Nucleon electromagnetic transitions in a continuum approach

Khépani Raya Montaño

Bashir, Roberts, Segovia, etc..

NSTAR 2024

June 17 – 21, 2024. York (England)

QCD: Basic Facts

- QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).
- Quarks and gluons not *isolated* in nature.
- → Formation of colorless bound states: "<u>Hadrons</u>"
- 1-fm scale size of hadrons?

 Emergence of hadron masses (EHM) from QCD dynamics

QCD: Basic Facts

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?

 $\mathcal{L}_{\text{QCD}} = \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu},$ $D_\mu = \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu,$ $G^a_{\mu\nu} = \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - \underline{g} f^{abc} A^b_\mu A^c_\nu,$

 Emergence of hadron masses (EHM) from QCD dynamics

Gluon and quark running masses

QCD: Basic Facts

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?

$$\begin{aligned} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - \underline{g f^{abc}} A^b_\mu A^c_\nu, \end{aligned}$$

 Emergence of hadron masses (EHM) from QCD dynamics

Gluon and quark running masses

The proton: Understanding QCD

- Now, just as we learned from the excited states of the hydrogen atom, we should learn from the excited states of the nucleon.
- In particular, the role of DCSB could be well understood by analyzing structural differences of hadrons and their parity partners.

Baryon Faddeev equation

Eichmann:2016yit Qin:2019hgk Yao:2024uej

Baryons: Faddeev equation

- A Poincaré-covariant **Faddeev equation** encodes all possible interactions/exchanges that could take place between the three dressed valence-quarks.
- By employing the symmetry-preserving rainbow-ladder truncation, this equation can be solved. (This implies, however, an outstanding challenge).
 Eichmann: 2016yit Qin: 2019hgk Yao: 2024uej
- Exists now a plethora of results/predictions on the meson and baryon mass spectrum.

Baryons: Faddeev equation

- Strong evidence anticipates the formation of **dynamical** quark-quark correlations (**diquarks**) within **baryons**, for instance:
 - The primary three-body force binding the quarks within the baryon vanishes when projected onto the color singlet channel.
 Eichmann: 2016vit

i.e. a 3-gluon vertex attached to each quark once (and only once)

- The dominant 3-gluon contribution is the one attaching twice to a quark
- This produces a strengthening of quark-quark interactions

Barabanov:2020jvn

Baryons: Faddeev equation

• Strong evidence anticipates the formation of **dynamical** quark-quark correlations (**diquarks**) within **baryons**, for instance:

Barabanov:2020jvn

- The primary three-body force binding the quarks within the baryon vanishes when projected onto the color singlet channel.
- → The attractive nature of quark-antiquark correlations in a color-singlet meson, is also attractive for $\overline{3}_c$ quark-quark correlations within a color singlet baryon.

Dyamical Quark-diquark picture

Non-pointlike diquarks:

- Color anti-triplet
- Fully interacting
- Origins related to
 EHM phenomena

Baryons: Quark-diquark picture

Barabanov:2020jvn

- The attractive nature of quark-antiquark correlations in a color-singlet meson, is also attractive for $\overline{3}_c$ quark-quark correlations within a color singlet baryon.
 - Due to charge conjugation properties, a J^{p} diquark partners with an analogous J^{-p} meson.
 - We can thus establish a connection between the meson and diquark Bethe-Salpeter equations:

Non-pointlike diquarks:

- Color anti-triplet
- Fully interacting
- Origins related to EHM phenomena

$$\Gamma_{q\bar{q}}(p;P) = -\int \frac{d^4q}{(2\pi)^4} g^2 D_{\mu\nu}(p-q) \frac{\lambda^a}{2} \gamma_\mu S(q+P) \Gamma_{q\bar{q}}(q;P) S(q) \frac{\lambda^a}{2} \gamma_\nu$$

$$\Gamma_{qq}(p;P) C^{\dagger} = -\frac{1}{2} \int \frac{d^4q}{(2\pi)^4} g^2 D_{\mu\nu}(p-q) \frac{\lambda^a}{2} \gamma_\mu S(q+P) \Gamma_{qq}(q;P) C^{\dagger} S(q) \frac{\lambda^a}{2} \gamma_\nu$$
Less tightly 'bound'

• Computed 'masses' should be interpreted as correlation lengths:

$$m_{[ud]_{0^+}} = 0.7 - 0.8 \, \text{GeV}, \quad m_{\{uu\}_{1^+}} = 0.9 - 1.1 \, \text{GeV}$$

→ Stressing the fact that the **diquarks** have a **finite** size:

$$r_{[ud]_{0^+}} \gtrsim r_{\pi}, \qquad r_{\{uu\}_{1^+}} \gtrsim r_{
ho}$$

Contact Interaction model: Some highlights

 The quark gap equation in a symmetry-preserving contact interaction model (SCI):

$$S^{-1}(p) = i\gamma \cdot p + m + \frac{16\pi}{3} \frac{\alpha_{\rm IR}}{m_G^2} \int \frac{d^4q}{(2\pi)^4} \,\gamma_\mu \,S(q) \,\gamma_\mu$$

Infrared strength $\, lpha_{
m IR} = 0.93 \pi \,$

Compatible with modern computations.

- Recall the quark gap equation: $S_{f}^{-1}(p) = Z_{2}(i\gamma \cdot p + m_{f}^{\text{bm}}) + \Sigma_{f}(p) ,$ $\Sigma_{f}(p) = \frac{4}{3}Z_{1} \int_{dq}^{\Lambda} g^{2}D_{\mu\nu}(p-q)\gamma_{\mu}S_{f}(q)\Gamma_{\nu}^{f}(p,q)$
- Namely, SCI kernel is essentially RL + constant gluon propagator

Roberts:2010rn

Gutierrez-Guerrero:2010waf

• The quark gap equation in a symmetry-preserving contact interaction model (SCI):

$$S^{-1}(p) = i\gamma \cdot p + m + \frac{16\pi}{3} \frac{\alpha_{\rm IR}}{m_G^2} \int \frac{d^4q}{(2\pi)^4} \gamma_\mu S(q) \gamma_\mu$$

- Roberts:2010rn Gutierrez-Guerrero:2010waf
- Constant gluon propagator:
 - Quark propagator, with constant mass function

$$S_f(p) = Z_f(p^2)(i\gamma \cdot p + M_f(p^2))^{-1} \implies S(p)^{-1} = i\gamma \cdot p + M$$

 Needs regularization scheme:

$$\frac{1}{s+M_f^2} = \int_0^\infty d\tau e^{-\tau(s+M_f^2)} \to \int_{\tau_{uv}^2}^{\tau_{ir}^2} d\tau e^{-\tau(s+M_f^2)}$$

input: current masses			output: dressed masses				
m_0	m_u	m_s	m_s/m_u	M_0	M_u	M_s	M_s/M_u
0	0.007	0.17	24.3	0.36	0.37	0.53	1.43

 $\tau_{ir} = 1/0.24 \,\text{GeV}^{-1}$: Ensures the absence of quark production thresholds (confinement) $\tau_{uv} = 1/0.905 \,\text{GeV}^{-1}$: UV cutoff. Sets the scale of all dimensioned quantities.

 Let us now consider the quark gap equation in a symmetry-preserving contact interaction model (SCI)

$$S^{-1}(p) = i\gamma \cdot p + m + \frac{16\pi}{3} \frac{\alpha_{\rm IR}}{m_G^2} \int \frac{d^4q}{(2\pi)^4} \,\gamma_\mu \,S(q)\,\gamma_\mu$$

• The meson Bethe-Salpeter equation:

• The diquark Bethe-Salpeter equation:

 $\Gamma_{qq}(k;P) = -\frac{8\pi}{3} \frac{\alpha_{\rm IR}}{m_G^2} \int \frac{d^4q}{(2\pi)^4} \gamma_\mu \chi_{qq}(q;P) \gamma_\mu$

→ Recall a J^p diquark partners with an analogous J^{-p} meson.

 Quark propagator, with constant mass function

$$S(p)^{-1} = i\gamma \cdot p + M$$

• The interaction produces **momentum independent** BSAs: $\Gamma_{\pi}(P) = \gamma_5 \left[iE_{\pi}(P) + \frac{\gamma \cdot P}{M} F_{\pi}(P) \right]$

$$\Gamma_{\sigma}(P) = \mathbb{1}E_{\sigma}(P) ,$$

$$\Gamma_{\rho}(P) = \gamma^{T}E_{\rho}(P) ,$$

$$\Gamma_{a_{1}}(P) = \gamma_{5}\gamma^{T}E_{a_{1}}(P) ,$$

 It is typical to reduce the RL strength in the scalar and axial-vector meson channels (and pseudoscalar and vector diquarks)

• The quark-photon vertex:

Quark anomalous magnetic moment (AMM) term

 $\zeta \sim 1/3\,\, {\rm sets}$ its strength

• Might be generated automatically in **beyond RL** approaches.

Xing:2021dwe

Fig. 9 Photon+quark vertex dressing function in Eq. (A.3). As in any symmetry preserving treatment of photon+quark interactions, $P_{\rm T}(Q^2)$ exhibits a pole at $Q^2 = -m_{\rho}^2$. Moreover, $P_{\rm T}(Q^2 = 0) = 1 = P_{\rm T}(Q^2 \to \infty)$.

• The Faddeev equation, in the SCI dynamical quark-diquark picture:

- Quarks inside baryons correlate into non-point-like diquarks.
- Breakup and reformation occurs via quark exchange.

- In the interaction kernel, the **exchanged quark** is represented in the **static approximation**:
- The kernel penalizes the contribution of diquarks whose parity is opposite to that of the baryon, using a multiplicative factor **gDB = 0.1-0.3**

$$S^T(k) \to \frac{g_B^2}{M_u}$$

Yin:2019bxe Yin:2021uom

• The Faddeev equation, in the dynamical quark-diquark picture:

- Quarks inside baryons correlate into non-point-like diquarks.
- Breakup and reformation occurs via quark exchange.

Consider a nucleon-like J=1/2 baryon:

$$\begin{split} \psi^{\pm} u(P) &= \Gamma_{0^{+}}^{1} \Delta^{0^{+}}(K) \, \mathcal{S}^{\pm}(P) u(P) \qquad \qquad \text{Scalar (0^{+})} \\ &+ \sum_{f=1,2} \Gamma_{1^{+}\mu}^{f} \Delta_{\mu\nu}^{1^{+}}(K) \mathcal{A}_{\nu}^{\pm f}(P) u(P) - \text{Axial vector (1^{+})} \\ &+ \Gamma_{0^{-}}^{1}(K) \Delta^{0^{-}}(K) \mathcal{P}^{\pm}(P) u(P) \qquad \qquad \text{Pseudoscalar (0^{+})} \\ &+ \Gamma_{1^{-}\mu}^{1} \Delta_{\mu\nu}^{1^{-}}(K) \mathcal{V}_{\nu}^{\pm}(P) u(P) , \qquad \qquad \text{Vector (1^{-})} \end{split}$$

$$\begin{split} \mathcal{S}^{\pm} &= \mathcal{S}^{\pm} \, \mathbf{I}_{\mathrm{D}} \, \mathcal{G}^{\pm} \,, \quad i \mathcal{P}^{\pm} = p^{\pm} \, \gamma_5 \, \mathcal{G}^{\pm} \,, \\ &i \mathcal{A}^{\pm f}_{\mu} &= (a_1^{\pm f} \gamma_5 \gamma_{\mu} - i a_2^{\pm f} \gamma_5 \hat{P}_{\mu}) \, \mathcal{G}^{\pm} \,, \\ &i \mathcal{V}^{\pm}_{\mu} &= (v_1^{\pm} \gamma_{\mu} - i v_2^{\pm} \mathbf{I}_{\mathrm{D}} \hat{P}_{\mu}) \gamma_5 \, \mathcal{G}^{\pm} \,. \end{split}$$

We then arrive at an eigenvalue equation for:

 $(s^{\pm}, a_1^{\pm f}, a_2^{\pm f}, p^{\pm}, v_1^{\pm}, v_2^{\pm})$

Lu:2017cln

N(940) and N(1535)

• The produced masses and diquark content:

- As expected, the nucleon is mostly composed by scalar diquarks, while also exhibiting a sizeable axialvector diquark component.
- With the preferred value of gDB=0.2, the nucleon parity partner exhibits a similar contribution from 0⁺/0⁻ diquarks.
 - The variation of **gDB** \rightarrow (1 ± 0.5) gDB produces:

Nucleon TFFs: The approach

Nucleon transition form factors

Let us consider the **electromagnetic transition**: ٠

In our approach, the **EM vertex** can be ٠ written:

$$\Gamma_{\mu,\#}^{fi}(P_{f}, P_{i}) = \sum_{I=S1,S2,S3} \int_{\ell} \Lambda_{+,\#}^{\mathbf{p}_{f}}(P_{f}) \mathcal{J}_{\mu,\#}^{I}(\ell; P_{f}, P_{i}) \Lambda_{+,\#}^{\mathbf{p}_{i}}(P_{i}) \xrightarrow{P_{f}} \Psi_{i}$$

$$= \Lambda_{+,\#}^{\mathbf{p}_{f}}(P_{f}) \left[\sum_{r} \mathcal{Q}_{\mu,\#}^{(j)}(\ell; P_{f}, P_{i}) + \sum_{s,t} \mathcal{D}_{\mu,\#}^{(s,t)}(\ell; P_{f}, P_{i}) \right] \Lambda_{+,\#}^{\mathbf{p}_{i}}(P_{i})$$

$$S1 \text{ diagrams}$$

$$S2, S3 \text{ diagrams}$$
Photon strikes diquark, in an elastic scattering event (S2)

In the **guark-diguark picture**, within the ٠ **SCI model**, the electromagnetic vertex can be splitted into 3 categories:

 Ψ

Photon strikes diquark, and a transition between different diquarks occurs (S3)

 $(a,v) \leftrightarrow (s,p)$

 $a \leftrightarrow v$

 $\Psi_{\rm f}$

S3

 Ψ_i

Nucleon transition form factors

• Let us consider the **electromagnetic transition**:

- Therefore, to evaluate the full electromagnetic vertex, we need, *in principle* to calculate 20 intermediate contributions:
 - **4** from the photon strikes **quark** case (1 for each spectator diquark)
 - 4x4=16 from the photon strikes diquark cases.

• In the **quark-diquark picture**, within the **SCI model**, the electromagnetic vertex can be splitted into 3 categories:

• The transition $\gamma^{(*)}p \to N(1535)\frac{1}{2}^-$ is characterized by the EM vertex:

$$\Gamma^*_{\mu}(P_f, P_i) = ie \Lambda^-_{+}(P_f) \left[\gamma^T_{\mu} F_1^*(Q^2) + \frac{1}{m_+ + m_-} \sigma_{\mu\nu} Q_{\nu} F_2^*(Q^2) \right] \Lambda^+_{+}(P_i$$

Spin ½ initial and final states, but with opposite parity

Contributions from:

Photon hits quark

Spectator diquarks: $0^+, 0^-, 1^+, 1^-$

Photon hits diquark

$\operatorname{Ini}/\operatorname{Fin}$	0^{+}	0^{-}	1^{+}	1-
0^{+}	$0^+ \rightarrow 0^+$	$0^+ \rightarrow 0^-$	$0^+ \rightarrow 1^+$	$0^+ \rightarrow 1^-$
0^{-}	$0^- \rightarrow 0^+$	$0^- \rightarrow 0^-$	$0^- \rightarrow 1^+$	$0^- \rightarrow 1^-$
1^{+}	$1^+ \rightarrow 0^+$	$1^+ \rightarrow 0^-$	$1^+ \rightarrow 1^+$	$1^+ \rightarrow 1^-$
1^{-}	$1^- \rightarrow 0^+$	$1^- ightarrow 0^-$	$1^- \rightarrow 1^+$	$1^- ightarrow 1^-$

To evaluate the full electromagnetic vertex, we need, *in principle* to calculate **20 intermediate** contributions:

• The transition $\gamma^{(*)}p \to N(1535)\frac{1}{2}^-$ is characterized by the EM vertex:

$$\Gamma_{\mu}^{*}(P_{f}, P_{i}) = ie \Lambda_{+}^{-}(P_{f}) \left[\gamma_{\mu}^{T} F_{1}^{*}(Q^{2}) + \frac{1}{m_{+} + m_{-}} \sigma_{\mu\nu} Q_{\nu} F_{2}^{*}(Q^{2}) \right] \Lambda_{+}^{+}(P_{i})$$

Spin ½ initial and final states, but with opposite parity

Contributions from:

Photon hits quark

Spectator diquarks: 0^+ , 1^+ .

Photon hits diquark

- In this case, we can anticipate the number of relevant intermediate transitions:
 - The 0-,1- diquark contributions to the nucleon wavefunction are completely negligible.

 $m_{N(940)} = 1.14$, $m_{N(1535)} = 1.73$,

baryon
 s

$$a_1^1$$
 a_2^1
 p
 v_1
 v_2
 $N(940)\frac{1}{2}^+$
 0.88
 0.38
 -0.06
 0.02
 0.02
 0.00

 $N(1535)\frac{1}{2}^-$
 0.66
 0.20
 0.14
 0.68
 0.11
 0.09

• The transition $\gamma^{(*)}p \to N(1535)\frac{1}{2}^-$ is characterized by the EM vertex:

$$\Gamma_{\mu}^{*}(P_{f}, P_{i}) = ie \Lambda_{+}^{-}(P_{f}) \left[\gamma_{\mu}^{T} F_{1}^{*}(Q^{2}) + \frac{1}{m_{+} + m_{-}} \sigma_{\mu\nu} Q_{\nu} F_{2}^{*}(Q^{2}) \right] \Lambda_{+}^{+}(P_{i})$$

Spin ½ initial and final states, but with opposite parity

Contributions from:

Photon hits quark

Spectator diquarks: 0^+ , 1^+

Photon hits diquark

- In this case, we can anticipate the number of relevant intermediate transitions:
 - The 0⁻,1⁻ diquark contributions to the nucleon wavefunction are completely negligible.
 - The $0^+ \rightarrow 0^-$ diquark transition is trivially zero.

• The transition $\gamma^{(*)}p \to N(1535)\frac{1}{2}^-$ is characterized by the EM vertex:

$$\Gamma_{\mu}^{*}(P_{f}, P_{i}) = ie \Lambda_{+}^{-}(P_{f}) \left[\gamma_{\mu}^{T} F_{1}^{*}(Q^{2}) + \frac{1}{m_{+} + m_{-}} \sigma_{\mu\nu} Q_{\nu} F_{2}^{*}(Q^{2}) \right] \Lambda_{+}^{+}(P_{i})$$

Spin ½ initial and final states, but with opposite parity

Contributions from:

Photon hits quark

Spectator diquarks: 0^+ , |

Photon hits diquark

- In this case, we can anticipate the number of relevant intermediate transitions:
 - The 0⁻,1⁻ diquark contributions to the nucleon wavefunction are completely negligible.
 - The $0^+ \rightarrow 0^-$ diquark transition is trivially zero.
- In the isospin symmetric limit, m_u = m_d, the total contribution of the spectator 1⁺ diquark vanishes.
 - We are thus left with a total of 8 intermediate transitions.

Raya:2021pyr

• Transition form factors and helicity amplitudes:

- The form factor F_1^* is insensitive to the quark AMM
 - → Conversely, F_2^* is rather sensitive to it.
- F_1^* displays a fair agreement with CLAS data
- *F*₂* becomes too hard as x increases, but it agrees in magnitude with data for ζ=1/3
- The transverse helicity amplitude **A** is **sensitive** to the **AMM**, but still in **agreement** with the experiment.
 - → The longitudinal one, **S**, is the **exact opposite**.

 $m_{N(940)} = 1.14$, $m_{N(1535)} = 1.73$, gDB = 0.2

baryon	s	a_1^1	a_2^1	$\mid p$	v_1	v_2
$N(940)\frac{1}{2}^+$	0.88	0.38	-0.06	0.02	0.02	2 0.00
$N(1535)\bar{\frac{1}{2}}^{-}$	0.66	0.20	0.14	0.68	0.11	0.09

• Transition form factors and helicity amplitudes:

- Both form factors and helicity amplitudes are quite **sensitive** to the value **gDB**, *i.e.*, to both the **mass** and **diquark content** of the nucleon parity partner.
- In fact, **harder** form factors and helicity amplitudes are produced by the **heaviest N(1535)**.
 - This corresponds to the case in which the 0diquark overwhelms the rest.
- The best agreement with data is obtained when the 0⁺ and 0⁻ diquark content is balanced.

If one varies $g_{\text{DB}} \to g_{\text{DB}}(1 \pm 0.5)$, then $m_{N(1535)}$ = (1.67, 1.82) GeV and $\frac{N(1535)\frac{1}{2}^{-} | s a_{1}^{1} a_{2}^{1} | p v_{1} v_{2}}{g_{\text{DB}} 1.5 | 0.76 \ 0.27 \ 0.18 | 0.49 \ 0.12 \ 0.08} \\ g_{\text{DB}} 1.0 | 0.66 \ 0.20 \ 0.14 | 0.68 \ 0.11 \ 0.09 \\ g_{\text{DB}} 0.5 | 0.35 \ 0.04 \ 0.00 | 0.92 \ -0.05 \ 0.18$

• **Dissection** of the form factors: **F**₁*.

Red: Photon strikes quark Q^+Q^+ Blue: Photon strikes diquark, initial and final D^+D^+ one have same parity

Purple: Photon strikes diquark, initial and D^-D^+ final one have opposed parity

- The parity-flip contributions are practically negligible
- > There is a **destructive interference** between the other two contributions, Q+Q+ D+D+
- > In particular, the strength of Q^+Q^+ , seems to be modulated by D^+D^+

• **Dissection** of the form factors: **F**₂*.

Red: Photon strikes quark Q^+Q^+ Blue: Photon strikes diquark, initial and final D^+D^+ one have same parity

Purple: Photon strikes diquark, initial and D^-D^+ final one have opposed parity

- The photon strikes diquark contribution interefere constructively in the light cases, but destructively in the heaviest case.
- This form factor is more sensitive to the quark AMM, specialy the photon strikes quark case.

A glimpse on $(\mathbf{I}, \mathbf{J}^{\mathbf{P}}) = \left(\frac{1}{2}, \frac{\mathbf{3}}{2}^{-}\right) \& \left(\frac{\mathbf{3}}{2}, \frac{\mathbf{3}}{2}^{-}\right)$ baryons... $\Delta(1700)\frac{3}{2}$ $N(1520)\frac{3}{2}$

 In a momentum-dependent interaction, the Δ(1700) state is described by 16 amplitudes.

$\mathcal{V}^{1}_{\lambda\rho}(k;Q) = \delta_{\lambda\rho} \mathbb{I}_{\mathrm{D}} ,$	(4a)
$\mathcal{V}^2_{\lambda\rho}(k;Q) = \frac{i}{\sqrt{5}} \left[2\gamma^{\perp}_{\lambda} \hat{k}^{\perp}_{\rho} - 3\delta_{\lambda\rho}\gamma \cdot \hat{k}^{\perp} \right],$	(4b)
$\mathcal{V}^3_{\lambda ho}(k;Q) = -i\gamma^{\perp}_{\lambda}\hat{k}^{\perp}_{ ho} \ ,$	(4c)
$\mathcal{V}^4_{\lambda\rho}(k;Q) = \sqrt{3}\hat{Q}_\lambda \hat{k}_\rho^\perp ,$	(4d)
$\mathcal{V}^5_{\lambda ho}(k;Q) = 3\hat{k}^{\perp}_{\lambda}\hat{k}^{\perp}_{ ho} - \delta_{\lambda ho} - \gamma^{\perp}_{\lambda}\hat{k}^{\perp}_{ ho}\gamma\cdot\hat{k}^{\perp},$	(4e)
$\mathcal{V}^6_{\lambda ho}(k;Q) = \gamma^{\perp}_{\lambda} \hat{k}^{\perp}_{ ho} \gamma \cdot \hat{k}^{\perp} ,$	(4f)
$\mathcal{V}^7_{\lambda ho}(k;Q) = -i\sqrt{3}\hat{Q}_\lambda \hat{k}^\perp_ ho \gamma\cdot \hat{k}^\perp,$	(4g)
$\mathcal{V}^8_{\lambda\rho}(k;Q) = \frac{i}{\sqrt{5}} [\delta_{\lambda\rho}\gamma \cdot \hat{k}^{\perp} + \gamma^{\perp}_{\lambda}\hat{k}^{\perp}_{\rho} - 5\hat{k}^{\perp}_{\lambda}\hat{k}^{\perp}_{\rho}\gamma \cdot \hat{k}^{\perp}$].

Liu:2022nku

 The N(1520) case is even more complicated (20 amplitudes).

Liu:2022ndb

$$\begin{aligned} \mathcal{X}^{1}_{\rho}(k;Q) &= i\sqrt{3}\,\hat{k}^{\perp}_{\rho}\gamma_{5}\,,\\ \mathcal{X}^{2}_{\rho}(k;Q) &= i\gamma\cdot\hat{k}^{\perp}\,\mathcal{X}^{1}_{\rho}(k;Q)\,, \end{aligned}$$

$$(2 \times 8) + (2 \times 2) = 20$$

 In a momentum-dependent interaction, the Δ(1700) state is described by 16 amplitudes.

$\mathcal{V}^{1}_{\lambda\rho}(k;Q) = \delta_{\lambda\rho} \mathbb{I}_{\mathrm{D}} ,$	(4a)
$\mathcal{V}_{\lambda\rho}^2(k;Q) = \frac{i}{\sqrt{5}} [2\gamma_{\lambda}^{\perp} \hat{k}_{\rho}^{\perp} - 3\delta_{\lambda\rho}\gamma \cdot \hat{k}^{\perp}],$	(4b)
$\mathcal{V}^3_{\lambda\rho}(k;Q) = -i\gamma^{\perp}_{\lambda}\hat{k}^{\perp}_{\rho} ,$	(4c)
$\mathcal{V}^4_{\lambda\rho}(k;Q) = \sqrt{3}\hat{Q}_\lambda \hat{k}_\rho^\perp ,$	(4d)
$\mathcal{V}^{5}_{\lambda\rho}(k;Q) = 3\hat{k}^{\perp}_{\lambda}\hat{k}^{\perp}_{\rho} - \delta_{\lambda\rho} - \gamma^{\perp}_{\lambda}\hat{k}^{\perp}_{\rho}\gamma\cdot\hat{k}^{\perp},$	(4e)
$\mathcal{V}^6_{\lambda\rho}(k;Q) = \gamma^{\perp}_{\lambda} \hat{k}^{\perp}_{\rho} \gamma \cdot \hat{k}^{\perp} ,$	(4f)
$\mathcal{V}_{\lambda\rho}^{7}(k;Q) = -i\sqrt{3}\hat{Q}_{\lambda}\hat{k}_{\rho}^{\perp}\gamma\cdot\hat{k}^{\perp},$	(4g)
$\mathcal{V}^{8}_{\lambda\rho}(k;Q) = \frac{i}{\sqrt{5}} [\delta_{\lambda\rho}\gamma \cdot \hat{k}^{\perp} + \gamma^{\perp}_{\lambda}\hat{k}^{\perp}_{\rho} - 5\hat{k}^{\perp}_{\lambda}\hat{k}^{\perp}_{\rho}\gamma \cdot \hat{k}^{\perp}_{\rho}]$;±].

Liu:2022nku

 The N(1520) case is even more complicated (20 amplitudes).

Liu:2022ndb

+
$$\begin{aligned} \mathcal{X}^{1}_{\rho}(k;Q) &= i\sqrt{3}\,\hat{k}^{\perp}_{\rho}\gamma_{5}\,,\\ \mathcal{X}^{2}_{\rho}(k;Q) &= i\gamma\cdot\hat{k}^{\perp}\,\mathcal{X}^{1}_{\rho}(k;Q)\,, \end{aligned}$$

$$2 \times 8) + (2 \times 2) = 20$$

- But the SCI kills them all: Only survives one structure associated with the 1[±] correlations.
- And then, the low masses of the Δ(1700) and N(1520) states leave out the 1⁻

- Thus, the Δ(1700) and N(1520) states, in the SCI, are characterized by a single Faddeev amplitude, associated with the 1⁺ diquark.
 - → Then they become indistinguishable, with mass $m_{\Delta} = 2.08 \text{ GeV}$

Yin:2019bxe Yin:2021uom

→ We break this degeneracy by modifying the couplings in the Faddeev kernels, hence producing: m_{N*}/m_Δ = 0.85

- Thus, the Δ(1700) and N(1520) states, in the SCI, are characterized by a single Faddeev amplitude, associated with the 1⁺ diquark.
 - → Then they become indistinguishable, with mass $m_{\Delta} = 2.08 \text{ GeV}$
 - → We break this degeneracy by modifying the couplings in the Faddeev kernels, hence producing: $m_{N*}/m_{\Delta} = 0.85$
- In realistic interactions, however, this is the correlation that **contributes the most** to the normalization of the **wavefunction** and the **mass**. Liu:2022nku Liu:2022ndb $N(1520)\frac{3}{2}$

mas	s %	amplit	ude %
1^{+}	1^{-}	1^{+}	1^{-}
99.98	0.02	94.20	5.80

$B. \ \mathrm{mass} \ \%$	$N(1520)\frac{3}{2}^{-}$
1^{+}	91.6
$\& 0^+$	8.3
$\& 0^{-}$	0.1
$\& 1^{-}$	0.0

C. FA %	$N(1520)\frac{3}{2}^{-}$
1+	70.1
0^+	20.3
0^{-}	6.2
1^{-}	3.4

Yin:2019bxe

Yin:2021uom

- Thus, the Δ(1700) and N(1520) states, in the SCI, are characterized by a single Faddeev amplitude, associated with the 1⁺ diquark.
 - → Then they become indistinguishable, with mass $m_{\Delta} = 2.08 \text{ GeV}$

Yin:2019bxe Yin:2021uom

- We break this degeneracy by modifying the couplings in the Faddeev kernels, hence producing: m_{N*}/m_△ = 0.85
- In realistic interactions, however, this is the correlation that **contributes the most** to the normalization of the **wavefunction** and the **mass**. Liu:2022nku Liu:2022ndb

Can the **SCI** provide an **accurate** description of the **TFFs**?

 $\gamma^* N \to \Delta^-(1700), N^*(1520)$

 $x = Q^2/\bar{m}^2, \, \bar{m} = (m_+ + m_-)/2$

The right patterns are captured, but not the fine details.

Data from: https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

Data from: https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

Х

Summary

- > Theoretical evidence suggests the existence of dynamical diquark correlations:
 - The **3-body Faddeev** equation kernel self-arranges in blocks with spin-flavor structure of diquarks.
 - The **2-body BSE** reveal <u>strong correlations</u> in quark-quark scattering channels.
 - Consequently, the existence of non-point-like diquarks within baryons should be connected with <u>EHM phenomena</u>.

Summary

- Theoretical evidence suggests the existence of dynamical diquark correlations:
 - The **3-body Faddeev** equation kernel self-arranges in blocks with spin-flavor structure of diquarks.
 - The **2-body BSE** reveal <u>strong correlations</u> in quark-quark scattering channels.
 - Consequently, the existence of non-point-like diquarks within baryons should be connected with <u>EHM phenomena</u>.
- Some experimental observables could yield to unambiguous signals of the presence of dynamical diquark correlations:
 - Nucleon transition form factors and structure functions, spectroscopy of exotic hadrons, etc.
 - → The electromagnetic transitions are highly sensitive to the baryon wavefunction, and a path to better understand DCSB.

Summary

- Theoretical evidence suggests the existence of dynamical diquark correlations:
 - The **3-body Faddeev** equation kernel self-arranges in blocks with spin-flavor structure of diquarks.
 - The **2-body BSE** reveal strong correlations in quark-quark scattering channels.
 - Consequently, the existence of non-point-like diquarks within baryons should be connected with <u>EHM phenomena</u>.
- Some experimental observables could yield to unambiguous signals of the presence of dynamical diquark correlations:
 - Nucleon transition form factors and structure functions, spectroscopy of exotic hadrons, etc.
 - The electromagnetic transitions are highly sensitive to the baryon wavefunction, and a path to better understand DCSB.
- Overall, the SCI exhibits a fair agreement with existing data. Then we anticipate sensible outcomes within more sophisticated approaches to QCD.

$p \rightarrow \Delta(1700), \, N(1520); \, \text{TFFs}$

 $x = Q^2 / \bar{m}^2, \ \bar{m} = (m_+ + m_-)/2$

• The A_{3/2} helicity amplitude:

Data from: https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

$p \rightarrow \Delta(1700), \, N(1520): \, \text{TFFs}$

 $x = Q^2 / \bar{m}^2$, $\bar{m} = (m_+ + m_-)/2$

