mathcal{E} + \dots \}$$
Proton I
Polarized beam, longitudinal target:
$$Im\{\mathcal{H}_{p}, \mathcal{I}_{r}\} + \xi(F_{1}+F_{2})(\mathcal{H}+x_{B}/2\mathcal{E}) - \xi kF_{2}\widetilde{\mathcal{E}} \}$$

$$Im\{\mathcal{H}_{p}, \mathcal{I}_{r}\} + \xi(F_{1}+F_{2})(\mathcal{H}+x_{B}/2\mathcal{E}) - \xi kF_{2}\widetilde{\mathcal{E}} \}$$

$$Im\{\mathcal{H}_{p}, \mathcal{I}_{r}\} + \xi(F_{1}+F_{2})(\mathcal{H}+x_{B}/2\mathcal{E}) + \dots \}$$

$$Re\{\mathcal{H}_{p}, \mathcal{I}_{r}\} + \xi(F_{1}\mathcal{H}+\xi(F_{1}+F_{2})(\mathcal{H}+x_{B}/2\mathcal{E}) + \dots \}$$

$$Im\{\mathcal{H}_{p}, \mathcal{I}_{r}\} + \xi(F_{1}\mathcal{H}+\xi(F_{1}+F_{2})\mathcal{H}-kF_{2}\mathcal{E} + \dots \}$$

$$Im\{\mathcal{H}_{p}, \mathcal{I}_{r}\} + \xi(F_{1}\mathcal{H}+\xi(F_{1}+F_{2})\mathcal{H}-kF_{2}\mathcal{E} + \dots \}$$

$$Inpolarized beam and target, different lepton charges:$$

$$\Delta\sigma_{C} \sim \cos\phi \operatorname{Re}\{F_{1}\mathcal{H}+\xi(F_{1}+F_{2})\widetilde{\mathcal{H}}-kF_{2}\mathcal{E} + \dots \}$$

Neutron $\{ \begin{array}{l} \widetilde{\mathcal{H}}_{\mathrm{p}}, \ \widetilde{\mathcal{E}}_{\mathrm{p}} \\ \widetilde{\mathcal{H}}_{\mathrm{n}}, \ \widetilde{\mathcal{E}}_{\mathrm{n}} \\ \end{array} \}$ $\{\tilde{p}, \tilde{\mathcal{H}}_{p}\}$ ${\bf f}_{n}, E_{n}$ $\{\tilde{\mathcal{H}}_{\mathbf{p}}, \tilde{\mathcal{H}}_{\mathbf{p}}\}$ $\mathbf{\hat{n}}, \mathcal{E}_{n}$ $\{\mathbf{E}_{\mathbf{p}}\}$, $\widetilde{\mathcal{H}}_{p}, \mathcal{E}_{p}$ } $\widetilde{\mathcal{H}}_{n}, \mathcal{E}_{n}$ }

$$\sigma \sim \left| T^{DVCS} + T^{BH} \right|^{2}$$
$$\Delta \sigma = \sigma^{+} - \sigma^{-} \propto I (DVCS \cdot BH)$$

What have we learned from the first generation of proton-DVCS results?

Proton tomography from *local fits* to HERMES, CLAS, and Hall-A data ($Im \mathcal{H} +$ **model dependent** assumptions for x dependence) b_y (fm) 0.5 0.0 -0.5 -0.5 $b_x (fm) 0.0$ 0.5 0.0 0.5 x 1.0

High-momentum quarks (valence) are at the core of the nucleon, low-momentum quarks (sea) spread to its periphery

R. Dupré, M. Guidal, M.Vanderhaeghen, PRD95 (2017) From *H*-only fit of DVCS BSA and cross section from CLAS@6 GeV (model dependent): an insight in the pressure distribution in the proton

V. Burkert, L. Elouadrhiri, F.X. Girod Nature 557, 396-399 (2018)

An extensive experimental program is underway for proton DVCS at JLab@12 GeV

Observable	12-GeV
(target)	experiments
$\Delta \sigma_{beam}(\mathbf{p})$	Hall A, CLAS12, Hall C
BSA(p)	CLAS12
TSA(p)	CLAS12
DSA(p)	CLAS12
tTSA(p)	CLAS12

Interest of DVCS on the neutron

A combined analysis of DVCS observables for proton and neutron targets is necessary for the flavor separation of GPDs

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \Big[4 \Big(H,E \Big)_{p}(\xi,\xi,t) - \Big(H,E \Big)_{n}(\xi,\xi,t) \Big]$$

$$(H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \Big[4 \Big(H,E \Big)_{n}(\xi,\xi,t) - \Big(H,E \Big)_{p}(\xi,\xi,t) \Big]$$

Moreover, the beam-spin asymmetry for nDVCS is the most sensitive observable to the GPD E → Ji's sum rule for Quarks Angular Momentum

Polarized beam, unpolarized target:

$$\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} + k F_2 \mathcal{E} \} d\phi$$

Unpolarized beam, transversely polarized target:

$$\Delta \sigma_{UT} \sim \cos \phi \operatorname{Im} \{ k(F_2 \mathcal{H} - F_1 \mathcal{E}) + \dots \} d\phi$$

The BSA for nDVCS:

- is complementary to the TSA for pDVCS on transverse target, aiming at E
- depends strongly on the kinematics \rightarrow wide coverage needed
- is smaller than for pDVCS \rightarrow more beam time needed to achieve reasonable statistics

 $\square Im\{\mathcal{H}_n, \widetilde{\mathcal{H}}_n, \mathcal{E}_n\}$ Neutron

 $\square Im\{\mathcal{H}_{\mathbf{p}}, \mathcal{E}_{\mathbf{p}}\}$

Proton

DVCS on the neutron in Hall A at 6 GeV

$$D(e, e'\gamma)X - H(e, e'\gamma)X = n(e, e'\gamma)n + d(e, e'\gamma)d + \dots$$

 $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{ F_1 \mathcal{H} + \xi (F_1 + F_2) \mathcal{H} - kF_2 \mathcal{F} \}$

M. Mazouz et al., PRL 99 (2007) 242501

+ E03-106: First-time measurement of $\Delta\sigma_{LU}$ for nDVCS, model-dependent extraction of J_u, J_d

$$\frac{1}{2}\int_{-1}^{1} x dx (H(x,\xi,t=0) + E(x,\xi,t=0)) = .$$

Hall-A experiment E08-025 (2010)

- Beam-energy « Rosenbluth » separation of nDVCS CS using an LD2 target and two different beam energies
- First observation of non-zero nDVCS CS
- M. Benali et al., Nature 16 (2020)

 $\vec{ed} \rightarrow e\gamma(np)$

Extraction of CFFs and flavor separation using 6-GeV JLab data

M. Čuić, K. Kumericki et al. Phys. Rev. Lett.125.232005 (2020) and Arxiv 2007.00029 (2020)

• Proton- and neutron-DVCS data from JLab (CLAS6 and Hall A)

- Up and down contributions to the CFFs of H are separated
- The CFFs of E are not separated, a significant sign ambiguity remains

CLAS12 Run Group B at Jefferson Lab

Electroproduction on deuterium with CLAS12

Run infos:

- Feb. 6th Mar. 25th 2019 + Dec. 3 –20
 2019 + Jan. 6 30 2020 → ~39 PAC days
 (~43% of the approved run time)
- 3 beam energies: 10.6, 10.2, 10.4 GeV
- Average beam polarization ~86%
- Liquid deuterium target, 5 cm long
- $L = \sim 1.3 \ 10^{35} \, \text{cm}^{-2} \text{s}^{-1}$ per nucleon

Physics goals:

- Form factors
- DIS
- SIDIS
- DVCS
- J/psi photoproduction
- Short-Range Correlations

Central Neutron Detector: performances with CLAS12 data

Purpose: detect the recoiling neutron in nDVCS

Requirements/performances:

- good neutron/photon separation for $0.2 < p_n < 1 \text{ GeV/c}$
 - \rightarrow ~150 ps time resolution \checkmark (~160 ps)
- momentum resolution $\delta p/p < 10\%$ **✓**
- neutron detection efficiency ~10% \checkmark

CND design: scintillator barrel - 3 radial layers, 48 bars per layer **coupled two-by-two** downstream by a **"u-turn" lightguide**, 144 long light guides with **PMTs** upstream

S.N. et al., NIM A 904, 81 (2018)

P. Chatagnon et al., NIM A 959 (2020) 163441

Timing resolution per paddle (RGB data)

Channel selection for nDVCS

- Select events with at least one electron, one neutron, one photon
- Final state reconstructed using CLAS12 PID + a dedicated proton veto, based on Machine Learning, for neutron selection optimization
 - Best candidate in event is selected based on best exclusivity criteria (a multi-dimensional χ^2 with all exclusivity variables)

- Fiducial cuts included for: electrons in PCAL and DC, photons in PCAL and protons in DC
- The nDVCS final state is selected using:
 - Missing masses: $ed \rightarrow en\gamma X$, $en \rightarrow en\gamma X$, $en \rightarrow enX$
 - Missing momentum (spectator proton) in $ed \rightarrow en\gamma X$
 - $\Delta \phi$, Δt : Difference between two ways of calculating ϕ and t
 - $\theta(\gamma, X)$: Cone angle between measured and reconstructed photon
- Cuts informed by Monte Carlo simulations:
 - GPD-based event generator for DVCS/ π^0 on deuterium
 - DVCS amplitude calculated according to the BMK formalism
 - Fermi-motion distribution evaluated according to Paris potential

Proton contamination removal from CND neutrons

- Tracking in the CVT is not 100% efficient: in the dead regions of the Central Vertex Tracker protons can be identified as neutrons
- Protons roughly account for more than 40% contamination in the signal sample

Approach based on Machine Learning & Multi-Variate Algorithms:

- Reconstruct nDVCS from DVCS experiment on proton (RG-A) requiring neutron PID: selected neutrons are misidentified protons
- Use this sample to determine the characteristics of fake neutrons in low and high level reconstructed variables
- Based on those characteristics, subtract the fake neutrons contamination from nDVCS
- « Signal » sample in the training of the ML: $ep \rightarrow en\pi^+$ events from RG-A

Proton contamination removal from CND neutrons

Selected nDVCS events sample and background subtraction

- Subtraction of the π^0 background from simulation and reconstructed exclusive π^0 events from data
 - Estimate the ratio R of partially reconstructed $en\pi^0$ (1 photon) decay to fully reconstructed $en\pi^0$ events in simulation
 - Multiply this ratio by the number of **reconstructed** $en\pi^0$ in data to get the number of $en\pi^0$ (1 photon) in data
 - Subtract this number from DVCS reconstructed decays in data per each kinematical bin and beam helicity

$$R = \frac{N(eN\pi_{1\gamma}^{0})}{N(eN\pi^{0})} \qquad \qquad N(eN\pi_{1\gamma}^{0}) = R * N(eN\pi^{0}) \qquad \qquad N(DVCS) = N(DVCS_{recon}) - N(eN\pi_{1\gamma}^{0})$$

First-time measurement of BSA for nDVCS with detection of the active neutron

 $ed \rightarrow en\gamma(p)$

Flavor separation of CFFs with Hall A pDVCS and CLAS12 p,n DVCS data

- Global fits of CFF using neural networks (K. Kumericki et al., JHEP 07, 073531 (2011); M. Cuic, K. Kumericki, et al., Phys. Rev. Lett. 533 125, 232005 (2020)).
- Data used: CLAS6 and HERMES pDVCS observables, CLAS12 pDVCS BSA and nDVCS BSA
- Same extraction method applied to nDVCS Hall-A data, only separation for Im*H*

The CLAS12 nDVCS data allow the quark-flavor separation of both ImH and ImE

<u>Recently run with CLAS12</u>: DVCS (p, n) on longitudinally polarized target

First-time measurement of longitidunal target-spin asymmetry and double (beam-target) spin asymmetry for nDVCS

 $\Delta \sigma_{UL} \sim \sin \phi \operatorname{Im} \{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B/2\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \dots \}$

 $\Delta \sigma_{LL} \sim (\mathbf{A} + \mathbf{B} \cos \phi) \ \mathbf{R} e \{ F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B/2\mathbf{E}) - \xi k F_2 \ \widetilde{\mathcal{E}} + \dots \}$

 \rightarrow 3 observables (including BSA), constraints on real and imaginary CFFs of various **neutron GPDs**

 $\vec{e}\vec{p} \rightarrow ep\gamma$ $\vec{e}\vec{d} \rightarrow e(p)n\gamma$ CLAS12 + Longitudinally polarized target + CND

Ran from June 2022 to March 2023

Ultimate goals: flavor separation of CFFs & Ji's sum rule

See Noémie Pilleux's talk

Summary and outlook

- The **beam-spin asymmetry for nDVCS** is a precious tool to constrain the GPD E and for quark-flavor separation of GPDs
- CLAS12 measured the BSA for nDVCS with detected neutron for the first time
- The first $\sim 43\%$ of the experiment ran in 2019-2020 at JLab
- The Central Neutron Detector performed according to specifications
- A small but clear **BSA was extracted**
- Comparison with a model allows to put **model-dependent constraints on** J_d
- The data, together with the proton DVCS data, allow the **quark-flavor** separation of ImH and ImE
- An article is **ready for submission to PRL**
- A first-time measurement of **BSA for incoherent pDVCS** on deuterium is in progress
- Another nDVCS experiment on polarized deuterium target was carried out in 2022-2023 with CLAS12
- The second half of Run Group B will run with **double luminosity** following the CLAS12 high-lumi upgrade
- A transversely polarized target pDVCS experiment is foreseen for ~2028 with CLAS12
- The combination of all neutron and proton DVCS data will allow quarkflavor separation of all CFFs in the valence regime
- > The **Ji's sum rule** is the ultimate, ambitious goal of this program

First Measurement of Deeply Virtual Compton Scattering on the Neutron with Detection of the Active Neutron

A. Hobart,¹ S. Niccolai,¹ M. Čuić,² K. Kumerički,² P. Achenbach,³ J.S. Alvarado,¹ W.R. Armstrong,⁴ H. Atac,⁵ H. Avakian,³ N.A. Baltzell,³ L. Barion,⁶ M. Bashkanov,⁷ M. Battaglieri,^{3,8,*} B. Benkel,⁹ F. Benmokhtar,¹⁰ A. Bianconi,^{11,12} A.S. Biselli,¹³ S. Boiarinov,³ M. Bondi,¹⁴ W.A. Booth,⁷ F. Bossù,¹⁵ K.-Th. Brinkmann,¹⁶ W.J. Briscoe,¹⁷ W.K. Brooks,¹⁸ S. Bueltmann,¹⁹ V.D. Burkert,³ T. Cao,³ R. Capobianco,²⁰ D.S. Carman,³ P. Chatagnon,^{3,1} G. Ciullo,^{6,21} P.L. Cole,²² M. Contalbrigo,⁶ A. D'Angelo,^{9,23} N. Dashyan,²⁴ R. De Vita,^{8,†} M. Defurne,¹⁵ A. Deur,³ S. Diehl,^{16, 20} C. Dilks,^{3, 25} C. Dialali,²⁶ R. Dupre,¹ H. Egiyan,³ A. El Alaoui,¹⁸ L. El Fassi,²⁷ L. Elouadrhiri,²⁸ S. Fegan,⁷ A. Filippi,²⁹ C. Fogler,¹⁹ K. Gates,³⁰ G. Gavalian,^{3,31} G.P. Gilfoyle,³² D. Glazier,³⁰ R.W. Gothe,³³ Y. Gotra,³ M. Guidal,¹ K. Hafidi,⁴ H. Hakobyan,¹⁸ M. Hattawy,¹⁹ F. Hauenstein,^{3,19} D. Heddle,^{28,3} M. Holtrop,³¹ Y. Ilieva,^{33, 17} D.G. Ireland,³⁰ E.L. Isupov,³⁴ H. Jiang,³⁰ H.S. Jo,³⁵ K. Joo,²⁰ T. Kageya,³ A. Kim,²⁰ W. Kim, ³⁵ V. Klimenko,²⁰ V. Kubarovsky,^{3,36} S.E. Kuhn,¹⁹ L. Lanza,^{9,23} M. Leali,^{11,12} S. Lee,^{4,37} P. Lenisa,^{6,21} X. Li,³⁷ I.J.D. MacGregor,³⁰ D. Marchand,¹ V. Mascagna,^{11,38,12} B. McKinnon,³⁰ Z.E. Meziani,⁴ S. Migliorati,^{11,12} R.G. Milner,³⁷ T. Mineeva,¹⁸ M. Mirazita,³⁹ V. Mokeev,^{3,34} C. Muñoz Camacho,¹ P. Nadel-Turonski,³ P. Naidoo,³⁰ K. Neupane,³³ G. Niculescu,⁴⁰ M. Osipenko,⁸ P. Pandey,³⁷ M. Paolone,^{41,5} L.L. Pappalardo,^{6,21} R. Paremuzyan,^{3,31} E. Pasyuk,³ S.J. Paul,⁴² W. Phelps,²⁸ N. Pilleux,¹ M. Pokhrel,¹⁹ S. Polcher Rafael,¹⁵ J. Poudel,³ J.W. Price,⁴³ Y. Prok,¹⁹ T. Reed,⁴⁴ J. Richards,²⁰ M. Ripani,⁸ J. Ritman,^{45,46} P. Rossi,³ A.A. Golubenko,³⁴ C. Salgado,⁴⁷ S. Schadmand,^{45,46} A. Schmidt,¹⁷ E.M. Seroka,¹⁷ Y.G. Sharabian,³ E.V. Shirokov,³⁴ U. Shrestha,^{20,26} N. Sparveris,⁵ M. Spreafico,⁸ S. Stepanyan,³ I.I. Strakovsky,¹⁷ S. Strauch,^{33,17} J.A. Tan,³⁵ N. Trotta,²⁰ R. Tyson,³ M. Ungaro,³ S. Vallarino,⁸ L. Venturelli,^{11,12} V. Tommaso,⁸ E. Voutier,¹ D.P Watts,⁷ X. Wei,³ R. Williams,⁷ M.H. Wood,^{48,33} L. Xu,¹ N. Zachariou,⁷ J. Zhang,⁴⁹ Z.W. Zhao,²⁵ and M. Zurek⁴ (The CLAS Collaboration)

¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ²Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia ³Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 Argonne National Laboratory, Argonne, Illinois 60439 ⁸Temple University, Philadelphia, Pennsylvania 19122 ⁶INFN, Sezione di Ferrara, 44100 Ferrara, Italy ⁷ University of York, York YO10 5DD, United Kingdom ⁸INFN, Sezione di Genova, 16146 Genova, Italy ⁹INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy ¹⁰Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282 ¹¹ Universit'a degli Studi di Brescia, 25123 Brescia, Italy ¹²INFN, Sezione di Pavia, 27100 Pavia, Italy ¹³Fairfield University, Fairfield, Connecticut 06824 ¹⁴INFN - Sezione di Catania, 95123 Catania, Italy ¹⁵IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ¹⁶II Physikalisches Institut der Universitaet Giessen, 35392 Giessen, Germany 17 The George Washington University, Washington, DC 20052 ¹⁸Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile ¹⁹Old Dominion University, Norfolk, Virginia 23529 ²⁰University of Connecticut, Storrs, Connecticut 06269 ²¹Universita' di Ferrara, 44121 Ferrara, Italy ²²Lamar University, 4400 MLK Blvd, PO Box 10046, Beaumont, Texas 77710 ²³Universita' di Roma Tor Vergata, 00133 Rome, Italy 24 Yerevan Physics Institute, 375036 Yerevan, Armenia ²⁵Duke University, Durham, North Carolina 27708-0305 ²⁶Ohio University, Athens, Ohio 45701 ²⁷ Mississippi State University, Mississippi State, Mississippi 39762-5167 ²⁸Christopher Newport University, Newport News, Virginia 23606 ²⁹INFN, Sezione di Torino, 10125 Torino, Italy ³⁰University of Glasgow, Glasgow G12 8QQ, United Kingdom ³¹University of New Hampshire, Durham, New Hampshire 03824-3568 32 University of Richmond, Richmond, Virginia 23173 ³³University of South Carolina, Columbia, South Carolina 29208 ³⁴Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia ³⁵Kyungpook National University, Daegu 11566, Republic of Korea.

19