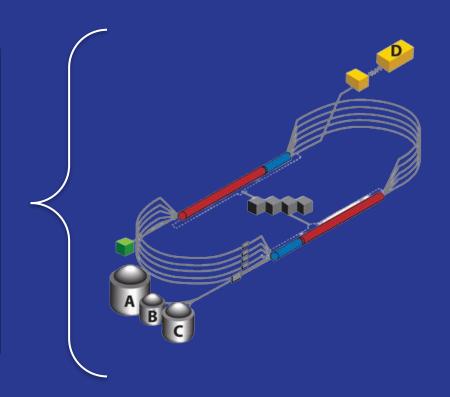
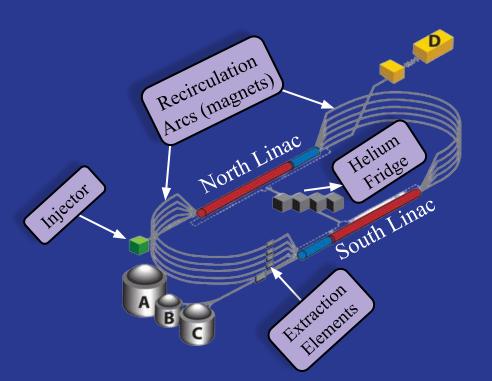
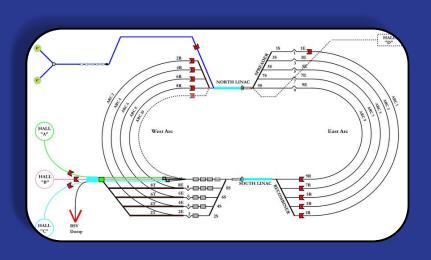

ELUCIDATING STRANGENESS

WITH CLAS 12

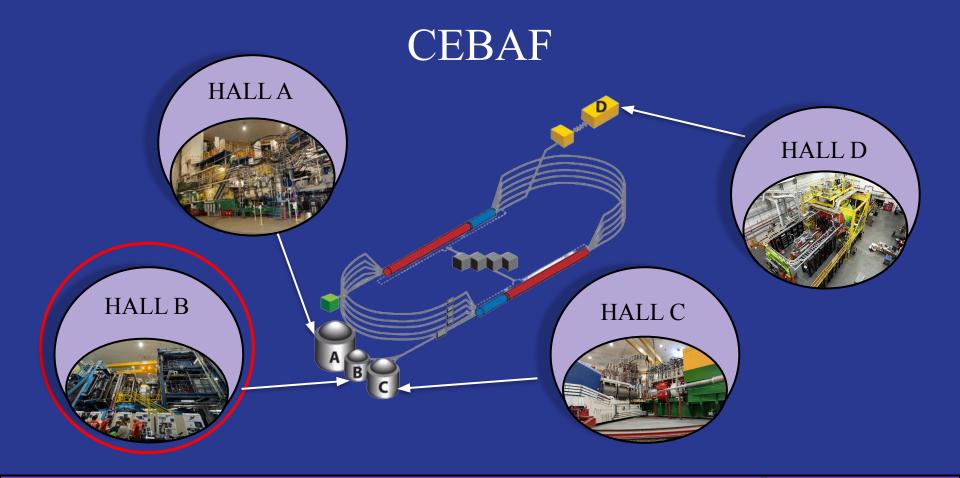


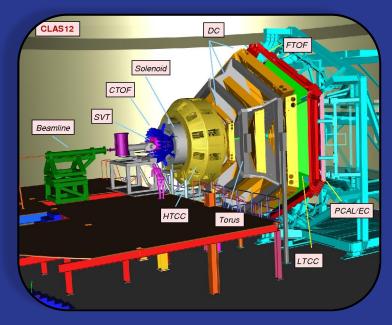
JEFFERSON LAB





CEBAF





HALL B

THE CLAS12 SPECTROMETER

HALL B

/	12-11-003	A	В	Deeply Virtual Compton Scattering on the Neutron with CLAS12 at 11 GeV	S. Niccolai* D. Sokhan	CEA Saclay	90	A	38	Proposal 1-page summary Updated PAC 38 Proposal
*	E12-11-106	A	В	High Precision Measurement of the Proton Charge Radius	A. Gasparian* D. Dutta H. Gao M. Khandaker	NCAT State U Mississippi State Duke U	15	A	39	Proposal 1-page summary
☆	E12-12-001	A	В	Timelike Compton Scattering and J/psi photoproduction on the proton in e+e- pair production with CLAS12 at 11 GeV	P. Nadel-Turonski* M. Guidal T. Horn R. Paremuzyan S. Stepanyan	USC CUA JLab JLab	120	Α-	39	Proposal 1-page summary
*	E12-12-007	A	В	Exclusive Phi Meson Electroproduction with CLAS12	F. X. Girod-Gard* M. Guidal V. Kubarovsky P. Stoler C. Weiss	JLab JLab RPI JLab	60	B+	39	Proposal 1-page summary
	E12-11- 005A	G	В	Photoproduction of the very strangest baryons on a proton target in CLAS12	L. Guo* M. Dugger J. Goetz E. Pasyuk I. Strakovsky D. Watts N. Zachariou V. Ziegler	FIU Arizona SU Ohio U JLab GWU U of Edinburgh EBOR JLab			40	Proposal 1-page summary
	F12-06-	G	В	Exclusive N*> KY Studies	D. Carman*	.II ah			42	Proposal
	108A			with CLAS12	R. Gothe V. Mokeev	USC JLab				1-page summary
	E12-06- 112A/E12- 09-008A	G	В	Semi-Inclusive \Lambda electroproduction in the Target Fragmentation Region	M. Mirazita	INFN			42	Proposal 1-page summary 1-page summary (2)

THE "VERY STRANGE" EXPERIMENT

Photoproduction of the Very Strangest Baryons on a Proton Target in CLAS12

A. Afanasev, W.J. Briscoe, H. Haberzettl, D. Schott, I.I. Strakovsky*, and R.L. Workman The George Washington University, Washington, DC 20052, USA

M.J. Amaryan, G. Gavalian, and M.C. Kunkel Old Dominion University, Norfolk, VA 23529, USA

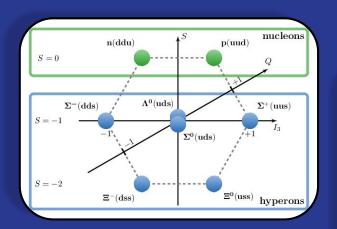
Ya.I. Azimov

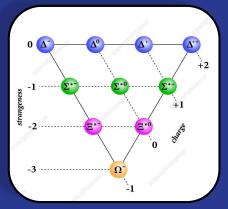
 $Petersburg\ Nuclear\ Physics\ Institute,\ Gatchina,\ Russia\ 188300$

N. Baltzell

Argonne National Laboratory, Argonne, IL 60439, USA

M. Battaglieri, A. Celentano, R. De Vita, M. Osipenko, M. Ripani, and M. Taiuti INFN, Sezione di Genova, 16146 Genova, Italy


V.N. Baturin, S. Boyarinov, V.D. Burkert, D.S. Carman, V. Kubarovsky,
V. Mokeev, E. Pasyuk*, S. Stepanyan, D.P. Weygand, and V. Ziegler*



THE VERY STRANGE EXPERIMENT

State, J^P		Predicted 1	nasses (MeV)				
Ξ ₁ +	1305							
$\Xi \frac{3}{2}^{+}$	1505							
$\Xi^{*}\frac{1}{2}^{-}$	1755	1810	1835	2225	2285	2300	2320	2380
$\Xi^{*\frac{3}{2}}$	1785	1880	1895	2240	2305	2330	2340	2385
$\Xi^{*\frac{5}{2}}$	1900	2345	2350	2385				
$\Xi^{*\frac{7}{2}}$	2355							
$\Xi^{*\frac{1}{2}}$	1840	2040	2100	2130	2150	2230	2345	
$\Xi^{*\frac{3}{2}}$	2045	2065	2115	2165	2170	2210	2230	2275
$\Xi^{*\frac{5}{2}}$	2045	2165	2230	2230	2240			
$\Xi^*\frac{7}{2}^+$	2180	2240						

Isgur & Capstick (1986)

Asli G. Acar (asli.acar@york.ac.uk)

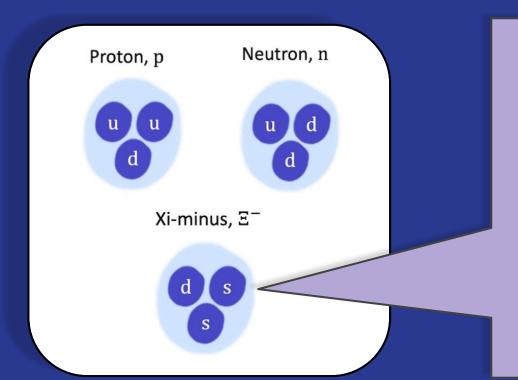
44 Ξ states predicted...

THE VERY STRANGE EXPERIMENT

~	~			7.5
Current	$\operatorname{Current}$	Previous	Previous	Mass from
Particle	Status	Mass	Status	MPS (MeV)
$\Xi(1318)$	****	1320	****	1320 ± 6
$\Xi(1530)$	****	1530	***	1541 ± 12
$\Xi(1620)$	*	1630	**	
$\Xi(1690)$	***	1680	**	
$\Xi(1820)$	***	1820	***	1822 ± 6
$\Xi(1950)$	***	1940	**	
$\Xi(2030)$	***	2030	***	2022 ± 7
$\Xi(2120)$	*	2120	*	
$\Xi(2250)$	**	2250	*	2214 ± 5
$\Xi(2370)$	**	2370	**	2356 ± 10
$\Xi(2500)$	*	2500	**	2505 ± 10
	A			

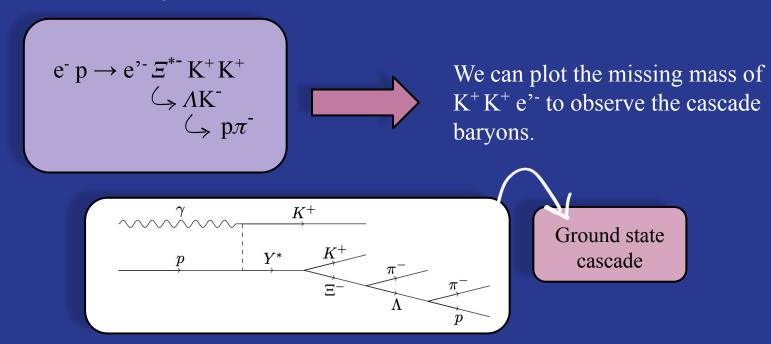
1981

Only 6 states "established" according to the PDG!

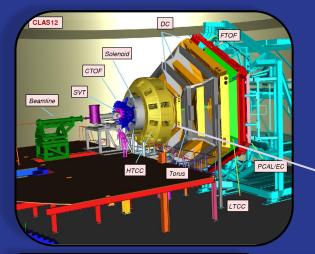

Not much progress in the last three decades ...

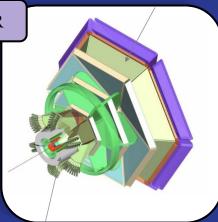
THE VERY STRANGE EXPERIMENT

Why look into *E* cascade baryons?


- 1. Theoretical controversies about certain states (i.e., 1620)
- 2. The hyperon puzzle?
- 3. Quantum numbers information of new & missing states
- 4. Bridging light (ultra-relativistic) flavours with heavy (non-relativistic)

CASCADES


Consider the following reaction:

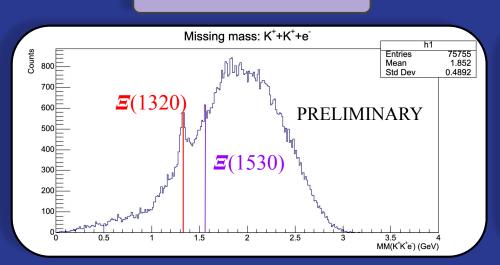


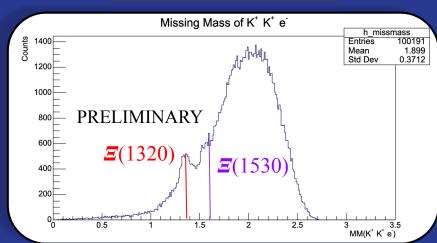
FORWARD TAGGER

FORWARD DETECTOR

Covers angular range $5^{\circ} < \theta < 35^{\circ}$. Higher Q^2 values but higher precision.

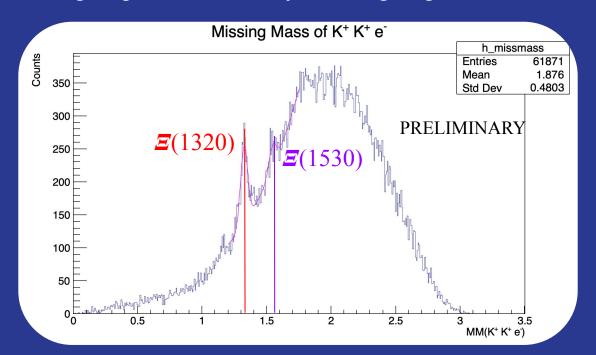
Covers angular range 2.5°<0<4.5°, Quasi-real photoproduction at low Q². Precision not as high as FD.



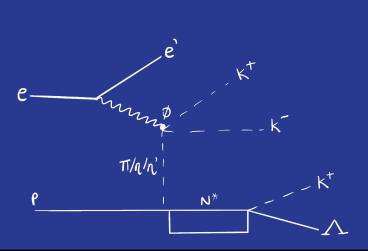


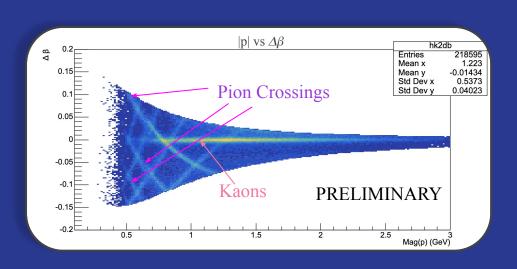
Looking at MM(K⁺K⁺e'⁻) for Fall 2018 pass 2 data from Jefferson Lab:

FORWARD DETECTOR

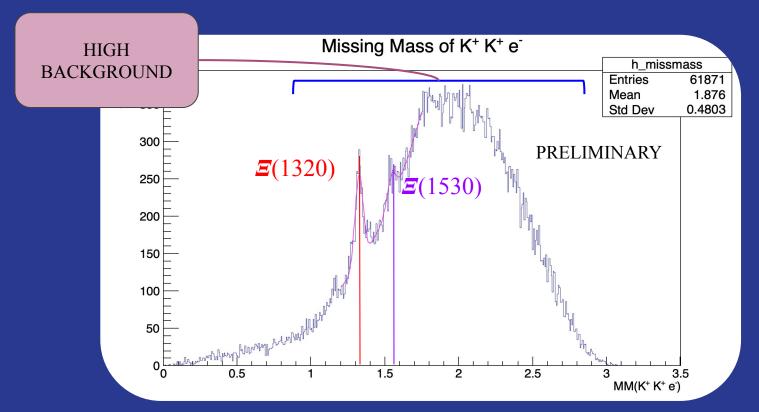

FORWARD TAGGER

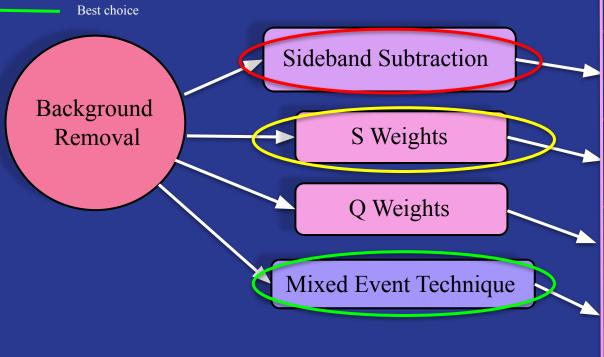
Due to higher precision, initially choosing all particles in the FD.

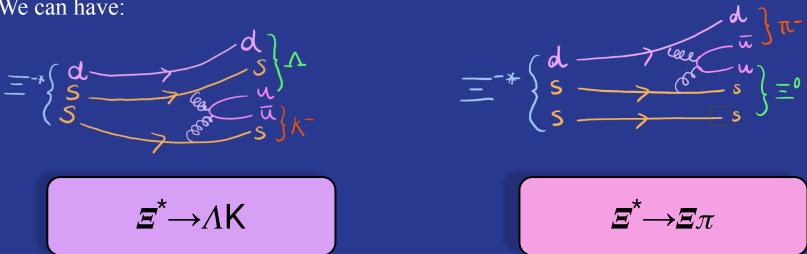




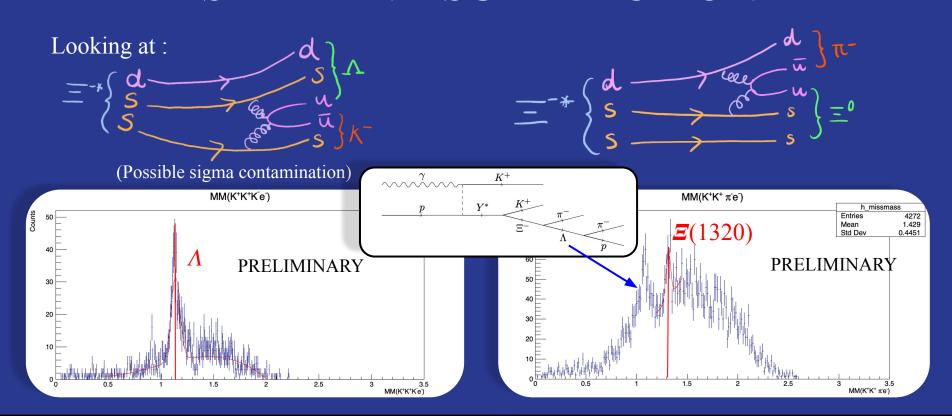
- Fall 2018 data.
- All particles in the Forward Detector \rightarrow better resolution.
- Background: kaon production, and Kaon/pion misidentification —— background subtraction



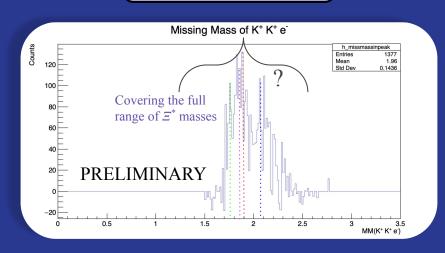


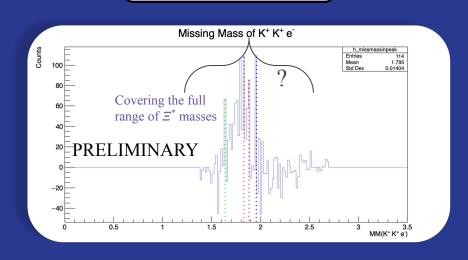

PROS	CONS				
Simple to understand	Difficulty with peaks close together, signal/bg overlap, problems with dependent variables				
Straightforward to implement using building package.	Problems with dependent variables				
Accounts for dependencies between different variables	Requires very large statistics, bg being propagated through				
Event by event analysis	Assumes accidental background - not realistic physics				

We can have:


Relative branchings from $SU(3) \rightarrow$ both decays into octet of baryons and octet of mesons \rightarrow Clebshes and momentum dependence (quark states)

SIDEBAND SUBTRACTION

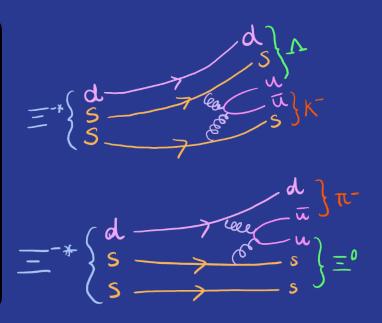


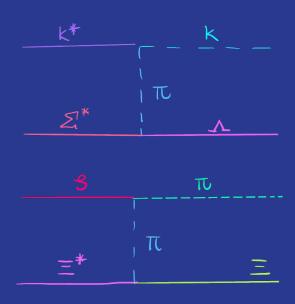

SIDEBAND SUBTRACTION

Sideband subtracted plots of MM(K⁺K⁺ e^{'-}) using:

 $MM(K^+K^+K^-e^{\prime -})$

 $MM(K^{+}K^{+}\pi^{-}e^{'-})$





TOWARDS BRANCHING RATIOS

3q state

Molecular state

TOWARDS QUANTUM NUMBERS

Looking at angular coverage of K and π^- :

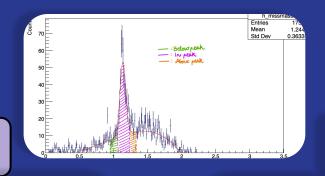
$$\theta_{\pi/K}^{\mathcal{Z}^*} \to L \to Quantum numbers$$

and
$$\pi$$
:
$$\mathcal{T} = (\overrightarrow{L} + \overrightarrow{S})$$

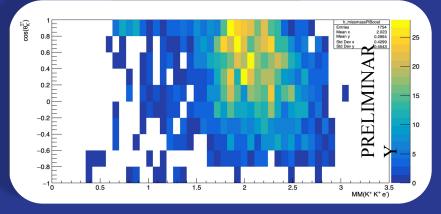
$$\mathcal{T} = (-1)^{L} \operatorname{f}_{\pi} \operatorname{f}_{\Xi} = (-1)^{L} (-1)(+1) = (-1)^{L+1}$$

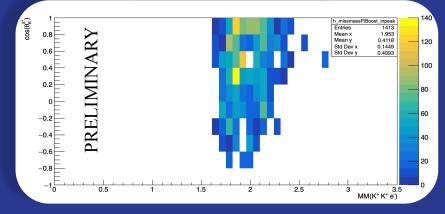
$$\mathcal{T}^{P} = (L + S_{\Xi})^{(-1)^{L+1}}$$

$$\mathcal{T}^{P} = (L + S_{\Xi})^{(-1)^{L+1}}$$



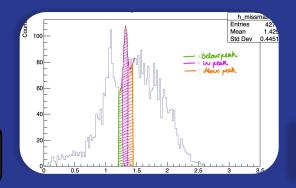
TOWARDS QUANTUM NUMBERS


 $e^{-}p \rightarrow e^{'-}\Xi^{*-}K^{+}$ $K^{+} \hookrightarrow \Lambda K^{-}$

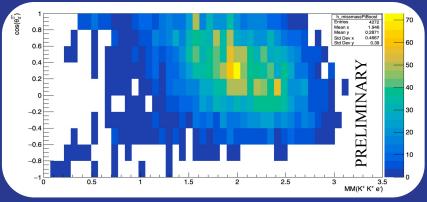

K- Channel

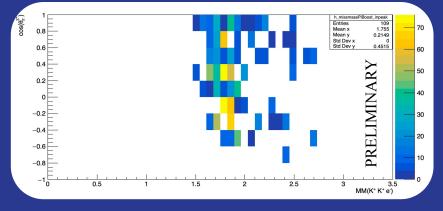
BEFORE SIDEBAND SUBTRACTION

AFTER SIDEBAND SUBTRACTION



TOWARDS QUANTUM NUMBERS


 $e^- p \rightarrow e^{'-} \Xi^{*-} K^+$ $K^+ \hookrightarrow \Xi \pi^-$


 π^{-} Channel

BEFORE SIDEBAND SUBTRACTION

AFTER SIDEBAND SUBTRACTION

CONCLUSIONS

- Promising new results First measurement in electroproduction!
- ~4 times more statistics to come
- Quantum numbers and decay branchings over the large part of the z spectrum.
- Probing cascade internal structure?
- Stay tuned!

THANKS FOR LISTENING!

