A fixed-target experiment to measure charm baryon dipole moments at LHC: ALADDIN

Han Miao (妙晗)^{1,2} on behalf of ALADDIN Collaboration

Institute of High Energy Physics
 University of Chinese Academy of Sciences

NSTAR workshop 2024.6.20, York, UK

CONTENT

Physics Potential

)2 Experiment Proposal

Simulation

4 Summary

PART 01

Physics Potential

Magnetic Dipole Moment

- The magnetic moments (MDMs) of particles are among their most fundamental static properties
- MDM of baryons helps a lot to understand the internal structure
- Hadrons consisting of both light and heavy quarks play a special role in QCD: their binding is dominated by large-distance, non-perturbative dynamics, whilst the presence of a heavy quark mass brings in a simplifications due to heavy-quark symmetry

MDM of charmed baryons

- Theoretical predictions from different models show a significant variation
- The direct measurements of charm MDMs at **10% level** would help to discriminate among current theoretical models.
- Experimental proposal will trigger further theory activities in this field

A. Dainese et al. [QCD Working Group], arXiv 1901.04482 (2019)

01 Electric Dipole Moment

µ: magnetic dipole momentd: electric dipole momentS: particle spin

$$\begin{array}{c} \mu & S(d) \\ \mu & f(d) \\ \mu & f(d) \\ T \\ \mu & f(d) \\ T \\ \mu & f(d) \\ \mu & f(d) \\ f(d)$$

$$\mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} - \boldsymbol{\delta} \cdot \mathbf{E} \stackrel{P}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} + \boldsymbol{\delta} \cdot \mathbf{E}$$
$$\mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} - \boldsymbol{\delta} \cdot \mathbf{E} \stackrel{T}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \mathbf{B} + \boldsymbol{\delta} \cdot \mathbf{E}$$

Non-zero EDM will violate P and T symmetry: T violation \leftrightarrow CP violation, if CPT holds.

The contribution of the Standard Model to EDM is very small:
> CKM: highly suppressed by loop level (≥ 3) interaction
> QCD θ term: main SM contributors to the EDM, θ < 10⁻¹⁰
• limited by neutron EDM:

 $d_n < 1.6 \times 10^{-26} \, ecm$

$$\mathcal{L}_{\text{CPV}} = \mathcal{L}_{\text{CKM}} + \mathcal{L}_{\overline{\theta}} + \mathcal{L}_{\text{BSM}}^{\text{eff}}$$

Very sensitive to BSM physics, large windows of opportunity for observing New Physics!

01

Status of EDM Measurement

Channeling in a Bent Crystal

1.25

To measure EDM and MDM of short-lifetime particles (~5cm) strong EM field are needed.

In bent crystal we obtain:

25.00

20.00

S^{15.00}

⊃ 10.00

a)

5.00

0.00 -1.25 -0.75 -0.25

- Electric field E \approx 1 GV/cm
- Effective magnetic field B \approx 500 T

0.25 (A) 0.75

V. M. Biryukov et al., Springer-Verlag Berlin Heidelberg, 1997

Positively charged particles are **channeled** between the atomic planes if their impact angle is small enough.

- ✓ Steer the particle trajectories of a given angle.
- ✓ Induce a spin precession of the particles in a short distance

$$\Phi \approx \frac{g-2}{2} \gamma \theta_c \qquad \mathbf{s} = \begin{cases} s_x \approx s_0 \frac{d}{g-2} (\cos \Phi - 1) \\ s_y \approx s_0 \cos \Phi \\ s_z \approx s_0 \sin \Phi \end{cases}$$

Measure Dipole Moments Using Bent Crystal

	Dipole Moment		Sensitivity		
			Λ_c^+	Ξ_c^+	
	MDM		$1.2 imes 10^{-2} \ \mu_N$	$(1.5 - 4.6) \times 10^{-16} e$ cm	
	EDM		$1.8 imes 10^{-2} \ \mu_N$	$3.1 \times 10^{-16} e cm$	
Not in scale Channeling + spin precession Bent crystal 5/7 mrad Bent crystal 5/7 mrad H+ H+ Charged hadrons Target H_{+} Target H_{+} Target H_{+} Target H_{+} Target H_{+} Target H_{+} Target H_{+} Target Target H_{+} Target Target H_{+} Target Target H_{+} Target Target H_{+} Target Target Target H_{+} Target Target Target H_{+} Target Target Target H_{+} Target Target Target Target H_{+} Target Targ					

Cross Section Measurements for Charmed Hadron Production

- Unique opportunity to study not only Λ_c^+ and Ξ_c^+ forward production but also to measure their cross sections and QCD polarization
- The production of D^+ and D_s^+ mesons can also be measured

	ALADDIN	SMOG
\sqrt{s} (GeV)	≈ 115	≈ 115
Momentum p (GeV/ c)	$\gtrsim 500$	$\lesssim 500$
Transverse momentum p_T (GeV/c)	$\lesssim 1.3$	0.2 to 1.8
Rapidity y^*	1 to 3.5	-3.5 to 0
	(very forward)	(central/backward)
Pseudorapidity η	7 to 9	2 to 5
Momentum transfer Q (GeV/c)	≈ 4	15 to 115
$\log_{10} x_B$ (Bjorken)	Down to -3.2	Down to -3
x_F (Feynman)	0.1 to 0.5, max. at 0.3	-0.5 to 0, max. at -0.1

Unique forward acceptance $7 < \eta < 9$ Worth to enlarge the physics case!

EDM&MDM Measurement of τ lepton

J. Fu et al. , Phys. Rev. Lett. 123 (2019) 011801 A. S. Fomin et al. J. High Energ. Phys. 03 (2019) 156 y W target $p \rightarrow D_{s}^{+} \rightarrow D_{y}^{-} \rightarrow D_{s}^{-} \rightarrow$

- Via $D_s^+ \rightarrow \tau^+ \nu_{\tau}$
- Reconstructed by 3-body decay
- Bent crystal located about 10 cm downstream the target
- $\approx 10^{17}$ PoT are needed to reach a MDM precision comparable to the SM prediction
- EDM can be measured at 10¹⁵ e cm level
- The first attempt
- An exploration of this technique will be performed

Photoproduction in Fixed-Target

J/ ψ cross-section versus η

J/ψ photoproduction

Pentaquarks photoproduction

- Study the gluonic field contributions to the proton structure and proton mass
- Currently a future possibility (no muon detector in the baseline design).

PART 02

Experiment Proposal

2 Layout and Beam Dynamics

- Based on an invacuum fixed target integrated into the LHC collimation hierarchy.
- A separation from the beam core in the order of 10 mm when reaching the TCCP (The crystal for precession, which will be introduced in the next page)
- Residual of the channeled beam is absorbed safely by a set of collimators
- The kick to the main beam of LHC from the ALADDIN magnet can be corrected by the surrounding orbit corrector dipoles (existing)

by Kay Dewhurst

02 Crystals

- Splitting Crystal (TCCS): **50 µrad** bending angle, **4 mm** length
- Precession Crystal (TCCP): 7 mrad bending angle, 7 cm length
- Tested using 180 GeV proton beam at SPS in 2023
- The channeling efficiency is measured to be 14.5%
- The channeling efficiency in the TeV region will be tested in the TWOCRYST PoP in 2025

02 Spectrometer

- 4 tracker stations, of which each has 2 tiles of pixel detector, are assembled inside Roman Pot to keep the vacuum
- Occupancy: 250 MHz/cm² and 30 MHz/cm² for the upstream and downstream stations
- Two options for the tracker
 - ✓ VELO hybrid sensors of the LHCb upgrade I (upstream and downstream)
 - ✓ Silicon strip sensor for LHCb UT (downstream)
- MCBWV magnet provide **1.1** T magnetic field

02 RICH

- Consider the requirement to identify particles within super high momentum range (~TeV)
- Helium gas: n=1.000035
- Provide the separation of different particles up to 1 TeV/c
- About 12 Cherenkov photons per track
- SiPM for the photon readout

TWOCRYST: Proof-of-Principle at LHC

- Proof-of-principle setup to be operated in 2025
- With TCCS and TCCP, W target, trackers, and a scintillation counter for charged particles
- Channeling efficiency will be measured at 450 GeV, 1 TeV and 3 TeV
- Demonstration of operational feasibility
- To obtain the occupancy and estimate potential background of the spectrometer and RICH
- Verifying the simulation result

Timeline

PART 03

Simulation

Detector Layout

- W target: 2 cm long, with a transversal size of 2 mm in y and 8 mm in x
- Si crystal: 7 cm long, with same transversal size as the target, with 7 mrad of bending angle
- Beam pipe: made of AI, with default external radii of $2.1 \times 2.94 \text{ cm}^2$ and a thickness of 2 mm
- Tracking stations: made of Si, 200 μm thick
- Dipole magnet (MCBWV.4L3.B2, already present at IR3): made of iron, 1.7 m long and with a magnetic field of 1.1 T. Joke dimensions are $49.4 \times 67.6 \text{ cm}^2$. Bore dimensions are $5.2 \times 14 \text{ cm}^2$
- Use DDG4 for the simulation and IR3ana framework for the following analysis with incorporating GenFit2, PODIO...

Software Framework for ALADDIN: IR3ana

03

Occupancy and Acceptance

- Simulation for 10^6 p/s on 2.0 cm of W target
- Occupancy:
 - Upstream: 250 MHz/cm²
 - Downstream: 30 MHz/cm²
- Acceptance:
 - > 50% for the dedicated design of Roman Pot
 - > Can be increased to 70% if the flange radius changes from 4 cm to 5 cm

Reconstruction of Λc^+

- Momentum resolution ranges from **1.5%-7%** for charged particles as a function of momentum up to 2.5 TeV
- Λ_c^+ is reconstructed using $\Lambda_c^+ \to pK^-\pi^+$ with incorperating Kalman filtering and vertex fit
- Not use information from RICH but a simple PID by charge and momentum
- Reconstruction efficiency of Λ_c^+ : 35%
- Invariant mass resolution of Λ_c^+ : 27 MeV (can be further increased to 18 MeV if assembling 6 tiles per Roman Pot)

Potential Background

- $D^+ \to K^- \pi^+ \pi^+$ and $D_s^+ \to K^+ K^- \pi^+$ with a π^+ or a K^+ misidentified to be proton
- Rejection by cut the mass window for D^+ and D_s^+ (without RICH information)
 - Reject less than 80% background when relative signal efficiency is 80%
- Rejection using RICH information
 - Reject 99% background when relative signal efficiency is 85%
- RICH will significantly improve the performance

PART 04

Summary

Roman Pots

- ALADDIN is a proposed fixed-target experiment to be installed at LHC IR3
- Aim to measure the MDM of Λ_c^+ and Ξ_c^+ with a relative precision better than 10% and search for the EDM with a sensitivity of $3 \times 10^{-16} e \text{ cm}$
- ALADDIN can also measure the heavy hadron production in the very forward region with pseudorepidity $\eta \geq 5$
- Photoproduction of J/ψ and pentaquark states are also potential physics
- The dipole moment of τ lepton may be firstly measured at ALADDIN and an exploratory study will be performed
- The TWOCRYST proof-of-principle test is scheduled at IR3 in 2025
- The detector could be installed during the LHC LS3 and start the data taking during Run4 in 2030

ALADDIN Collaboration and other authors

K. Akiba¹, F. Alessio², M. Benettoni³, R. Cardinale^{5,6}, S. Cesare^{7,8}, M. Citterio⁸, V. Coco², 7 8 P. Collins², E. Dall'Occo⁹, M. Ferro-Luzzi², A. Fomin²¹, R. Forty², J. Fu¹⁰, P. Gandini⁸, M. Giorgi ^{11,12}, J. Grabowski ¹³, S. J. Jaimes Elles ¹⁴, S. Jakobsen ², E. Kou ²¹, G. Lamanna ^{11,12}, H. Li^{10,16}, S. Libralon¹⁴, C. Maccani^{3,4}, D. Marangotto^{7,8}, F. Martinez Vidal¹⁴, J. Mazorra de Cos¹⁴, A. Merli¹⁵, H. Miao^{10,16}, N. Neri^{7,8}, S. Neubert¹³, A. Petrolini^{5,6}, A. Pilloni¹⁷, J. Pinzino 11 ¹², M. Prest ¹⁹, P. Robbe ²¹, L. Rossi ^{7,8}, J. Ruiz-Vidal ^{14,22}, I. Sanderswood ¹⁴, A. Sergi ^{5,6}, G. Simi ^{3,4}, M. Sorbi ^{7,8}, M. Sozzi ^{11,12}, E. Spadaro Norella ^{5,6}, A. Stocchi ²¹, A. Triossi ^{3,4}, N. Turini ^{18,12}. E. Vallazza^{19,20}, S. Vico Gil¹⁴, Z. Wang⁸, M. Wang⁸, T. Xing⁸, M. Zanetti^{3,4}, F. Zangari^{7,8} 15 ¹Nikhef, National institute for subatomic physics, Amsterdam, Nederlands 16 ²CERN - Geneva, Switzerland 17 ³INFN Sezione di Padova, Padua, Italy 18 ⁴Università degli Studi di Padova, Padua, Italy 19 ⁵Università di Genova, Genoa, Italy 20 ⁶INFN Sezione di Genova, Genoa, Italy 21 ⁷Università degli Studi di Milano, Milan, Italy 22

- ²³ ⁸INFN Sezione di Milano, Milan, Italy
- ²⁴ ⁹Technische Universität Dortmund (TU), Dortmund, Germany
- ²⁵ ¹⁰University of Chinese Academy of Sciences
- ²⁶ ¹¹Università di Pisa, Pisa, Italy
- ²⁷ ¹²INFN Sezione di Pisa, Pisa, Italy
- ¹³University of Bonn, Bonn, Germany
- ²⁹ ¹⁴IFIC Universitat de Valencia-CSIC, Valencia, Spain
- ³⁰ ¹⁵Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ³¹ ¹⁶Institute of High Energy Physics, Chinese Academy of Sciences
- ³² ¹⁷INFN Sezione di Catania, Università degli Studi di Messina, Messina, Italy
- ¹⁸Università degli Studi di Siena, Siena, Italy
- ³⁴ ¹⁹INFN Sezione di Milano Bicocca, Milan, Italy
- ³⁵ ²⁰INFN Sezione di Trieste, Trieste, Italy
- ³⁶ ²¹IJCLab, Orsay, France
- ³⁷ ²²Lund University, Sweden
- 38
- 39 Corresponding authors:
- 40 fernando.martinez@ific.uv.es
- 41 nicola.neri@mi.infn.it
- 42 patrick.robbe@ijclab.in2p3.fr

THANK YOU

Han Miao (妙晗)^{1,2} on behalf of ALADDIN Collaboration

Institute of High Energy Physics
 University of Chinese Academy of Sciences

NSTAR workshop 2024.6.20, York, UK

PART 00

Backup

Matter-Antimatter Asymmetry in the Universe

Big matter and anti-matter asymmetry founded in the universe!

WMAP+COBE(2012):

 $(n_B - n_{\overline{B}})/n_{\gamma}|_{CMB} = (6.08 \pm 0.09) \times 10^{-10}$

Sakharov three conditions require:

C and CP symmetry violation

Pisma Zh. Eksp. Teor. Fiz., 1967, 5: 32-35.

CP violation has been founded at *K*, *B*, *D* meson system, but not enough to explain matter dominant universe.

Standard Model (SM) prediction: $\hat{d}_{CP} = \frac{d_{CP}}{D^{12}} \sim 10^{-18} \ll 10^{-10}$

W. Bernreuther Lect. Notes Phys.591 (2002) 237-293

Exploring new physics is extremely important

A Brief History of Parity and CP Violation

OO CPV in Standard Model

输入标题文本

Strong CP

- $\overline{\theta}$ term: $\mathcal{L}_{\overline{\theta}} = -\frac{\alpha_s}{16\pi^2} \overline{\theta} \operatorname{Tr}(G^{\mu\nu}\widetilde{G}_{\mu\nu})$
- Mainly through measuring the Electric Dipole Moment (EDM) of atomic nuclei, atoms, and molecular systems,
- The current most stringent constraints come from the EDM experiments of neutrons and 199Hg: $\bar{\theta} < 10^{-10}$

Photoproduction in Fixed-Target

 J/ψ cross-section versus η

J/ψ photoproduction

Pentaquarks photoproduction

Study the gluonic field contributions to the proton structure and proton mass