Photoproduction of Cascade baryons and Charmonia at GLUE

Sean Dobbs Florida State U.

NSTAR2024 June 21, 2024

Baryons in Photoproduction at GlueX

- Baryons are fundamental 3-body QCD system
- Open questions about baryons include:
 - What is the spectrum of excited baryons? $(N, \Delta, \Lambda, \Sigma, \Xi, \Omega)$
 - What is the internal structure of the nucleon? What role do gluons play?
 - Photoproduction can shed light on to these questions
 - Intense beams give access to rare processes
 - Polarized photons give insight to production processes
 - Other GlueX talks on Λ * :
 - P. Hurck (Mon. @ 15:45)
 - R. Schumacher (Tue. @ 14:00)

Baryons in Photoproduction at GlueX

- Baryons are fundamental 3-body QCD system
- Open questions about baryons include:
 - What is the spectrum of excited baryons? $(N, \Delta, \Lambda, \Sigma, \Xi, \Omega)$
 - What is the internal structure of the nucleon? What role do gluons play?
 - Photoproduction can shed light on to these questions
 - Intense beams give access to rare processes
 - Polarized photons give insight to production processes
 - Other GlueX talks on Λ * :

•

- P. Hurck (Mon. @ 15:45)
- R. Schumacher (Tue. @ 14:00)

The GlueX Experiment

- GlueX-I (2017–2018): $E_{\gamma} = 8-11.4 \text{ GeV}$, L = 330 pb⁻¹ [$E_{\gamma} > 8 \text{ GeV}$]
- GlueX-II (2020–): expect L=3–4x GlueX-I, E_{γ,max} = 11.2→11.8? GeV

The GlueX Experiment

Excellent ability to reconstruct weaklydecaying particles in exclusive reactions

Status of the Cascade Spectrum

2.0

1.8

PDG 2024

 $\Xi - 391$

- Most Ξ (*ssn*) with M < 2 GeV • expected to be narrow $(\Gamma <$
- Patte • give

Particle

 $\Xi(1318)$

 $\Xi(1530)$

 $\Xi(1620)$

 $\Xi(1690)$

 $\Xi(1820)$

 $\Xi(1950)$

 $\Xi(2030)$

5/2-?

25 MeV) erns of decay branchings can insight into internal structure				1.6 U 1.4 I.2							
	Overall	See	en in	0.8	- • • • • • •	de tet	cuplet				
J^P	status	$\Xi\pi$	ΛK	$\frac{1^{+}}{2}$	$\frac{3^+}{2}$	$\frac{5^+}{2}$	$\frac{7^+}{2}$	$\frac{1^{-}}{2}$	$\frac{3^{-}}{2}$	$\frac{5^-}{2}$	$\frac{7^{-}}{2}$
1/2 +	****				Had		c. PRD	87. 0	545	06 (2	2013)
3/2 +	****	****					-,	.,.			,
1/2-?	**	**									
1/2-?	***	**	***								
3/2-	***	**	***								
3/2-?	***	**	**								

**

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

_

$\Xi^{-}(1320)$ Photoproduction

Detailed $\Xi^{-}(1320)$ cross section measurements provide baseline for Ξ program, insight into Y* contributions

•

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

$\Xi^{-}(1320)$ Photoproduction

Detailed $\Xi^{-}(1320)$ cross section measurements provide baseline for Ξ program, insight into Y* contributions

•

$\Xi^{-}(1530)$ Photoproduction

- Ground state decuplet $\Xi(1530)$ measured with 50% GlueX-I data
- Cross section shows no significant energy dependence

 $\gamma p \to K^+ K^+ \Xi (1530)^-, \quad \Xi (1530)^- \to \Xi (1320)^- \pi^0$

Hunting for Excited Cascades

Baryons in Photoproduction at GlueX

- Baryons are fundamental 3-body QCD system
- Open questions about baryons include:
 - What is the spectrum of excited baryons? $(N, \Delta, \Lambda, \Sigma, \Xi, \Omega)$
 - What is the internal structure of the nucleon? What role do gluons play?
 - Photoproduction can shed light on to these questions
 - Intense beams give access to rare processes
 - Polarized photons give insight to production processes
 - Other GlueX talks on Λ * :
 - P. Hurck (Mon. @ 15:45)
 - R. Schumacher (Tue. @ 14:00)

J/ψ Photoproduction Near Threshold

- At high energies, J/ψ production proceeds diffractively via gluon exchange
- Interest in using J/ψ production near threshold as a probe of proton structure, search for P_c resonances, etc...
 - Many model-dependent statements can be made, but are these models correct?

J/ψ Photoproduction and the Gluonic Structure of the Proton

- Near-threshold J/ψ produced near rest, real part of scattering amplitude dominates
- Arguments based on factorization in pQCD (large ξ) and holographic QCD connect to
 - Gravitational form factors
 - Proton mass trace anomaly

C. Alexandrou *et al.*, (ETMC), PRL 116, 252001 (2016)

"Proton mass radius"

Kharzeev, PRD 104, 054015 (2021) Mamo & Zahed, PRD 103, 094010 (2021)

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

J/ψ Photoproduction at GlueX: Mass Spectrum

- Reconstruct $p \gamma \rightarrow p + J/\psi, J/\psi \rightarrow e^+e^-$
- · Calculate J/ ψ cross sections normalized by non-resonant e+e-

Latest GlueX-I $J/\psi \rightarrow e^+e^-$ Photoproduction Results

GlueX, PRC 108, 025201 (2023)

- Full GlueX-I data yields $2270 \pm 58 \text{ J/}\psi$'s
- Overall normalization uncertainty ~20%
- "Dip" above 9 GeV has 2.6σ (1.3σ) local (global) significance
- No evidence of narrow P_c production

Threshold Effects?

GlueX-I J/ψ Differential Cross Sections

GlueX-I J/ψ Differential Cross Sections

- GlueX and $J/\psi 007$ results agree well within uncertainties
- Scale uncertainties:
 - 20% for GlueX
 - 4% for $J/\psi 007$
- Enhancement seen at large t near threshold

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

GlueX-I J/ψ Differential Cross Sections

- JPAC fit to GlueX and $J/\psi 007$ data
 - Up to 3 s-channel partial waves
 - Effective range expansion
 - K-matrix & unitarity
- Describes all observed features well
- Factorization violations > 25% at 90% CL
- More data needed!

Comparing $J/\psi \rightarrow e^+e^-$ and $J/\psi \rightarrow \mu^+\mu^-$

- To confirm the structures observed in the cross section using $J/\psi \rightarrow e^+e^-$ events, we can also use $J/\psi \rightarrow \mu^+\mu^-$ events
- Detailed study of calorimeter and trigger response in progress
- Expect new results from CLAS12, Hall-C. Eventually: GlueX-III, SOLID

Xc1(1³P1) Photoproduction at GlueX

- $\chi_{c1}(1^{++})$ photoproduction: probe of different parity C=+
- Look for $\gamma p \to \chi_{cJ} p \to (\gamma J/\psi) p \to (\gamma e^+ e^-) p$

JPAC predictions for charmonium photoproduction

- JPAC predictions for higher energy photoproduction using fixed-spin exchanges near threshold using known $\chi_{c1} \rightarrow \chi(\rho, \omega, \varphi, J/\psi)$ couplings
- GlueX can test model by measuring $\chi_{c1}(1P)$ production
- Also hard exchange model 3-gluons, "Odderon-like"

Projections for Future JLab Upgrades

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

Summary and Prospects

- GlueX has collected a large precision photoproduction dataset
- Studies of low-lying cascade baryons underway
 - Cross sections of $\Xi(1320)$ and $\Xi(1520)$ show interesting features
 - First identification of $\Xi(1690)$ and $\Xi(1820)$ in photoproduction
 - GlueX-II running with DIRC will improve sensitivity
- Measurements of J/ψ production with GlueX near threshold show unexpected features
 - The ongoing GlueX-II run will provide more precision
 - More results expected from CLAS12 and Hall-C/007
 - Need to measure open charm production
 - Photoproduction of $\psi(2S)$ might be better probe for gluonic structure
- Photoproduction of $\chi_{cJ}(1P)$ tests C = + exchanges
- Measurements with linear photon polarization can give fresh insight
- Future possibilities: GlueX-III proposal, SOLID, CEBAF energy upgrade

Backup Slides

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

X_{c1}(1³P₁) Photoproduction at GlueX

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

ψ(2³S₁) Photoproduction at GlueX

- $\psi(2S)$ photoproduction: probe of wave function dependence
- JPAC model estimates using known $\Gamma_{\chi gg}(\psi(2S)) / \Gamma_{\chi gg}(J/\psi)$
- Can search for $\psi(2S) \to \pi^+\pi^- J/\psi$ and $\psi(2S) \to e^+e^-$

Open Charm Production Near Threshold

- Hadron (cc̄) molecules like to decay to open-charm final states, can we see them at GlueX?
 - Also will help with J/ψ interpretation
- Open charm photoproduction cross section measured at SLAC for
 E_γ ≈ 20 GeV based on
 ~50 events
 - Roughly 5-10 larger than J/ψ cross section
 - Exclusive reconstruction of e.g.
 D^{(*)0} Λ_c⁺ is a factor
 ≈ 25 lower due to b.f.s
- Likely need full GlueX-II statistics with improved π/K separation

S. Dobbs — NSTAR2024 — June 21, 2024 — Cascade Baryons and Charmonia at GlueX

Prospects for future J/ ψ production measurements

- JLab Hall C measurements also see no clear P_c, limits are similarly modeldependent, CLAS12 measurements under way
 - Proposal for double polarization measurements in Hall A
- Future: electro- and photoproduction at SOLID ($\mathscr{L} = 10^{37} \text{cm}^{-2} s^{-1}$)
- More future: linearly polarized photoproduction at GlueX with energyupgraded CEBAF

Projections for J/\psi\pi^+\pi^- Photoproduction at GlueX

 $\gamma p \rightarrow J/\psi \pi^+\pi^- p, J/\psi \rightarrow e^+e^-$

- Assumes 1 year @ 500 pb⁻¹, Br(X,Y $\rightarrow \pi^+\pi^-J/\psi$) = 5%
- 17 GeV: $N(\psi(2S)) = 400$, N(X(3872)) = 650, N(Y(4260)) = 20
- 22 GeV: $N(\psi(2S)) = 900$, N(X(3872)) = 2300, N(Y(4260)) = 120

The GlueX Experiment: Photon Beam

- Photon beam generated via coherent bremsstrahlung off thin diamond radiator
- Photon energies tagged by scattered electrons
 - Energy measurement precision < 25 MeV
- Photon linear polarization $P_{\gamma} \sim 40\%$ in peak
- Intensity of ~1–5 \times 10⁷ g/s in peak

