Determination of the polarization observables ${\cal T}, \, P$ and H in the reaction $\gamma p o p \pi^0$

Sebastian Ciupka

University of Bonn

June 17, 2024

Baryon Spectroscopy

• Study exited nucleon states

U. Louring, B.C. Metsch, H.R. Petry, EPJA 12 (2001) 385-446

N=Nucleon M=Meson B=Baryon

Baryon Spectroscopy

- Study exited nucleon states
- Short decay time of exited states
- Broad resonances with strong overlap

5 [ub]

Baryon Spectroscopy

- Study exited nucleon states
- Short decay time of exited states
- Broad resonances with strong overlap

N=Nucleon M=Meson B=Baryon

Resonances

Resonances

Photon polarization		Target polarization
		X Y Z(beam)
unpolarized	σ	- T -
linear	-Σ	H (-P) -G
circular	-	FE

$$\sigma \sim |E_{0+}|^2 + |E_{1+}|^2 + |M_{1+}|^2 + |M_{1-}|^2 + \dots$$
$$T \sim \underbrace{-2E_{0+}^*E_{1+} - 2E_{0+}^*M_{1+}}_{\text{Interference }\Delta(1232)(P_{33}) \text{ with } N(1535)(S_{11})$$

ELectron Stretcher Accelerator (ELSA) Bonn

The CBELSA/TAPS experiment

Analysis

To remove background events kinematic cuts are applied:

• Timecut: The detection of the final state particles should coincide with a tagged photon

To remove background events kinematic cuts are applied:

• Timecut: The detection of the final state particles should coincide with a tagged photon

- Timecut: The detection of the final state particles should coincide with a tagged photon
- The angle difference Θ between predicted and measured proton should be $0 \pm 2\sigma$

- Timecut: The detection of the final state particles should coincide with a tagged photon
- The angle difference Θ between predicted and measured proton should be $0\pm 2\sigma$
- Kinematic constraints require the beam direction, the proton and meson to be coplanar

- Timecut: The detection of the final state particles should coincide with a tagged photon
- The angle difference Θ between predicted and measured proton should be 0 \pm 2 σ
- Kinematic constraints require the beam direction, the proton and meson to be coplanar
- Reconstructed invariant proton mass should be $m_p \pm 2\sigma$

- Timecut: The detection of the final state particles should coincide with a tagged photon
- The angle difference Θ between predicted and measured proton should be 0 \pm 2 σ
- Kinematic constraints require the beam direction, the proton and meson to be coplanar
- Reconstructed invariant proton mass should be $m_p \pm 2\sigma$
- Reconstructed invariant meson mass should be $m_{\pi^0} \pm 2\sigma$

	Photon polarization		Tai po ^l	rget Iarize	tion	
			х	Y	Z(beam)	
$rac{d\sigma}{d\Omega} = \left(rac{d\sigma}{d\Omega} ight)_0 \cdot \left(1 - \delta \Sigma \cos\left(2(lpha - \Phi) ight) + \Lambda {f T} \sin(eta - \Phi)$	unpolarized linear circular	σ -Σ -	- H F	T (-P) -	-G -E	-
$-\delta \Lambda {f P} \cos{(2(lpha - \Phi))} \sin(eta - \Phi) - \delta \Lambda {f H} (2(lpha$	$-\Phi$) cos(β	3 -	- 0	⊅))		

 δ : Beam Polarization degree α : Beam Polarization direction

	Photon polarization		Tar pol:	get ariza	tion	
			x	Y	Z(beam)
$\left(rac{d\sigma}{d\Omega} ight)_{0}\cdot\left(1-\delta\Sigma\cos\left(2(lpha-\Phi) ight)+\LambdaT\sin(eta-\Phi) ight)$	unpolarized linear circular	σ -Σ -	- H F	T (-P) -	-G -E	
$-~\delta \Lambda {f P} \cos{(2(lpha - \Phi))} \sin(eta - \Phi) - \delta \Lambda {f H} \sin{(2(lpha - \Phi))}$	$2(\alpha - \Phi) \cos(\theta)$	β -	- ¢	>))		

We measure:

 $\frac{d\sigma}{d\Omega}$

- α_{\parallel} and α_{\perp} with offset of 90°
- β_{\uparrow} and β_{\downarrow} with offset of 180°
 - δ : Beam Polarization degree α : Beam Polarization direction

Λ: Beam Polarization degreeβ: Beam Polarization direction

Differential cross section

	Photon polarization		Tar pol	get ariza	ation	
$N_{\uparrow}-N_{\downarrow}$			x	Y	Z(bear	n)
$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right) \cdot \left(1 - \delta\Sigma\cos\left(2(\alpha - \Phi)\right) + \Delta T\sin(\beta - \Phi)\right)$	unpolarized linear circular	σ -Σ -	- H F	Т (-Р -) -G -E	
$-\delta \Lambda \mathbf{P} \cos \left(2(\alpha - \Phi) \right) \sin(\beta - \Phi) - \delta \Lambda \mathbf{H} \sin(2)$	$(lpha-\Phi)\cos($	β-	_ ¢	⊅))		

We measure:

- α_{\parallel} and α_{\perp} with offset of 90°
- β_{\uparrow} and β_{\downarrow} with offset of 180°

 δ : Beam Polarization degree α : Beam Polarization direction

Extracting the Polarization Observables

$$A_{
m T}(\phi)$$
 for $0.2 < \cos(\Theta) < 0.3;~E_{\gamma} = 974 MeV$

Univ

Extracting the Polarization Observables

$$A_{\mathsf{T}}(\phi)$$
 for $0.2 < \cos(\Theta) < 0.3$; $E_{\gamma} = 974 MeV$

$$A_T(\phi) = rac{N_\uparrow - N_\downarrow}{\Lambda_\downarrow N_\uparrow + \Lambda_\uparrow N_\downarrow} = d \cdot T \cdot sin(eta - \phi)$$

Background Subtraction

Butanol Target: $C_4 H_9 OH$ \Rightarrow Measure reactions off of free protons (H) and carbon (C) and oxygen (O)

Background Subtraction

Butanol Target: $C_4 H_9 OH$

 \Rightarrow Measure reactions off of free protons (H) and carbon (C) and oxygen (O)

• Nuceleons in carbon and oxygen have fermi motion

 \Rightarrow broader spectrum can be seperated from hydrogen spectrum

- Background is determined by measuring with a carbon foam target
- The same event selection is applied
- Carbon is then scaled to fit the butanol data

Dilution

11

Results

Target polarization observable T

Target polarization observable T

3 clusters \bullet Measured all final state particles: two γ from the pion and the proton

3 clusters • Measured all final state particles: two γ from the pion and the proton

If π^0 is in forward direction proton only has low energy and might not be detected To increase acceptance in forward direction: 3 clusters • Measured all final state particles: two γ from the pion and the proton

If π^0 is in forward direction proton only has low energy and might not be detected To increase acceptance in forward direction:

Case 1 The Proton was only detected in charge sensitive detectors:

- Only the track information of the proton can be reconstructed
- Same event selection and background subtraction as above

3 clusters \bullet Measured all final state particles: two γ from the pion and the proton

If π^0 is in forward direction proton only has low energy and might not be detected To increase acceptance in forward direction:

Case 1 The Proton was only detected in charge sensitive detectors:

- Only the track information of the proton can be reconstructed
- Same event selection and background subtraction as above

Case 2 Proton not detected:

 \bullet Direction can be reconstructed, since initial state and both decay γ are known

Determining T using all number of clusters

Comparing the results - Low energies

Comparing the results - High energies

Comparing the results - Low energies

Comparing the results - High energies

Recoil polarisation observable P

Photon polarization		Tai pol	rget larization
		x	Y Z(beam)
unpolarized	σ		Т -
linear	-2	н	(-P) -G
circular	-	F	

Recoil polarisation observable P

Double polarisation observable P

Double polarisation observable H

Double polarisation observable H

GOAL: Better understanding of nucleon exited states

- Polarization observables are necessary to disentangle the different resonance contributions
- New data for target asymmetry T especially in forward directions
- New data for recoil polarization P and the double polarization observable H in higher energy bins

Conclusion

GOAL: Better understanding of nucleon exited states

- Polarization observables are necessary to disentangle the different resonance contributions
- New data for target asymmetry T especially in forward directions
- New data for recoil polarization P and the double polarization observable H in higher energy bins

Extensive detector upgrades finished 2017

Now we are also able to trigger on neutral final states with high sensitivity \rightarrow First results for neutrons presented by Jan Hartmann tomorrow 1:30 PM

Thank you for your attention!

[1] C. Honisch et al. 'The new APD-Based Readout of the Crystal Barrel Calorimeter - An Overview' (forthcoming)

[2] J. Hartmann et al., PLB 748, 212 (2015)

University of Bonn

Sebastian Ciupka

T, P and H in $\gamma p o p \pi^0$

Event Selection

University of Bonn

Cuts 2PEDs

2PED Missing Mass

2PED Meson Mass

Cuts 2PEDs

Additional Cuts: (Preliminary)

- Cluster size: > 3 (CB), > 3 (Forward plug), > 2 (Mini-Taps)
- Gamma Energy > 130 MeV

Cut Ranges

E=640 MeV

2 Ped Scaling

Cut-ranges

Coplanarity lower and upper cut

University of Bonn	U	Inive	rsity	of	Bonn
--------------------	---	-------	-------	----	------

Cut-ranges 2

Theata difference lower and upper cut

			-
Inwe	reith/	0	Bonn
011100	I SILV		Donni

Upgrade Motivation

- Main calorimeter was not in first level trigger
- Inner Detector is not sensitive to neutral Particles

Detector angular coverage

Inner Detector	$23.1^\circ < heta < 166^\circ$
Forward Plug	$11.2^\circ < heta < 27.5^\circ$
MiniTAPS	$1^\circ < heta < 12^\circ$

Upgrade Motivation

- Main calorimeter was not in first level trigger
- Inner Detector is not sensitive to neutral Particles

Detector angular coverage

Inner Detector	$23.1^\circ < heta < 166^\circ$
Forward Plug	$11.2^{\circ} < \theta < 27.5^{\circ}$
MiniTAPS	$1^\circ < heta < 12^\circ$
Forward Plug MiniTAPS	$\left \begin{array}{c} 11.2^\circ < heta < 27.5^\circ \ 1^\circ < heta < 12^\circ \end{array} ight $

- CB calorimeter needs to be included in the first level trigger
- Archieved by upgrading to Avalanche Photo Diodes with better signal to noise
- Significantly increased redout rate with new sampling ADC readout

Upgrade Motivation

- Main calorimeter was not in first level trigger
- Inner Detector is not sensitive to neutral Particles

Detector angular coverage

Inner Detector	$23.1^\circ < heta < 166^\circ$
Forward Plug	$11.2^\circ < heta < 27.5^\circ$
MiniTAPS	$1^\circ < heta < 12^\circ$

- CB calorimeter needs to be included in the first level trigger
- Archieved by upgrading to Avalanche Photo Diodes with better signal to noise
- Significantly increased redout rate with new sampling ADC readout

First results for neutrons presented by Jan Hartman tomorrow 1:30 PM