Peter Hurck for the GlueX collaboration

Hadron spectroscopy at GlueX

NSTAR 2024 Hilton Hotel York

Introduction

- QCD gives rise to spectrum of hadrons
 - Many qq̄ and qqq states have
 been observed
 - *qqqqq, qqqqq, ...* are not forbidden!

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc....

Phys. Lett. 8 (1964) 214

- * $q\bar{q}g$ are also allowed!
- so are *g*-only states

Introduction

- QCD gives rise to spectrum of hadrons
 - Many qq̄ and qqq states have
 been observed
 - *qqqqq, qqqqq, ...* are not forbidden!

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc....

Phys. Lett. 8 (1964) 214

- * $q\bar{q}g$ are also allowed!
- so are *g*-only states

Introduction

- QCD gives rise to spectrum of hadrons
 - Many qq̄ and qqq states have
 been observed
 - *qqqqq, qqqqq, ...* are not forbidden!

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc...

Phys. Lett. 8 (1964) 214

- * $q\bar{q}g$ are also allowed!
- so are *g*-only states

Hybrid mesons

main objective for GlueX:
 Search and study of hybrid mesons

- g s South of g
- * In quark model: $\vec{J} = \vec{L} + \vec{S}, P = (-1)^{L+1}, C = (-1)^{L+S}$

 \rightarrow <u>not</u> allowed: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

* "Exotic" quantum numbers are "smoking gun" for something not being pure $q\bar{q}$

Light quark mesons from lattice QCD

hadspec collaboration

hadspec, Phys. Rev. D 88, 094505

Hybrid mesons - evidence

- * Experimental evidence for a 1^{-+} :
 - * $\pi_1(1400)$: GAMS, VES, E852, CBAR, COMPASS
 - * $\pi_1(1600)$: VES, E852, COMPASS
- * JPAC coupled channel fit to $\eta\pi$ and $\eta'\pi$ data from COMPASS

1⁻⁺ hybrid from lattice QCD

* LQCD indicates that $b_1\pi$ is the dominant decay mode

- Experimentally challenging
- * Start with $\eta \pi$, $\eta' \pi$
 - * Smaller expected branching ratio but large statistics
 - Narrow peaks and pseudo scalars

Towards hybrids at GlueX

- Photoproduction complementary to pion production
 - Utilize polarization to understand production mechanisms

- Study production mechanisms to inform choice of wave sets for PWA (beam asymmetries, spin density matrix elements)
- * Focus on $\eta \pi$ and $\eta' \pi$
 - Look at different production and decay mechanisms
- * Work closely with theory colleagues to tackle model complexity

CEBAF at Jefferson Lab

CEBAF at Jefferson Lab

- up to 12 GeV electron beam
- high luminosities for Hall A/C (high resolution spectrometer)
- CLAS12 in Hall B
- * GlueX in Hall D

9

 Focus on exotic hybrid mesons
 BUT:
 Large data set available to study wide range of reactions

GlueX experiment in Hall D

 tag electrons to determine photon energy produce linearly polarized photon beam via coherent bremsstrahlung on thin diamond

Acceptance:

 $\theta_{lab} \approx 1^{\circ} - 120^{\circ}$

 $\sigma_E / E = 6 \% / \sqrt{E} \oplus 2 \%$

- * Charged particles: $\sigma_p/p \approx 1\% 3\% (8\% 9\% \text{ very-forward high-momentum tracks})$
- Photons:

Spin density matrix elements

γ̃······ M

 π

 π, η

 \mathbb{P}, f_2, a_2

- * SDMEs ρ_{jk}^{i} contain information on the spinpolarization of the produced state
- Measure angular distribution of decay products
- Learn about production mechanism
 - * Study the naturality $\eta = P(-1)^J$ of the exchanged particle X

For vector meson to pseudo-scalar decays:

 $W(\cos\theta, \phi, \Phi) = W^{0}(\cos\theta, \phi, \Phi) + P_{\gamma}\cos(2\Phi)W^{1}(\cos\theta, \phi, \Phi) + P_{\gamma}\sin(2\Phi)W^{2}(\cos\theta, \phi, \Phi)$ $W^{0}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\frac{1}{2}(1 - \rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0} - 1)\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\theta\cos\phi - \rho_{1-1}^{0}\sin^{2}\theta\cos2\phi \right)$ $W^{1}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\theta + \rho_{00}^{1}\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\theta\cos\phi - \rho_{1-1}^{1}\sin^{2}\theta\cos2\phi \right)$ $W^{2}(\cos\theta, \phi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\theta\sin\phi + \rho_{1-1}^{2}\sin^{2}\theta\sin2\phi \right)$ Schilling et. al., Nucl. Phys. B 15 (1970) 397-412 11

$\rho(770)$ SDMEs

$$\gamma p \rightarrow \rho(770) p \rightarrow \pi^+ \pi^- p$$

- Uncertainties dominated by systematics
- * s-channel helicity conservation: $\rho_{1-1}^1 = 0.5$ valid for very small -t
- ◆ JPAC: Regge model (fit to SLAC data)
 →good agreement at low -t
 JPAC, Phys. Rev. D 97, 094003 (2018)

ρ(770) SDMEs

Phys. Rev. C 108, 055204 (2023)

 Study combinations of SDMEs which are purely natural or unnatural

$$\rho_{jk}^{N,U} = \frac{1}{2} \left(\rho_{jk}^{0} \mp (-1)^{i} \rho_{-jk}^{1} \right)$$

Schilling et. al., Nucl. Phys. B 15 (1970) 397-412

pos. parity exchange/natural: e.g. f_2 , a_2 neg. parity exchange/unnatural: e.g. π , η

- Dominance of natural amplitudes
- * In the pipeline: ϕ , ω

F. Afzal

 Orders of magnitude improvement over previous data

- Data will be used to describe bottom vertex of reaction (couplings)
 - Important for hybrid search
- Good description of natural exchange by JPAC model

F. Afzal

JPAC, Physics Letters B 779 (2018) 77–81

$\vec{\gamma}$ p, a_2 π, b^2 Δ^{++} π^+ p

 Orders of magnitude improvement over previous data

- Data will be used to describe bottom vertex of reaction (couplings)
 - Important for hybrid search
- Good description of natural exchange by JPAC model
- More reliable than "simple" beam asymmetry 14

Hybrid search in $\eta\pi$

- * JPAC coupled channel fit to $\eta\pi$ and $\eta'\pi$ data from COMPASS
- * GlueX has access to different decay modes in multiple final states

 $M(\eta\pi)~GeV^2$

Mixed method: imposing BW shape on a_2 improves fit

Publication in preparation

* Set upper limit on $\pi_1(1600)$ using isospin separation, assume no I = 2

$$\sigma((\omega\pi\pi)^0)_{I=1} = \sigma(\omega\pi^+\pi^-) - 2\sigma(\omega\pi^0\pi^0)$$

•
$$\sigma((\omega\pi\pi)^{-})_{I=1} = \sigma(\omega\pi^{-}\pi^{0})$$

* Fit $\sigma(\omega \pi \pi)_{I=1}$ using known shapes for a_2 (PDG) and π_1 (JPAC)

$\pi_1(1600)$ upper limits

W. Imoehl

- * Fix a_2 size to measured cross-section adjusted with known BR
- * π_1 BR from lattice

*

- * Only free parameter is π_1 normalisation!
- * π_1 upper limits similar in size to a_2 cross-sections

π_1 projections to $\eta\pi$ and $\eta'\pi$

W. Imoehl

Publication in preparation

Hyperons at GlueX

"For several decades, there has been very little new experimental data bearing on the properties of Λ and Σ resonances. [...] the **field is starved for data**. Recent analyses (see below) have improved what we know about the properties of the known Λ and Σ resonances, but the **established resonances are the same ones that were listed in our 1984 edition** [...]" $- \Lambda$ and Σ resonances, PDG (2021)

Excited hyperons

Phys. Rev. C 105, 035201

- * Many excited Λ^* and Σ^* expected in spectrum
- * Most prominent: $\Lambda(1520)$ hyperon with $J^P = 3/2^-$

Excited hyperons

Phys. Rev. C 105, 035201

$\Lambda(1520)$ SDME combinations

0.5

 $(t-t_{min}) (GeV^2/c^2)$

01

~

Summary

- GlueX has a unique data set with unprecedented statistical precision in its energy range
- Start with studying production mechanisms (SDMEs) and develop PWA in parallel
- * $\pi_1(1600)$ upper limits, guide for future searches
- Many more interesting analyses in the pipeline and room for other physics
 - Rich hyperon spectrum visible in photoproduction
 - * Λ(1405) (R. Schumacher,
 Tue 14.00h, parallel III B)
 - Cascades and charmonium
 (S. Dobbs, Fri 11.15h, plenary X)

Acknowledgments:

gluex.org/thanks

CEBAF at Jefferson Lab

- * up to 12 GeV electron beam
- * high luminosities for Hall A/C
- * CLAS12 in Hall B
- GlueX in Hall D
 main objective:
 Search and study of hybrid
 mesons

GlueX experiment in Hall D

* Charged particles: $\sigma_p/p \approx 1\% - 3\% (8\% - 9\% \text{ very-forward high-momentum tracks})$

26

* Photons: $\sigma_E / E = 6 \% / \sqrt{E} \oplus 2 \%$

GlueX experiment

27

- * Spring 2016
 - Engineering run
- * Spring 2017
 - * 20% of GlueX-I
- * Spring 2018
 - * 50% of GlueX-I
- * Fall 2018
 - * 30% of GlueX-I

From 2019 onwards: GlueX-II incl. DIRC

121 pb^{-1} in coherent peak

 $\gamma p \rightarrow \pi^- \Delta^{++}(1232) \rightarrow \pi^- \pi^+ p$

JPAC, Physics Letters B 779 (2018) 77-81

F. Afzal

28

Λ(1520) SDMEs

PH (Phys. Rev. C 105, 035201)

- So far, sparse data at high energies
- red and blue show model predictions in Reggeized framework (priv. comm. based on [1])
- these
 measurements
 constrain models
 in the future

[1] Byung-Geel Yu and Kook-Jin Kong, Phys. Rev. C 96, 025208 (2017)

Λ(1520) SDME Interpretation PH (Phys. Rev. C 105, 035201)

Χ

to help with interpretation form combinations of SDMEs which correspond to purely natural (N) and purely unnatural (U) exchange amplitudes

X is exchange particle with spin-parity quantum number J^P and naturality $\eta = P(-1)^J$

Natural: e.g. *K**(892), *K*₂*(1430) Λ(1520) Unnatural: e.g. *K*(492), *K*₁(1270)

$$\begin{split} \rho_{11}^{0} + \rho_{11}^{1} &= \frac{2}{N} (|N_{0}|^{2} + |N_{1}|^{2}) & \operatorname{Re}(\rho_{31}^{0} + \rho_{31}^{1}) &= \frac{2}{N} (N_{-1}N_{0}^{*} - N_{2}N_{1}^{*}) \\ \rho_{11}^{0} - \rho_{11}^{1} &= \frac{2}{N} (|U_{0}|^{2} + |U_{1}|^{2}) & \operatorname{Re}(\rho_{31}^{0} - \rho_{31}^{1}) &= \frac{2}{N} (U_{-1}U_{0}^{*} - U_{2}U_{1}^{*}) \\ \rho_{33}^{0} + \rho_{33}^{1} &= \frac{2}{N} (|N_{-1}|^{2} + |N_{2}|^{2}) & \operatorname{Re}(\rho_{3-1}^{0} + \rho_{3-1}^{1}) &= \frac{2}{N} (N_{-1}N_{1}^{*} + N_{2}N_{0}^{*}) \\ \rho_{33}^{0} - \rho_{33}^{1} &= \frac{2}{N} (|U_{-1}|^{2} + |U_{2}|^{2}) & \operatorname{Re}(\rho_{3-1}^{0} - \rho_{3-1}^{1}) &= \frac{2}{N} (U_{-1}U_{1}^{*} + U_{2}U_{0}^{*}) \\ N &= 2(|N_{-1}|^{2} + |N_{0}|^{2} + |N_{1}|^{2} + |N_{2}|^{2} + |U_{-1}|^{2} + |U_{0}|^{2} + |U_{1}|^{2} + |U_{2}|^{2}) \end{split}$$

work by V. Mathieu (JPAC)

$\Lambda(1520)$ cross-sections

PH (HYP2022)

- * To get full picture of production we need couplings: measure cross-sections
- * Fit t-distribution and integrate to get "total cross-section"

SLAC, Phys. Lett. B 34 (1971) 547-550

$\Lambda(1520)$ cross-sections

- * Good agreement with previous data by SLAC
- * More data on tape, including some with lower photon beam energy

CLAS, Phys. Rev. C 88 (2013) 045201

PH (HYP2022)

$\Lambda(1520)$ cross-sections

- * Good agreement with previous data by SLAC
- * More data on tape, including some with lower photon beam energy

CLAS, Phys. Rev. C 88 (2013) 045201

PH (HYP2022)

Hybrid search in $\eta \pi^-$

COMPASS, Phys. Lett. B 740 (2015) 303-311

33

η/η' beam asymmetry

- measure photon beam asymmetry
 Σ to learn about t-channel Reggeon
 exchange
- * ratio of $\Sigma_{\eta'} / \Sigma_{\eta}$ provides information on $s\bar{s}$ exchange

η/η' beam asymmetry

b_1 decay

- * LQCD: $b_1\pi$ is dominating decay mode of 1⁻⁺ exotic
- * First step: study b_1

*
$$\gamma p \rightarrow b_1 p \rightarrow \omega \pi^0 p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 p$$

*
$$\gamma p \to b_1^- \Delta^{++} \to \omega \pi^- \Delta^{++} \to \pi^+ \pi^- \pi^0 \pi^- \pi^+ p$$

 b_1 decay

- Start by measuring *D/S* amplitude ratio
- * LQCD prediction by hadspec of |D/S| = 0.27(20)

hadspec, Phys. Rev. D 100, 054506 (2019)

- Good first test of amplitude model
- Can be expanded to all vector-pseudoscalar systems (ωη, φπ, φη,...)