

Search for Hybrid Baryons and KY Electroproduction at CLAS12

Lucilla Lanza

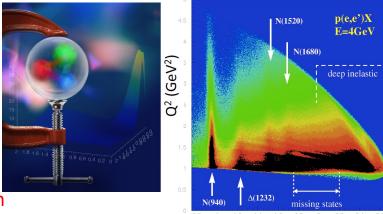
University of Rome Tor Vergata & INFN Roma Tor Vergata

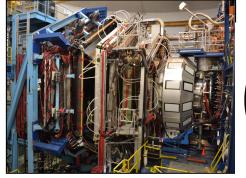
Outline

Physics Motivation: Study of the nucleon excitation spectrum to understand the dynamical properties of QCD in the non-perturbative regime.

What is the role of glue?

Search for new Baryon States -> Hybrid States

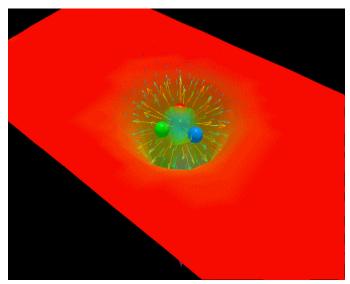

How does the role of the active degrees of freedom in the nucleon spectrum evolve with distance scale?


 Probe underlying degrees of freedom and their emergence from QCD via studies of the Q² evolution of electroproduction amplitudes

CLAS12 and Forward Tagger (FT) @ **JLab:** Experimental Setup description.

On-going Data Analysis:

- Results from Physics Runs: ep -> e'KY channel studied exploiting data from Fall 2018 Physics Runs in Hall B at Jefferson Lab
- Beam-Recoil <u>Hyperon Transferred Polarization Analysis</u>



W (GeV)

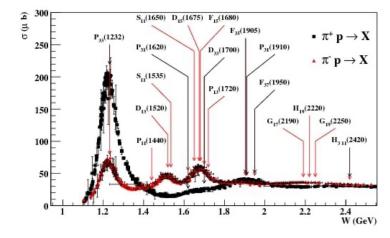
Critical QCD Questions Addressed

The light N* spectrum: what is the role of glue?

Derek B. Leinweber - University of Adelaide

"Nucleons are the stuff of which our world is made.

As such they must be **at the center of any discussion of why the world** we actually experience **has the character it does.**"


Nathan Isgur, NStar2000, Newport News, Virginia

Search for new baryon states

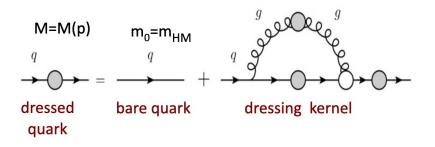
Why N*? From the N* Spectrum to QCD

 Understanding the proton's ground state requires understanding its excitation spectrum.

 The N* spectrum reflects the effective degrees of freedom and the forces.

CQM+flux tubes

Quark–diquark clustering


Baryon-meson system

 \longrightarrow


From the Constituent Quark model to QCD.

Mass Acquisition

Effective quark mass depends on its momentum

mass composition<2% Higgs mechanism>98% non-perturbative strong interaction

We need more information about the working of QCD in the non-perturbative regime

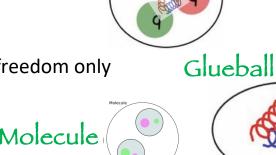
Exotic Hadrons

Standard Hadrons come in two varieties: Baryons & Mesons

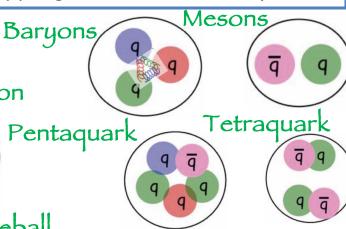
Exotic Hadrons

Meson and baryon states whose properties cannot be described in terms of q anti-q or qqq degrees of freedom only

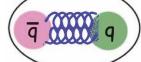
Hybrid mesons/baryons:


qqq or $q\bar{q}$ valence quarks plus a valence gluon Multiquark states:

- Baryons with more than 3 valence quarks:
 pentaquarks or di-baryons
- Mesons with more than a quarkantiquark pair: tetraquarks


Glueballs:

Particles made up of gluonic degrees of freedom only


Molecules...

Hybrid baryon

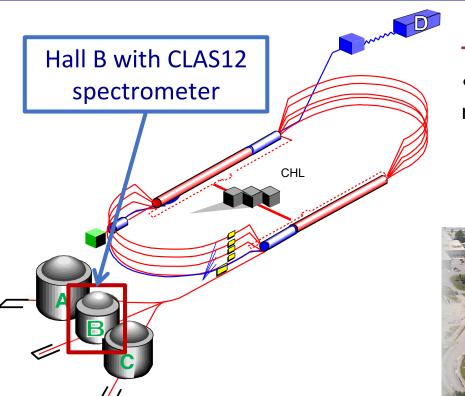
Hybrid meson

Photo- and Electro- production of mesons on nucleon targets

Meson photo- and electroproduction reactions

Light quark baryon spectroscopy

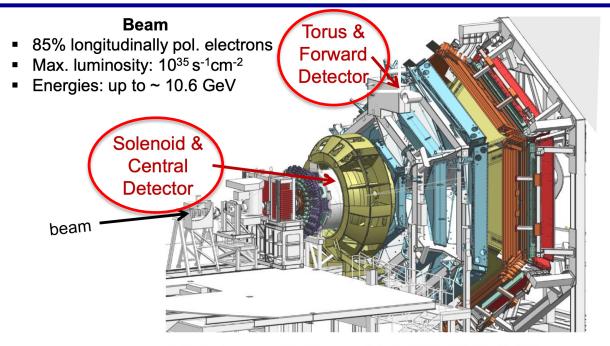
Two elements provided a crucial boost in the field:


- advent of large solid angle detectors
- polarized beam and targets

single and double polarization observables

Powerful tool to study the internal structure of the nucleon

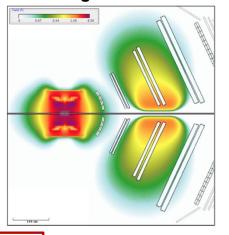
CLAS N* Experimental Program


The N* program is one of the Hall B fundamental

• CLAS & CLAS12 – optimized to study exclusive reaction channels over a broad kinematic range:

 π N, ω N, φ N, η N, η 'N, $\pi\pi$ N, KY, K*Y, KY*

CLAS12

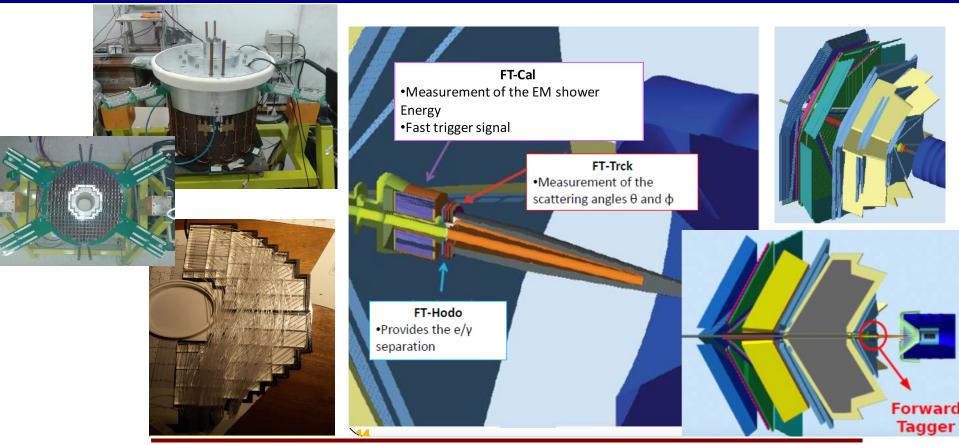


[V.D. Burkert et al., Nucl. Inst. and Meth. A 959, 163419 (2020)]

Targets (org. by Run Groups)

- Proton (RG-A/K)
- Deuteron (RG-B)
- Nuclei (RG-M/D/E)
- Long. pol. NH₃/ND₃ (RG-C)

Magnetic Field



Ideal instrument to study exclusive meson electroproduction in the nucleon resonance region

CLAS12 Spectrometer

beam

Experimental Setup: Forward Tagger

RGK @ CLAS12

Run Group Proposal (RG K) "Color Confinement and Strong QCD":

Search for Hybrid Baryons (qqqg)

KY Electroproduction for the N* study

DVCS

SIDIS

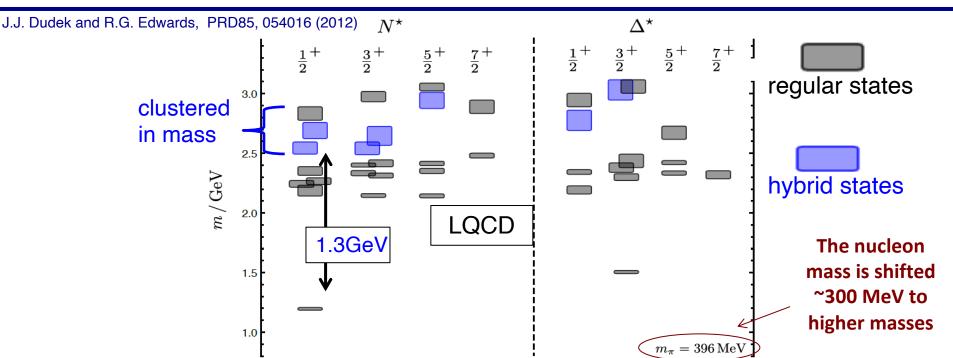
RUN CONDITIONS	
Torus Current	100% (3375 A) - negative out-bending
Solenoid	-100 %
FT	ON @ 7.5 GeV -> OFF @ 6.5 GeV and 8.5 GeV
Beam/Target	Polarized electrons, un-polarized LH ₂ target
Luminosity	• ~ 5 10 ³⁴ cm ⁻² s ⁻¹ @ 7.5 GeV ~ 0.87 10 ³⁴ cm ⁻² s ⁻¹ @ 6.5 GeV 0.87 10 ³⁵ cm ⁻² s ⁻¹ @ 6.4 GeV 10 ³⁵ cm ⁻² s ⁻¹ @8.5 GeV FULL LUMINOSITY

Fall 2018: EVENTS 15.6 G Spring 2024: EVENTS 60 G (Statistics increased by a factor 4)

50% of the total

Hybrid Hadrons

Hybrid hadrons with dominant gluonic contributions are predicted to exist by QCD.

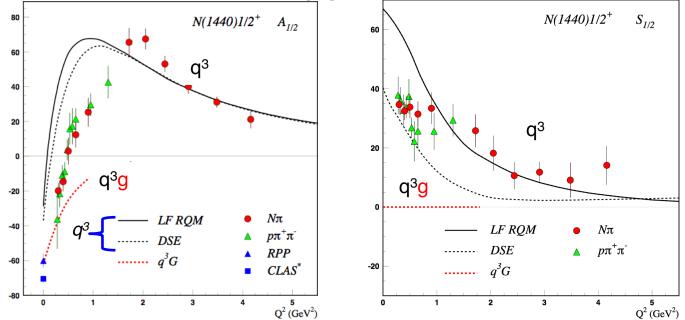

Experimentally:

- **Hybrid mesons** $|q\bar{q}g\rangle$ states may have exotic quantum numbers J^{PC} not available to pure $|q\bar{q}\rangle$ states GlueX, MesonEx, COMPASS, PANDA
- Hybrid baryons |qqqg> have the same quantum numbers J^P as |qqq> electroproduction with CLAS12 (Hall B).

Theoretical predictions:

- ♦ MIT bag model T. Barnes and F. Close, Phys. Lett. 123B, 89 (1983).
- ♦ QCD Sum Rule L. Kisslinger and Z. Li, Phys. Rev. D 51, R5986 (1995).
- → Flux Tube model S. Capstick and P. R. Page, Phys. Rev. C 66, 065204 (2002).

Hybrid Baryons in LQCD

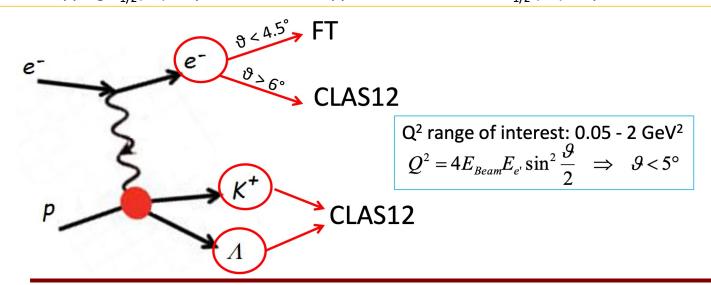

Hybrid states have same J^P values as qqq baryons. How to identify them?

- Overpopulation of N 1/2+ and N 3/2+ states compared to QM projections.
- $A_{1/2}$ ($A_{3/2}$) and $S_{1/2}$ show different Q^2 evolution.

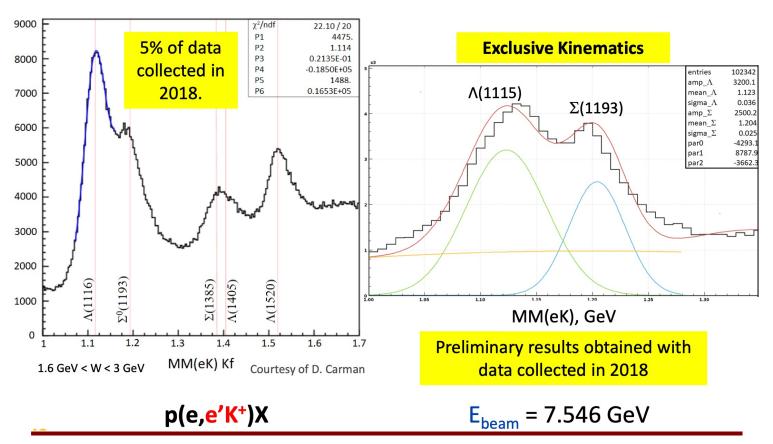
Separating q³g from q³ states?

CLAS results on electrocouplings clarified nature of the Roper.

Will CLAS12 data be able to identify gluonic contributions?


For hybrid "Roper", $A_{1/2}(Q^2)$ drops off faster with Q^2 and $S_{1/2}(Q^2) \sim 0$.

Hybrid Baryons


Data from KY are critical to provide the extraction of the electrocoupling amplitudes:

$$e p \rightarrow e' K^+ \Lambda$$
, $\Lambda \rightarrow p\pi^-$

FT allows to probe the **crucial Q² range** where hybrid baryons may be identified due to their fast dropping $A_{1/2}(Q^2)$ amplitude and the suppression of the scalar $S_{1/2}(Q^2)$ amplitude.

Preliminary Results: electron in the FD(CLAS)/FT

Beam-Recoil Transferred Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12

PHYSICAL REVIEW C 105, 065201 (2022)

Beam-recoil transferred polarization in K^+Y electroproduction in the nucleon resonance region with CLAS12

D. S. Carmano, "A. D. Pangolos, "St. L. Lanza," V. I. Mokeev, "B. K. P. Adhistar, "M. J. Amaryan, "J. W. R. Armstrong," A. Raz, "H. Avadas, "C. Asperts Gogoro," St. A. Balter, "B. Barrado, "M. Bartgeleri," "B. Bedelmistary, "B. Beskel," A. Bisterin, "C. Agree Gogoro," St. A. Balter, "B. Bosta," W. J. Britseve, "S. Beelmann, "D. Belummilla," L. C. Bart, "P. D. Burter," B. G. Openbare, "J. C. Crestary, "C. Cattaga, "C. P. Cressado," T. C. Krye," "G. C. Cattaga, "L. C. Clark, "P. L. Colac," "M. Comalberga, "G. Costamini," "V. Crode," "N. Dobyan," B. De Van, "M. Defurne," A. Deur, "G. C. Cattaga, "D. C. Cattaga, "D. C. Cattaga," B. C. Cattaga, "B. Ca

(CLAS Collaboration)

*Argonne National Laboratory, Argonne, Bilonis 60439, USA

*Università degli Stadi di Brassia, 2512. Bressia, Italy

*University of Allfornia Bressia, 1000 Horwissi Aruma, Bressia, California 92521, USA

*California State Universit; Dominguez-Billi, Carono, California 9777, USA

*California State Universit; Dominguez-Billi, Carono, California 9777, USA

*California State California State (Salifornia 9777, USA)

³ Fairfield University, Fairfield, Connecticat 08524, USA
³ Università di Ferrara, At21 Ferrara, Italy
⁴ Florida International University, Manuf. Florida 23199, USA
⁴ Florida State University, Tallahassee, Florida 23206, USA
⁵ Hysikaliashes Institut der Universitat Giessen, 3352, Giessen, Germany
¹³ The George Washington University, Washington, D.C. 20052, USA
⁵ University of Glazgoe, Glasgoe Gla 8QQ, United Kingdom

³⁴ Hampton University, Hampton, Virginia 23669, USA ³⁵ INFN, Sezione di Ferrara, 44100 Ferrara, Italy ³⁶ INFN, Laborutori Nazionali di Frascati, 00044 Frascati, Italy ³⁷ INFN, Sezione di Genova, 16146 Genova, Italy ³⁸ INFN, Sezione di Ravia, 27100 Pavia, Italy

¹⁸NNFN, Secione di Roma Tor Verpaia, (0138 Rome, Italy 20 PNPN, Secione di Torina, 1021 Stronia, Italy 21 National Research Center Kurchator Institute of Theoretical and Experimental Physics, 117218 Moscow, Ruxsia 22 Institute for Recomplexit, Proceedingsognetum tillack, 2021 Stillack, Germany

"Kyungsook Naimant University, Daoga 702-701, Republic of Korea **Manuse Tulversity, 400 MR. Blvd. Banusen, Eran 77710, USA **Massachusetts Institute of Technology, Cambridge, Massachusetts 0218; USA **Massachusetts Institute of Technology, Cambridge, Massachusetts 0218; USA **Massachusetts Massachusetts, Massachusetts (Massachusetts 0218), USA **Christotts of Nov Hampshire, Durham, Nov Humpshire 0224; USA **Marsachusetts of Nov Hampshire, Durham, Nov Humpshire 0224; USA **Marsachusetts of Nov Hampshire, Durham, Nov Humpshire 22504; USA **Marsachusetts of Nov Hampshire, Durham 12504; USA

²⁰Norfolk State University, Norfolk, Virginia 23504, USA ³⁰Ohio University, Athens, Ohio 45701, USA ³¹Old Dominion University, Norfolk, Virginia 23529, USA

*Corresponding author: carman@jlab.org

2469-9985/2022/105(6)/065201(24) 06

©2022 American Physical Society

D.S. Carman, A. D'Angelo, L. Lanza, V. Mokeev (CLAS Collaboration) J, "Beam-Recoil Transferred Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12", Phys. Rev. C 105, 065201 (2022)

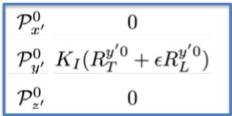
Analysis of CLAS12 RG-K data from Fall 2018

- 6.535 GeV and 7.546 GeV electrons on LH₂ target
- Extract beam-recoil transferred polarization from longitudinally polarized beam electron to final state hyperon vs. Q², W, $\cos\theta_{\kappa}^{\text{ c.m.}}$ $A = \frac{N^+ N^-}{N^+ + N^-} = \nu_Y \alpha_{\Lambda} P_b \mathcal{P}_Y' \cos\theta_p^{RF}$

 \mathcal{P}' = transferred polarization

$$\mathcal{P}'_{x'} = K_I \sqrt{1 - \epsilon^2} R_{TT'}^{x'0}$$

$$\mathcal{P}'_{y'} = 0$$


$$\mathcal{P}'_{z'} = K_I \sqrt{1 - \epsilon^2} R_{TT'}^{z'0}$$

(x',y',z')

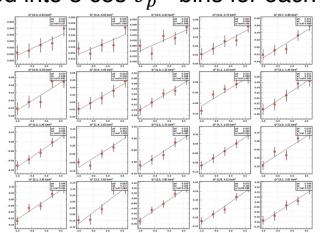
 \mathcal{P}^0 = recoil polarization

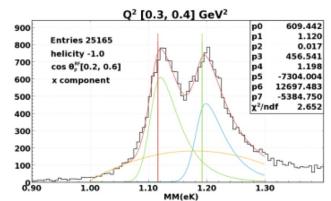
electron scattering

plane

hadron reaction

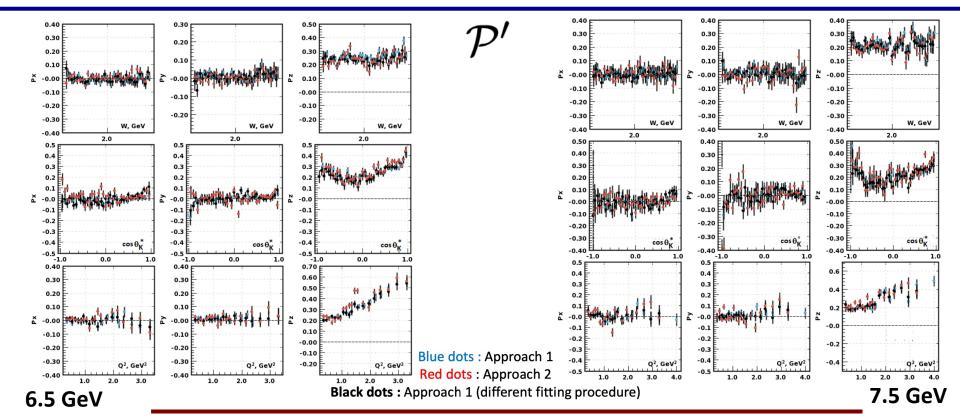
D. Carman's talk

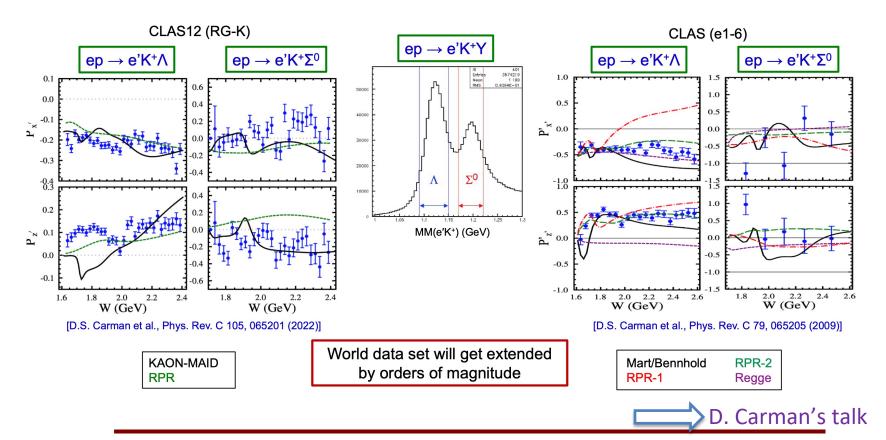

Beam-Recoil Transferred Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12


The independent analysis consists of the direct exploitation

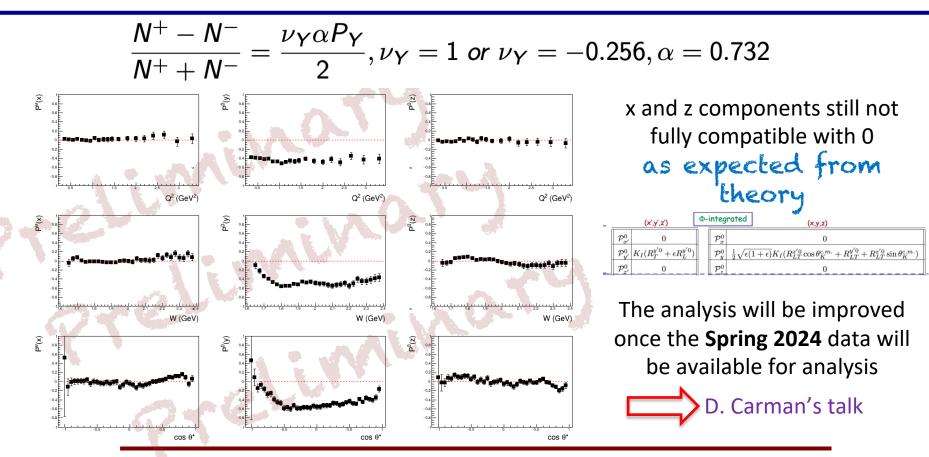
of equation

$$A = \frac{N^+ - N^-}{N^+ + N^-} = \nu_Y \alpha_\Lambda P_b \mathcal{P}_Y' \cos \theta_p^{RF}$$


The events in each kinematic bin of Q^2 , W and $\cos \vartheta_K^*$ were divided into 5 $\cos \vartheta_p^{RF}$ bins for each beam helicity...



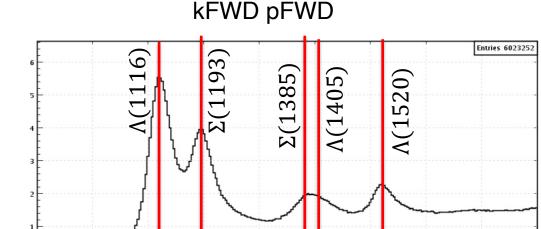
... and the number of Λ events was extracted using a fit of the MM(eK+) spectrum


Beam-Recoil Transferred Polarization in K+Y Electroproduction in the Nucleon Resonance Region with CLAS12

K⁺Y Transferred Polarization CLAS12 vs. CLAS

K+Y Induced Polarization CLAS12

$\Lambda(1520)$


Other channels could be exploited as final states for possible new resonances..

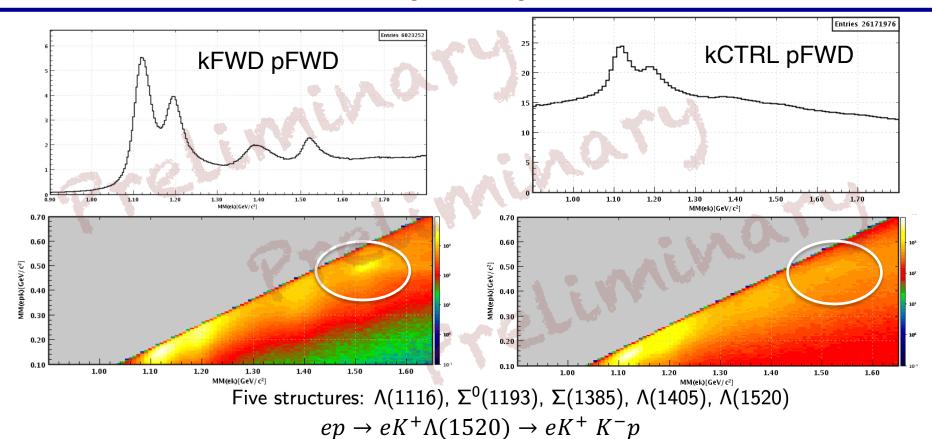
$$ep \rightarrow eK^+\Lambda(1520) \rightarrow eK^+K^-p$$

The existence of several nonstrange N* resonances with significant (\sim 5%) branching ratios into the decay channel $K^+\Lambda(1520)$ has been predicted

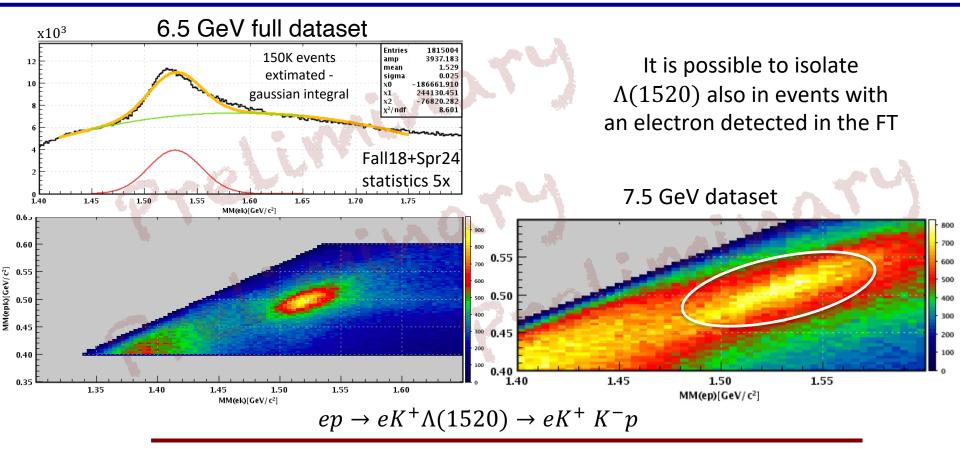
→ Simon Chapstick and W. Roberts, Phys. Rev. D 58 074011

1.30

 $MM(ek)[GeV/c^2]$


1.20

 $\Lambda(1520)$ arises as a separate structure


1.60

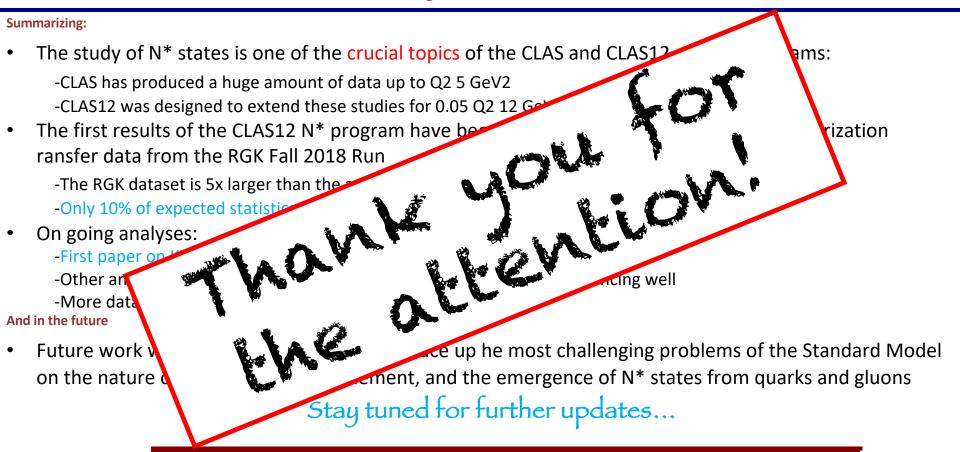
1.70

$\Lambda(1520)$

$\Lambda(1520)$

Summary and Outlook

Summarizing:


- The study of N* states is one of the crucial topics of the CLAS and CLAS12 physics programs:
 - -CLAS has produced a huge amount of data up to $Q^2 < 5 \text{ GeV}^2$
 - -CLAS12 was designed to extend these studies for $0.05 < Q^2 < 12 \text{ GeV}^2$
- The first results of the CLAS12 N* program have been obtained with the analysis of KY polarization transfer data from the RGK Fall 2018 Run
 - -The RGK dataset is 5x larger than the available KY world data in the resonance region
 - -Only 10% of expected statistics has been analyzed.
- On going analyses:
 - -First paper on KY electroproduction has been published on PRC
 - -Other analyses based on the existing RG-K data are in progress
 - -More data have been collected in Spring 2024

And in the future...

• Future work with these data is expected to face up he most challenging problems of the Standard Model on the nature of hadron mass, confinement, and the emergence of N* states from quarks and gluons

Stay tuned for further updates...

Summary and Outlook

