Baryon form factors from dispersion theory and functional method

Di An Stefan Leupold, Fernando Alvarado, Luis Alvarez-Ruso

Theoretical Hadron Physics Group, Uppsala University, Sweden

NSTAR24 York, The United Kingdom

Baryon form factors (FFs) and transition form factors (TFFs)

- What are FFs and TFFs? Why study them?
- ② Dispersive formalism
- ③ FFs in the nucleon sector: N FFs and $N^*(1520)$ TFFs → More on Wednesday (S.Leupold) at 9 AM
- Summary and outlook: microscopic match between dispersion theory and functional methods

・ 何 ト ・ ヨ ト ・ ヨ ト …

We try to understand the structure of the baryons.

How large is $\langle 0 | qqq | B \rangle$ and $\langle 0 |$ Meson Baryon $| B \rangle$, quantitatively?

We try to understand the structure of the baryons.

How large is $\langle 0| qqq |B \rangle$ and $\langle 0|$ Meson Baryon $|B \rangle$, quantitatively? Need model-independent tool \rightarrow Dispersion theory

Dispersion theory in a nutshell

Axiomatic QFT

 \rightarrow Form factors are analytic functions in the complex plane.

Unitarity+analyticity

 \rightarrow the location of cut, branch point, singularities...

Cauchy integral Formula:

Unitarity cut $[4m_{\pi}^2,\infty)$

$$F(q^2) = rac{1}{\pi} \int_{4m_\pi^2}^\infty rac{\operatorname{Im} F(s)}{s - q^2 - i\epsilon} ds$$

(Dispersion relation)

Pion-vector form factor

Pion-vector form factor

Experiments' status

Space-like and time-like form factors [3].

- Space-like form factors accessible from Jlab and MAMI $e^-B_1 \rightarrow e^-B_2$.
- **2** Time-like form factors will be accessible in the future in the process $B_1 \rightarrow B_2 e^- e^+$ from PANDA+HADES.
- BES, Belle for scattering region.

Optical theorem for baryon form factors:

Nucleon FFs as a test case

Motivation: is Muskhelishvili-Omnès formalism reliable? One can compare to non-perturbative analysis $N\bar{N} \to 2\pi$

$$T_{E/M}(s) = K_{E/M}(s) + \Omega(s) s \int_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{K_{E/M}(s') \sin \delta(s')}{|\Omega(s')| (s' - s - i\epsilon) s'} + P_{E/M}\Omega(s)$$

 $N\bar{N} \rightarrow 2\pi$ p-wave amplitudes ($2m_{\pi} \leq E \leq 1$ GeV) Green: fully dispersive analysis, Red: Muskhelishvili-Omnès formalism

Nucleon FFs as a test case

Once-subtracted dispersion relation:

$$G_{M/E}(q^2) = G_{M/E}(0) + \frac{q^2}{12\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{\pi} \frac{T_{M/E}(s) p_{c.m.}^3(s) F_{\pi}^{V*}(s)}{s^{3/2} (s - q^2 - i\epsilon)} \cdot \int_{\frac{d}{2}}^{\frac{d}{2}} \int_{\frac{d}{2}}^{\frac{d}{2}} \frac{ds}{\sqrt{2}} \frac{ds}{\sqrt{2}} \frac{T_{M/E}(s) p_{c.m.}^3(s) F_{\pi}^{V*}(s)}{s^{3/2} (s - q^2 - i\epsilon)} \cdot \int_{\frac{d}{2}}^{\frac{d}{2}} \frac{ds}{\sqrt{2}} \frac{ds}{\sqrt{2}}$$

Space-like FFs:

25

20

RS analysis A= 1.8 GeV -----______Λ= 1 GeV

> 0.9 1

Quark mass dependence of nucleon isovector FFs

Lattice QCD needs chiral extrapolation \rightarrow ChPT Low-lying vector mesons e.g. ρ, ω not included in ChPT \rightarrow ChPT doesn't describe nucleon FFs well. Alternative: Dispersively Modified ChPT

Phys. Rev. D 108, 114021 F. Alvarado, DA, L. Alvarez-Ruso, S. Leupold NNLO ChPT:

In Dispersively Modified ChPT, diagrams with a 2-pion cut are re-summed:

Nucleon FFs at unphysical quark masses

Prediction from the inverse amplitude method: The pion mass dependence of the phase shift:

 $\delta(s)$ for different values of M_{π}

 $m_
ho/M_\pi$ as a function of M_π

Model-independent, consistent with chiral power counting, systematically improvable.

 \rightarrow application to lattice (radii and magnetic moment extraction)

Nucleon FFs at unphysical quark masses

Apply dispersively modified ChPT to Lattice QCD Lattice data from PhysRevD.103.094522 Dirac form factor:

Blue: Dispersively modified ChPT, Red: ChPT $\mathcal{O}(p^3)$

Blue: Dispersively modified ChPT, Red: ChPT $\mathcal{O}(p^4)$

э

< □ > < □ > < □ > < □ > < □ > < □ >

Nucleon FFs at unphysical quark masses

Apply dispersively modified ChPT to Lattice QCD Lattice data from PhysRevD.103.094522 Dirac form factor:

Blue: Dispersively modified ChPT, Red: ChPT $\mathcal{O}(p^3)$

Blue: Dispersively modified ChPT, Red: ChPT $\mathcal{O}(p^4)$

Possible to generalize to hyperons and resonances. \rightarrow More on Wednesday (S.Leupold) at 9 AM

Di An (Uppsala University) Baryon form factors from dispersion theory and functional method

*N**(1520) TFFs

$$N^*(1520) \ I = 1/2 \text{ and } J^P = 3/2^-.$$

 $\langle N|j_{\mu}|N^* \rangle = e \ \bar{u}_N(p_N) \Gamma_{\mu\nu}(q) \ u_{N^*}^{\nu}(p_{N^*})$

with

$$\Gamma^{\mu\nu}(q) := i \left(\gamma^{\mu} q^{\nu} - \not q g^{\mu\nu} \right) m_N F_1(q^2) + \sigma^{\mu\alpha} q_{\alpha} q^{\nu} F_2(q^2) + + i \left(q^{\mu} q^{\nu} - q^2 g^{\mu\nu} \right) F_3(q^2) \,,$$

where $q^{\mu} := p_{N^*}^{\mu} - p_N^{\mu}$. We focus on isovector TFFs:

Dispersive machinery for the TFFs at low energy.

15 / 33

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theory meets experiments: space-like TFFs of $N^*(1520)$

Isovector TFFs := $\frac{1}{2}(F_i^{\text{proton}} - F_i^{\text{neutron}})$ i = 1, 2, 3. Once-subtracted dispersion relation \rightarrow fix the photon point to the PDG 1 (physical) parameter P_i for each $F_i \Rightarrow N\gamma^* \rightarrow N^*(1520)$

¹2 possible sign choices of $N^* - \Delta - \pi$ coupling

Theory predictions: time-like TFFs of $N^*(1520)$

 $N^*
ightarrow Ne^+e^-$ (Assuming isovector dominance)

Di An (Uppsala University)

Baryon form factors from dispersion theory and functional method

Theory predictions: Time-like TFFs

 $N^* \rightarrow N \mu^+ \mu^-$

 $N^* \rightarrow Ne^+e^-$

Di An (Uppsala University) Baryon form factors from dispersion theory and functional method

Summary:

- 1. Dispersion theory is a reliable and model-independent tool.
- 2. We make many predictions and are eager to be tested by experimentalists!
- Outlook:

э

く 目 ト く ヨ ト く ヨ ト

Summary and outlook

Summary:

- 1. Dispersion theory is a reliable and model-independent tool.
- 2. We make many predictions and are eager to be tested by experimentalists!

Outlook:

Can one calculate the contact terms from functional methods? e^{+}

Summary and outlook

B2 = N

Summary:

- 1. Dispersion theory is a reliable and model-independent tool.
- 2. We make many predictions and are eager to be tested by experimentalists!

Outlook:

Yes

Summary:

- 1. Dispersion theory is a reliable and model-independent tool.
- 2. We make many predictions and are eager to be tested by experimentalists!

Outlook:

Yes Ongoing project with Prof. G. Eichmann, Prof. C. Fischer and Prof. S. Leupold.

Outlook: match the hadrons with quarks and gluons

Calculate the contact term from Dyson-Schwinger equations (DSEs):

Pion nucleon handbag diagrams

DSE for the pion quark vertex:

Preliminary results for the $N\pi$ scattering length: $a_{0+}^- = 4.7 \pm 1.7 \,\mathrm{MeV}^{-1}$

tree level ChPT prediction: $a_{0+}^- = 5.71 \,\mathrm{MeV}^{-1}$

Thank you for listening!

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Match the hadrons with quarks and gluons

Theory predictions: Hadronic Dalitz decay $N^* \rightarrow N\pi\pi$ Our dispersive prediction $N^+(1520) \rightarrow n\pi^+\pi^0$ as an example

Di An (Uppsala University)

Baryon form factors from dispersion theory and functional method

$N^*(1520)$ TFFs: Cuts, Poles and Singularities

Anomalous threshold condition

$$\begin{array}{l} m_{exc}^2 < \frac{1}{2} (m_{N^*}^2 + m_N^2 - 2m_\pi^2) \\ m_{exc} = m_N \text{ (see back up slides for rigorous derivation)} \end{array}$$

Cutkosky cutting rules

 Δ exchange

Previous studies by Uppsala Group

Nucleon sector:

Nucleon isovector FFs (Leupold) [4] $N^*(1520)$ TFFs (An, Leupold) (in preparation) Quark mass dependence of nucleon FFs (An, Alvarado, Leupold, Alvarez-Ruso) $\Delta(J^P = \frac{3}{2}^+) \rightarrow N(J^P = \frac{1}{2}^+)$ (Aung, Leupold, Perotti) (in preparation)

Hyperon sector:

$$\begin{split} & \Sigma(J^P = \frac{1}{2}^+) \to \Lambda(J^P = \frac{1}{2}^+) \text{ (Granados,} \\ & \text{Leupold, Perotti) [5]} \\ & \Sigma^*(J^P = \frac{3}{2}^+) \to \Lambda(J^P = \frac{1}{2}^+) \text{ (Junker,} \\ & \text{Leupold, Perotti, Vitos) [6]} \end{split}$$

Di An (Uppsala University) Baryon form factors from dispersion theory and functional method

Subtracted dispersion relations for TFFs:

$$F_i(q^2) = F_i(0) + \frac{q^2}{12\pi} \int_{4m_\pi^2}^{\Lambda^2} \frac{ds}{\pi} \frac{T_i(s) \rho_{\rm c.m.}^3(s) F_\pi^{V*}(s)}{s^{3/2} (s - q^2 - i\epsilon)} + F_i^{\rm anom}(q^2) \text{ for } i = 1, 2, 3.$$

 $T_i \sim N^*N \rightarrow 2\pi$ amplitudes calculated from Muskhelishvili-Omnès formalism: Branching ratios of N^* by PDG:

$$\begin{split} T_i(s) &= \quad K_i(s) + \Omega(s) \, P_i + T_i^{\text{anom}}(s) \\ &+ \Omega(s) \, s \, \int\limits_{4m_\pi^2}^\infty \, \frac{\mathrm{d}s'}{\pi} \, \frac{K_i(s') \, \sin \delta(s')}{|\Omega(s')| \, (s' - s - i\epsilon) \, s'} \, . \end{split}$$

 $P_{i=1,2,3}$ are fit parameters (contact term interactions).

1	$N\pi$	55-65%
2	$\Delta(1232)\pi, (S-wave)$	15-23%
3	$\Delta(1232)\pi, (D ext{-wave})$	7-11%
4	$N ho, S = rac{3}{2}, (S-wave)$	10-16%
5	$N ho, S = rac{1}{2}, (D ext{-wave})$	0.2 - 0.4%
6	$N ho, S = rac{3}{2}, (D-wave)$	pprox 0
7	Nη	0.07 - 0.08%

Experimental data on space-like TFFs

Di An (Uppsala University) Baryon form factors from dispersion theory and functional method

Anomalous singularity

Trajectory of a singularity in the complex plane[8]

28 / 33

э

< 回 > < 三 > < 三 >

Calculating the couplings in quark di-quark approach in Dyson-Schwinger equations and Bethe-Salpeter equations State of art method: Rainbow lad-10 der + quark-di quark approximation gonn 8 (Valentin Mader et al.). 6 Goeckeler '08 $\rho \rightarrow \pi \pi$ transition matrix elements Fena '09 Feng '10 Aoki '10 A Frison '10 2 Lang '11 Physical Po 0 0 0.05 0.1 0.15 0.2 $m_{\pi}^2 [GeV^2]$ 30 $G_{AN\pi}(Q^2)$ Sum $\Delta \rightarrow N\pi$ transition matrix elements Imp-O 20 10 -o--⁻¹ = --⁻¹ 0 1.0 2.0 2.5 0.0 0.5 1.5 $Q^2 [GeV^2]$

Di An (Uppsala University)

Baryon form factors from dispersion theory and functional method

Comparison with 1-loop scalar-triangle

 N^*

How do we make sure we are right about the analytic structures?

 \rightarrow use 1-loop scalar triangle (G. 't Hooft, M. Veltman) as a toy calculation for ${\color{blue} \mbox{double-check}!}$

$$\int_{-\infty}^{\infty} T(s) = \frac{1}{2\pi i} \int_{4m_{\pi^2}}^{\infty} \frac{\operatorname{disc}_{UNI} T(z)}{z-c} dz + \frac{1}{2\pi i} \int_{\gamma} \frac{d\gamma}{dt} \frac{\operatorname{disc}_{ANOM} T((\gamma(t)))}{\gamma(t)-s} dt$$

Our dispersive relation for the scalar triangle perfectly matches the analytic results:

Example: Pion vector form factor

$$S = 1 + iT$$

Unitarity $SS^{\dagger} = 1 + i(T - T^{\dagger}) + |T|^{2} = 1$
 $\rightarrow 2ImT = |T|^{2}$ (1)
 $\rightarrow ImT_{A \rightarrow B} = \frac{1}{2} \sum_{x} T_{A \rightarrow x} T^{\dagger}_{x \rightarrow B}$

Simplest example:
$$A = |\gamma^*\rangle$$
, $B = |\pi^-(p_1)\pi^+(p_2)\rangle$.

$$\Rightarrow T_{\gamma^* \to \pi^- \pi^+} = e \epsilon_{\mu} \underbrace{\langle \pi^-(p_1) \pi^+(p_2) | j^{\mu} | 0 \rangle}_{(p_1^{\mu} - p_2^{\mu}) F_{\nu}(s)}$$
(2)

Unitarity cut
$$[4m_{\pi}^2,\infty)$$

$$T_{\gamma^* \to x} = e \epsilon_\mu \langle x | j^\mu | 0 \rangle \tag{3}$$

$$ImF_{\nu}(s)(p_{1}^{\mu}-p_{2}^{\mu})=\frac{1}{2}\sum_{x}\langle\pi^{-}(p_{1})\pi^{+}(p_{2})|x\rangle^{*}\langle x|j^{\mu}|0\rangle$$
(4)

 $|x\rangle = 2pions(s \ge 4m_\pi^2), 4pions(s \ge 16m_\pi^2), 2kaons(s \ge 4m_K^2), ...$

Cauchy integral formula:

$$F_{\nu}(s) = \frac{1}{2\pi i} \int_{s_0 = 4m_{\pi}^2}^{\infty} dz \frac{lim_{\epsilon \to 0}[F_{\nu}(z + i\epsilon) - F_{\nu}(z - i\epsilon)]}{z - s}$$
(5)

Schwarz Reflection Principle: $F_v(z - i\epsilon) = F_v(z + i\epsilon)^*$

$$F_{\nu}(s) = \frac{1}{\pi} \int_{s_0 = 4m_{\pi}^2}^{\infty} dz \frac{Im[F_{\nu}(z + i\epsilon)]}{z - s} \text{ Dispersion relation}$$
(6)

Consider only the 2 pion contribution

$$2ImF_{\nu}(q^{2})(p_{1}^{\mu}-p_{2}^{\mu})\approx \int d\tau_{2\pi}^{\prime} \langle \underbrace{\pi^{-}(p_{1})\pi^{+}(p_{2})|\pi^{-}(p_{1}^{\prime})\pi^{+}(p_{2}^{\prime})\rangle^{*}}_{\text{Pion rescattering amplitude}} \underbrace{\langle \pi^{-}(p_{1}^{\prime})\pi^{+}(p_{2}^{\prime})|j^{\mu}|0\rangle}_{F_{\nu}(q^{2})(p_{1}^{\prime}-p_{2}^{\prime})}$$
(7)

32 / 33

3

Reference I

- Volker D. Burkert. "N* Experiments and Their Impact on Strong QCD Physics". In: Few Body Syst. 59.4 (2018). Ed. by R. Gothe et al., p. 57. DOI: 10.1007/s00601-018-1378-7. arXiv: 1801.10480 [nucl-ex].
- [2] Stefan Leupold. "Information on the structure of the rho meson from the pion form-factor". In: Phys. Rev. D 80 (2009). [Erratum: Phys.Rev.D 83, 079902 (2011)], p. 114012. DOI: 10.1103/PhysRevD.83.079902. arXiv: 0907.0100 [hep-ph].
- [3] Elisabetta Perotti. "Electromagnetic and Spin Properties of Hyperons". PhD thesis. Uppsala U., 2020.
- [4] Stefan Leupold. "The nucleon as a test case to calculate vector-isovector form factors at low energies". In: Eur. Phys. J. A 54.1 (2018), p. 1. DOI: 10.1140/epja/i2018-12447-0. arXiv: 1707.09210 [hep-ph].
- [5] Carlos Granados, Stefan Leupold, and Elisabetta Perotti. "The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies". In: Eur. Phys. J. A 53.6 (2017), p. 117. DOI: 10.1140/epja/i2017-12324-4. arXiv: 1701.09130 [hep-ph].
- [6] Olov Junker et al. "Electromagnetic form factors of the transition from the spin-3/2 Σ to the Λ hyperon". In: Phys. Rev. C 101.1 (2020), p. 015206. DOI: 10.1103/PhysRevC.101.015206. arXiv: 1910.07396 [hep-ph].
- [7] Yong-Hui Lin, Hans-Werner Hammer, and Ulf-G. Meißner. "The electromagnetic Sigma-to-Lambda transition form factors with coupled-channel effects in the space-like region". In: Eur. Phys. J. A 59.3 (2023), p. 54. DOI: 10.1140/epja/s10050-023-00973-1. arXiv: 2205.00850 [hep-ph].
- [8] Josef Leutgeb and Anton Rebhan. "Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon". In: (2019). arXiv: 1912.01596 [hep-ph].

э

イロト イポト イヨト イヨト