Two Mesons Photoproduction: Theory and Application

- Vincent MATHIEU
- **University of Barcelona**
- Joint Physics Analysis Center **Exotic Hadron Topical Collaboration**
 - **NSTAR Conference**
 - York, June 2024

Ordinary and Exotic Hadrons

Ordinary baryons

proton stable $\tau \sim 10^3 s$ neutron

baryon $\Lambda~~\tau\sim 10^{-10}s$

Ordinary mesons

Vincent Mathieu

NSTAR conference

Observables and Moments

Two scattering amplitudes of 2 variables

$$A_{\pm}(s,z) = \sum_{J=1/2}^{\infty} (2J+1) a_{\pm}^{J}(s) d_{\frac{1}{2},\pm\frac{1}{2}}^{J}(z)$$

$$(z = 1)$$

Two observables of 2 variables

$$\frac{d\sigma}{dz} = \frac{1}{16\pi^2 s} \left[|A_+(s,z)|^2 + |A_-(s,z)|^2 \right]$$
$$P\frac{d\sigma}{dz} = \frac{1}{16\pi^2 s} \operatorname{Im} \left[A_+(s,z)A_-^*(s,z) \right]$$

Two unknown (and arbitrary) phases

on:
$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} = \sum_{L=0}^{\infty} (2L+1) H_L(s) P_L(z)$$

NSTAR conference

What's a resonance?

Two Meson Photoproduction

Why 2-meson photoproduction?

Five independent variables: $s, t, m, \Omega = (\theta, \phi)$ Eight independent amplitudes:

$$\lambda_{\gamma} = \pm 1, \, \lambda_1 = \pm 1/2, \, \lambda_2 = \pm 1/2$$

Vincent Mathieu

Meson spectroscopy

Baryon spectroscopy

NSTAR conference

Two Meson Photoproduction

Identifying exotic meson require not only study angular distribution but also understand production mechanisms

Baryon resonances interfere with all meson resonances

Meson spectroscopy

Baryon spectroscopy

2-Meson Photoproduction 6

Tensor Meson Photoproduction @CLAS

VM et al (JPAC) PRD102 (2020)

NSTAR conference

Tensor Meson Photoproduction @GLueX

Extraction of the cross-section

Extraction of all D-waves components

Strong $a_2(1320)$ signal in $\pi\eta$

Production can occur via exchange of

- vector meson (positive reflectivity) or
- axial-vector meson (negative reflectivity)

NSTAR conference

$a_2(1320)$ Photoproduction @GlueX

Vincent Mathieu

Extraction of $a_2(1320)$ production amplitudes from GlueX data

Collaboration between GlueX and JPAC

Reasonable agreement with model predictions from VM et al (JPAC) PRD102 (2020)

To appear soon...

NSTAR conference

$\rho(770)$ Photoproduction @GlueX

 $I(\Omega, \Phi) = I^0(\Omega) - P_{\gamma} \cos 2\Phi I^1(\Omega) - P_{\gamma} \sin 2\Phi I^2(\Omega)$ $I^{0}(\Omega) = \frac{3}{4\pi} \left(\frac{1}{2} (1 - \rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0} - 1) \cos^{2} \vartheta \right)$ $-\sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin 2\vartheta\cos\varphi-\rho_{1-1}^{0}\sin^{2}\vartheta\cos 2\varphi\right)$ $I^{1}(\Omega) = \frac{3}{4\pi} \left(\rho_{11}^{1} \sin^{2}\vartheta + \rho_{00}^{1} \cos^{2}\vartheta\right)$ $-\sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin 2\vartheta\cos\varphi-\rho_{1-1}^{1}\sin^{2}\vartheta\cos 2\varphi\right)$

$$I^{2}(\Omega) = \frac{3}{4\pi} \left(\sqrt{2} \operatorname{Im} \rho_{10}^{2} \sin 2\vartheta \sin \varphi + \operatorname{Im} \rho_{1-1}^{2} \sin^{2} \vartheta \sin 2\varphi \right).$$

Vincent Mathieu

Data: GlueX, PRC108 (2023) Model: JPAC, *PRD*97 (2018)

2-Meson Photoproduction 10

Moment Expansion

Five independent variables: $s, t, m, \Omega = (\theta, \phi)$

(Production amplitudes) x decay

$$A_{\lambda,\lambda_1,\lambda_2}(s,t,m,\Omega) = \sum_{\ell,m} T_{\lambda,m,\lambda_1,\lambda_2}(s,t) F(m) Y_{\ell}^m(\Omega)$$

Intensity is amplitude squared

$$I(\Omega) = \sum_{L,M} H^0(LM) Y_{\ell}^m(\Omega)$$

 π

NSTAR conference

Moment Expansion

Five independent variables: $s, t, m, \Omega = (\theta, \phi)$ $E_{\gamma} = 3.4 \text{ GeV} \text{ and } t = -0.95 \text{ GeV}^2$

Vincent Mathieu

Data: CLAS, PRD80 (2009) 072005

Model: JPAC, arXiv:2406.08016

NSTAR conference

Polarized Moment Expansion

$$I(\Omega, \Phi) = I^0(\Omega) - P_\gamma \cos 2\Phi \ I^1(\Omega) - P_\gamma \sin \theta$$

(Production amplitudes) x decay

$$A_{\lambda,\lambda_1,\lambda_2}(s,t,m,\Omega) = \sum_{\ell,m} T_{\lambda,m,\lambda_1,\lambda_2}(s,t) F(m) Y_{\ell}^m(\Omega)$$

$$I^{0,1,2}(\Omega) = \sum_{L,M} H^{0,1,2}(LM) Y_{\ell}^{m}(\Omega)$$

Different moments probe different quadratic form of amplitudes

 π^0

Polarized Moment Expansion

Vincent Mathieu

From A. Thiel (GlueX data)

NSTAR conference

$$W(\theta, \phi, \Phi) = \frac{1}{2\pi} \frac{d\sigma}{dt} \frac{3}{4\pi} \left\{ \rho_{33}^0 \sin^2 \theta + \rho_{11}^0 \left(\frac{1}{3} + \cos^2 \theta \right) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^0 \sin 2\theta \cos \phi - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^0 \sin^2 \theta \cos 2\phi \right. \\ \left. - P_{\gamma} \cos 2\Phi \left[\rho_{33}^1 \sin^2 \theta + \rho_{11}^1 \left(\frac{1}{3} + \cos^2 \theta \right) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^1 \sin 2\theta \cos \phi - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^1 \sin^2 \theta \cos 2\phi \right] \\ \left. - P_{\gamma} \sin 2\Phi \frac{2}{\sqrt{3}} \left[\operatorname{Im} \rho_{31}^2 \sin 2\theta \sin \phi + \operatorname{Im} \rho_{3-1}^2 \sin^2 \theta \sin 2\phi \right] \right\}.$$

Vincent Mathieu

NSTAR conference

Polarized Spin Density Matrix Elements

Vincent Mathieu

NSTAR conference

Polarized Spin Density Matrix Elements

Good agreement... up to signs!

 $\rho_{31}^{0,1,2}$ have opposite sign

2-Meson Photoproduction 17

Polarized Spin Density Matrix Elements

Change sign of $\rho - p - \Delta$ and $b_1 - p - \Delta$ couplings

Data from GlueX, to appear soon

Model from JPAC, PLB779 (2018)

NSTAR conference

Two meson photoproduction are physics-rich reactions

If a single resonance dominates -> SDME If not —> Moment expansion

Extracting weak (exotic) signal require deep understanding of production mechanism

Need models to understand data

Fruitful collaboration between CLAS/GlueX and JPAC

Still of a lot work on formalism, models, data analyses,... to do

Meson spectroscopy

Baryon spectroscopy

NSTAR conference

Understand joined SDME / joined Moments

Main decay channel of the π_1 is $b_1\pi$

Which observables with polarized target

How can they help?

Vincent Mathieu

2-Meson Photoproduction 20

