Pion- and (anti)proton-induced **QCD studies at GSI/FAIR**

FAIR

... from SIS18 to SIS100

Johan Messchendorp NSTAR2024, June 17-21 2024, York, UK

Facility for Antiproton and Ion Research -"The Universe in the Laboratory"

Properties of strongly interacting matter

Formation of hadronic matter

Underlying symmetries

Degrees of freedom: from quarks/gluons to baryons/mesons

Origin of mass

Hadron Physics Facilities at FAIR

Hadron Physics Facilities at FAIR

antiProtons ANnihilations at DArmstadt (PANDA)

p, d...(SIS100)

Compressed Baryonic Matter (CBM

Hadron Physics Facilities at FAIR

antiProtons ANnihilations at DArmstadt (PANDA)

HADES/PANDA@FAIR-Phase-0: "Hadron physics meets heavy-ion physics"

Spectrometer (HADES)

October 2023

Hadron Physics Facilities at FAIR

HADES/PANDA@FAIR-Phase-0: "Hadron physics meets heavy-ion physics"

See talks at this conference:

- Szymon Harabasz, Monday 13:30
- Iza Ciepal, Tuesday 9:30
- Jana Rieger, Tuesday 14:25

See talks at this conference:

- Szymon Harabasz, Monday 13:30
- Iza Ciepal, Tuesday 9:30
- Jana Rieger, Tuesday 14:25

t, p, d. (SIS)

See talks at this conference:

- Szymon Harabasz, Monday 13:30
- Iza Ciepal, Tuesday 9:30
- Jana Rieger, Tuesday 14:25

Pion-beam facility!

A comprehensive **QCD** program!

Hadron structure

Reference measurements for p+A,A+A

> **Heavy-ion** dynamics

QCD dynamics within hadrons

Hadron spectroscopy

QCD@GSI/FAIR

Strange and charm • High intensity • Versatile detectors High-rate capabilities

Few-body interactions

. . .

Hadron production

Microscopic study of hadron-hadron interactions

Production mechanisms of hadrons

A comprehensive QCD program!

Hadron structure

Reference measurements for p+A,A+A

QCD dynamics within hadrons

Hadron

\bar{p} @ HESR: charm

From SIS18 to SIS100 ... what could that add in hadron physics?

CBM ^{VIII} Experiment requirements									
CBM ^{VIII} Experiment requirements									
					lor	n type ^{ix}			
eam Parameters	р	⁴⁰ Ar	⁵⁸ Ni	¹⁰⁷ Ag	¹⁹⁷ Au	р	¹⁴ N	⁴⁰ Ar	⁵⁸ Ni
		Cor	nmission	ing			C	peration	in MS
Time structure					slow	extraction			
Spill length [s]	5			10	-	5			10
per of ions per cycle	1010	4x:	10 ⁸	2x10 ⁸	10 ⁸	10 ¹²	1011	4x1	. 0 ¹⁰
gy range [GeV/u] ^x	5-11, 14- 29	3-11, 12.4- 12.6	2-11, 12-14	2-1:	1	5-11, 14- 29	3-11, 12-14	3-11, 12- 12.6	2-11 12- 13.6
. energy <mark>[</mark> GeV/u]	29			11		29			11
nsverse emittance 4σ) [mm mrad]		1 x 0.6							
entum spread (2σ)					5	x 10 ⁻⁴			
spot radius on tar- get [mm]						1			

From SIS18 to SIS100 ... what could that add in hadron physics?

CBM ^{VIII} Experiment requirements									
			CBMVIII	Experiment	requiren	nents			
					lor	n type ^{ix}			
am Parameters	р	⁴⁰ Ar	⁵⁸ Ni	¹⁰⁷ Ag	¹⁹⁷ Au	р	¹⁴ N	⁴⁰ Ar	⁵⁸ Ni
		Cor	nmission	ing			C	peration	in MS
Time structure		slow extraction							
Spill length [s]	5			10	_	5			10
er of ions per cycle	10 ¹⁰	4x:	10 ⁸	2x10 ⁸	10 ⁸	10 ¹²	1011	4x1	.010
gy range [GeV/u] ^x	5-11, 14- 29	3-11, 12.4- 12.6	2-11, 12-14	2-1	1	5-11, 14- 29	3-11, 12-14	3-11, 12- 12.6	2-11 12- 13.6
. energy [GeV/u]	29			11		29			11
nsverse emittance 4σ) [mm mrad]		1 x 0.6							
entum spread (2σ)					5	x 10 ⁻⁴			
spot radius on tar- get [mm]						1			

From SIS18 to SIS100 ...what could that add in hadron physics?

CBM ^{VIII} Experiment requirements									
			CBMVIII	Experiment	requiren	nents			
					lor	n type ^{ix}			
am Parameters	р	⁴⁰ Ar	⁵⁸ Ni	¹⁰⁷ Ag	¹⁹⁷ Au	р	¹⁴ N	⁴⁰ Ar	⁵⁸ Ni
		Cor	nmission	ing			C	peration	in MS
Time structure		slow extraction							
Spill length [s]	5			10	_	5			10
er of ions per cycle	10 ¹⁰	4x:	10 ⁸	2x10 ⁸	10 ⁸	10 ¹²	1011	4x1	.010
gy range [GeV/u] ^x	5-11, 14- 29	3-11, 12.4- 12.6	2-11, 12-14	2-1	1	5-11, 14- 29	3-11, 12-14	3-11, 12- 12.6	2-11 12- 13.6
. energy [GeV/u]	29			11		29			11
nsverse emittance 4σ) [mm mrad]		1 x 0.6							
entum spread (2σ)					5	x 10 ⁻⁴			
spot radius on tar- get [mm]						1			

From SIS18 to SIS100 ...what could that add in hadron physics?

CBM ^{VIII} Experiment requirements									
			CBMVIII	Experiment	requiren	nents			
					lor	n type ^{ix}			
am Parameters	р	⁴⁰ Ar	⁵⁸ Ni	¹⁰⁷ Ag	¹⁹⁷ Au	р	¹⁴ N	⁴⁰ Ar	⁵⁸ Ni
		Cor	nmission	ing			C	peration	in MS
Time structure		slow extraction							
Spill length [s]	5			10	_	5			10
er of ions per cycle	10 ¹⁰	4x:	10 ⁸	2x10 ⁸	10 ⁸	10 ¹²	1011	4x1	.010
gy range [GeV/u] ^x	5-11, 14- 29	3-11, 12.4- 12.6	2-11, 12-14	2-1	1	5-11, 14- 29	3-11, 12-14	3-11, 12- 12.6	2-11 12- 13.6
. energy [GeV/u]	29			11		29			11
nsverse emittance 4σ) [mm mrad]		1 x 0.6							
entum spread (2σ)					5	x 10 ⁻⁴			
spot radius on tar- get [mm]						1			

From SIS18 to SIS100 ...what could that add in hadron physics?

CBM ^{VIII} Experiment requirements									
			CBMVIII	Experiment	requiren	nents			
					lor	n type ^{ix}			
eam Parameters	р	⁴⁰ Ar	⁵⁸ Ni	¹⁰⁷ Ag	¹⁹⁷ Au	р	¹⁴ N	⁴⁰ Ar	⁵⁸ Ni
		Cor	nmission	ing			C	peration	in MS
Time structure		slow extraction							
Spill length [s]	5			10		5			10
er of ions per cycle	10 ¹⁰	4x:	10 ⁸	2x10 ⁸	10 ⁸	10 ¹²	1011	4x1	.010
gy range [GeV/u] ^x	5-11, 14- 29	3-11, 12.4- 12.6	2-11, 12-14	2-1:	1	5-11, 14- 29	3-11, 12-14	3-11, 12- 12.6	2-11 12- 13.6
. energy [GeV/u]	29			11		29			11
nsverse emittance 4σ) [mm mrad]		1 x 0.6							
entum spread (2σ)					5	x 10 ⁻⁴			
spot radius on tar- get [mm]						1			

Theory enrichment:

Terra incognita: intellectual challenges in this energy regime!

6-9 February 2024

Physics opportunities with proton beams at SIS100

Physics opportunities with proton beams at SIS100

6-9 February 2024 Wuppertal University

Europe/Berlin timezone

- Bring together experts from both theory and experiment
- Form a community connecting the common interest among different QCDdriven scientists
- Identify promising topics as a basis for a proton-driven physics program
- Evaluate its complementarity with programs at other facilities
 - Prepare towards a white-paper

Fine Physics opportunities with proton beams at SIS100

6-9 February 2024 Wuppertal University

Europe/Berlin timezone

•

- Bring together experts from both theory and experiment
- Form a community connecting the common interest among different QCDdriven scientists
- Identify promising topics as a basis for a proton-driven physics program
- Evaluate its complementarity with programs at other facilities
 - Prepare towards a white-paper

Physics perspectives with hadron beams at GSI and FAIR

April 2024

Eds: Frank Nerling & J.M.

Executive summary

1 Introduction

Convenors: J. Messchendorp, F. Nerling, C. Roberts

2 Exploiting hadronic beams

Convenors: T. Galatyuk, J. Messchendorp, F. Nerling

3 Hadron-hadron interactions

Convenors: C. Blume, C. Hanhart

4 Composition of hadrons

Convenors: C. Fischer, P. Salabura

5 Exotic hadrons

Convenors: N. Brambilla, S. Dobbs

6 Hadrons as probes to study dense matter

Convenors: J. Aichelin & E. Bratkovskaya, M. Lorenz

7 Connections & input to astrophysics

Convenors: K. Kampert, T. Saito

8 Experimental infrastructure

Convenors: J. Ritman, C. Sturm

Hyperon factory with CBM@SIS100 ...providing a basis for interaction, spectroscopy, and structure studies

• CBM designed for:

- p+p, p+A, A+A studies
- Identification of variety of hadrons, particularly with strangeness+charm
- High-rate capabilities

Hyperon factory with CBM@SIS100 ...providing a basis for interaction, spectroscopy, and structure studies

- **CBM** designed for:
 - p+p, p+A, A+A studies
 - Identification of variety of hadrons, particularly with strangeness+charm
 - High-rate capabilities
- Potential for exclusive processes:
 - 5 cm LH₂ target, Dipole, STS, RICH, TRD,TOF,FSD(+NCAL)
 - Luminosity: 10¹¹ 10¹² p/spill (10 s)
 - Interaction rates 1-10 MHz
 - Angular coverage ~2.5-25°
 - Angular resolution ~2 mrad
 - Momentum resolution 1.5-2.0%
 - Tracking efficiencies 90%

	reaction	\sqrt{s} (GeV)	T _{lab} (GeV)
	$pp \to K^+ \Lambda p$	2.548	1.6
SIS18	$pp \rightarrow K^+ K^- pp$	2.864	2.5
	$pp \rightarrow K^+ K^+ \Xi^- p$	3.247	3.7
	$pp \to K^+ K^+ K^+ \Omega^- n$	4.092	7.0
SIS100	$pp \rightarrow \Lambda \bar{\Lambda} pp$	4.108	7.1
	$pp \rightarrow \Xi^- \overline{\Xi}^+ pp$	4.520	9.0
\vee	$pp \rightarrow \Omega^- \overline{\Omega}^+ pp$	5.222	12.7
	$pp \rightarrow J/\Psi pp$	4.973	12.2

Picture credit: N. Herrmann, FAIR seminar, Krakow

Hyperon factory with CBM@SIS100 ...providing a basis for interaction, spectroscopy, and structure studies

- **CBM** designed for:
 - p+p, p+A, A+A studies
 - Identification of variety of hadrons, particularly with strangeness+charm
 - High-rate capabilities
- Potential for exclusive processes:
 - 5 cm LH₂ target, Dipole, STS, RICH, TRD, TOF, FSD(+NCAL)
 - Luminosity: 10¹¹ 10¹² p/spill (10 s)
 - Interaction rates 1-10 MHz
 - Angular coverage ~2.5-25°
 - Angular resolution ~2 mrad
 - Momentum resolution 1.5-2.0%
 - Tracking efficiencies 90%

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ceptance

Ac

	reaction	\sqrt{s} (GeV)	T _{lab} (GeV)
	$pp \to K^+ \Lambda p$	2.548	1.6
SIS18	$pp \rightarrow K^+ K^- pp$	2.864	2.5
	$pp \rightarrow K^+ K^+ \Xi^- p$	3.247	3.7
	$pp \to K^+K^+K^+\Omega^-n$	4.092	7.0
SIS100	$pp \rightarrow \Lambda \bar{\Lambda} pp$	4.108	7.1
	$pp \rightarrow \Xi^- \overline{\Xi}^+ pp$	4.520	9.0
V	$pp \rightarrow \Omega^- \bar{\Omega}^+ pp$	5.222	12.7
	$pp \rightarrow J/\Psi pp$	4.973	12.2

Picture credit: N. Herrmann, FAIR seminar, Krakow

Jenny Taylor, FastSim studies						
Expected reconstructed inclusive / Day @ 30 GeV/c, $\sigma = 40 \ \mu b$						
1 MHz	1.2·10 ⁹	$pp \rightarrow pH$				
10 MHz	1.2·10 ¹	$\Xi^{-} \to \Lambda \pi$ $\Lambda \to p\pi$				
Expected reconstructed inclusive events / day @ 30 GeV/c, $\sigma = 0.6 \mu b$						
1 MHz	1.4·10 ⁷	$pp \rightarrow nK^{+}$				
10 MHz	1.4·10 ⁸	$\Omega^{-} \rightarrow \Lambda K^{-}$ $\Lambda \rightarrow p\pi^{-} ($				

Topics in the strange sector ...and complementary to JLAB (KL), JPARC, ...

Topics in the strange sector

- ...and complementary to JLAB (KL), JPARC, ...
- Y* composition: spectroscopy & structure
 - Excited Ξ^*, Ω^* spectroscopy
 - Line-shape measurements (~2 MeV resolution)
 - Electromagnetic (& weak) transition form factors

Quark models: U. Löring et al., EPJA 10 (2001) 447

Feijoo, Valcarce, Magas UChPT with WT + Born term + NLO

Topics in the strange sector

- ...and complementary to JLAB (KL), JPARC, ...
- Y* composition: spectroscopy & structure
 - Excited Ξ^*, Ω^* spectroscopy
 - Line-shape measurements (~2 MeV resolution)
 - Electromagnetic (& weak) transition form factors
- Production mechanisms
 - Isospin sensitivity via np and pp reactions
 - Input to transport models

ution) factors

Topics in the strange sector

- ...and complementary to JLAB (KL), JPARC, ...
- Y* composition: spectroscopy & structure
 - Excited Ξ^*, Ω^* spectroscopy
 - Line-shape measurements (~2 MeV resolution)
 - Electromagnetic (& weak) transition form factors
- Production mechanisms
 - Isospin sensitivity via np and pp reactions
 - Input to transport models
- Strangeness propagation in cold matter
 - Reference spectra for p+A, A+A
 - Nuclear modification factors RAA

ution) factors

Interaction studies in strange and charm sectors

YN & YY *interaction* studies, *complementary* approaches

Interaction studies in strange and charm sectors

YN & YY interaction studies, complementary approaches

Femtoscopy

- Measure two-particle correlation function towards small relative momenta
- Source distribution known -> info about interaction
- Disadvantages: source size, feed-down contributions
- Advantages: @SIS100 less feed-down than @LHC, weak dependence on production

Hadronic interaction

Interaction studies in strange and charm sectors

YN & YY interaction studies, complementary approaches

Femtoscopy

- Measure two-particle correlation function towards ightarrowsmall relative momenta
- Source distribution known -> info about interaction
- Disadvantages: source size, feed-down contributions ightarrow
- Advantages: @SIS100 less feed-down than @LHC, weak dependence on production

Dalitz plot analysis

- Mass-correlation study of exclusive final states (FSI)
- Advantages: controllable uncertainties, feed-down manageable (beam energy scan around threshold)
- Disadvantage: spin admixture knowledge requires polarised beam/target, dependence on production

Hadronic interaction

Interaction studies in strange and charm sectors YN & YY interaction studies, complementary approaches

Dalitz plot analysis

- Mass-correlation study of exclusive final states (FSI) lacksquare
- Advantages: controllable uncertainties, feed-down lacksquaremanageable (beam energy scan around threshold)
- Disadvantage: spin admixture knowledge requires polarised beam/target, dependence on production

Charm-nucleon interactions $pp \rightarrow ppJ/\Psi$ final state

Charm valuable probe in QCD:

- Mass scale ~1.5 GeV > $\Lambda_{\rm QCD}$ ~0.2 GeV
- Short formation times ~0.1 fm/c
- Narrow states, "QCD beacons"

. . .

Charm-nucleon interactions $pp \rightarrow ppJ/\Psi$ final state

 (Near-threshold) charm production in NN scattering contains rich info: PDFs, multi-gluon dynamics, ...

Charm *valuable* probe in QCD:

• Mass scale ~1.5 GeV > $\Lambda_{\rm OCD}$ ~0.2 GeV

- Short formation times ~0.1 fm/c
- Narrow states, "QCD beacons"

. . .

1.27 GeV/c² ^{2/3} ^{1/2} C

Charm-nucleon interactions $pp \rightarrow ppJ/\Psi$ final state

- (Near-threshold) charm production in NN scattering contains rich info: PDFs, multi-gluon dynamics, ...
- Search for "LHCb" pentaguarks

GlueX, PRC 108, 025201 (2023)

Charm-nucleon interactions $pp \rightarrow ppJ/\Psi$ final state

- (Near-threshold) charm production in NN scattering contains rich info: PDFs, multi-gluon dynamics, ...
- Search for "LHCb" pentaguarks
- Input to nucleon-structure studies ("controversial"):
 - Role of intrinsic charm of nucleon? (claim LHCb, NNPDF)
 - Trace anomaly contribution to mass of nucleon?
 - Mass radius of the nucleon, "gravitational form factor"?

Validity of VMD and two-gluon exchange questionable (dominance of open-charm $\Lambda_c \bar{D}^{(*)}$ / Pomeron exchange?)

Charm-nucleon interactions

 $pp \rightarrow ppJ/\Psi$ final state

- (Near-threshold) charm production in NN scattering contains rich info: PDFs, multi-gluon dynamics, ...
- Search for "LHCb" pentaguarks
- Input to nucleon-structure studies ("controversial"):
 - Role of intrinsic charm of nucleon? (claim LHCb, NNPDF)
 - Trace anomaly contribution to mass of nucleon?
 - Mass radius of the nucleon, "gravitational form factor"?

Simulations by Ömer Penek using FastSim

Charm-nucleon interactions $pp \rightarrow ppJ/\Psi$ final state + $pp \rightarrow p\bar{D}\Lambda_c$, ... to *complete* the picture

- (Near-threshold) charm production in NN scattering contains rich info: PDFs, multi-gluon dynamics, ...
- Search for "LHCb" pentaquarks
- Input to nucleon-structure studies ("controversial"):
 - Role of intrinsic charm of nucleon? (claim LHCb, NNPDF)
 - Trace anomaly contribution to mass on nucleon?
 - Mass radius of the nucleon, "gravitational form factor"?

Good acceptance, low branching fractions and requires vertex detector

\bar{p} @ HESR: charm

Pion- and (anti)proton-induced QCD studies at GSI/FAIR ...from SIS18 to SIS100

- Ambition: realise a long-term prosperous QCD-driven program @GSI/FAIR
- Exploit hadronic beams in the strong, "baryon-rich", QCD regime
- Address questions in QCD connecting the interest and expertise of hadron, nuclear and heavy-ion communities
- White paper in preparation: you are welcome to join and contribute!

Hadron spectroscopy

QCD@FAIR

Heavy-ion dynamics

Hadron production

j.messchendorp@gsi.de

Backup material

.....

-

Some of the topics

...from light, to strange up to charm! ...from quark & gluonic to hadronic up to cold matter studies!

- |S| = 2, 3 Hyperon Spectroscopy & Production
- • Ξ Hyperon Production: From pp to pA & AA
- φ Production and K- Rescattering
- •Hyperon Interaction Studies
- •Hyperon EM&Weak-Structure
- •PP J/ ψ Final State, Open Charm
- •Exotics
- •Hard Hadronic Processes: Transition GPDs
- Forward Spectators and Neutrons
- Input for pA and AA Physics, polarization

Adapted from talk by J. Ritman

A comprehensive **CCD** program!

Hadron structure

Mass-radius of the proton

E.m.+weak transition Form Factors of hyperons

Dilepton production sources

Production mechanisms axial and vector mesons

> Few-body interactions

Reference measurements for p+A,A+A

Polarisation sources

Near-threshold (anti) strange and charm production

Nuclear modification factors

Heavy-ion dynamics

QCD dynamics within baryons Hadron

spectroscopy

Emergent Hadron Mass

Intrinsic charm of the proton

protons@SIS100

Strange and charm High intensity Versatile detectors High-rate capabilities SU(3) baryon-like spectroscopy

 $N \rightarrow N/\Delta$ GPDs via 2->3 hadronic reactions

> Line-shape measurements of hyperon resonances

Femtoscopy

Hypernuclei via spallation Charm-nucleon interactions

> **Final-state** interactions using PWA

Search for exotic form of hadrons

> Hadron production

Production mechanisms of hadrons

Microscopic study of hadron-hadron interactions

Transition GPDs $p + p \rightarrow p + \pi + B(n, \Delta^0, \Delta^{++})$ $H(x, \xi, t)$

- GPDs provide 3D image in the transve coordinate and longitudinal momentum $H(x,\xi,t)$
- At the forward scattering limit ($\xi = 0, t = 0$), GPDs become the usual PDFs; first moments of GPDs provide elastic form factor limit
- $2 \rightarrow 3$ hadronic reactions access ERBL
- Meson-nucleon scattering at large angles good probe of short-distance effects (Color Transparency -> heavy-ion studies!)

Transition GPDs $p + p \rightarrow p + \pi + B(n, \Delta^0, \Delta^{++})$

- GPDs provide 3D image in the transverse coordinate and longitudinal momentum space
- At the forward scattering limit ($\xi = 0, t = 0$), GPDs become the usual PDFs; first moments of GPDs provide elastic form factor limit
- $2 \rightarrow 3$ hadronic reactions access ERBL
- Meson-nucleon scattering at large angles good probe of short-distance effects (Color Transparency -> heavy-ion studies)
- Factorisation $p \rightarrow B$ (GPD) with $h + p \rightarrow \pi + p$ may appear at $\theta_{\pi p}$ ~ 90°
- High cross sections (μb) expected (meson-pole model)
- Complementary kinematics covered at CBM $(\theta_{\pi,p} < 25^{\circ})$ and JPARC E16 $(\theta_{\pi,p} > 15^{\circ})$

Example topics in the strange sector Hyperon structure studies

- **Electromagnetic properties of hyperons**
 - Study $Y^* \to Y\gamma^* \to Ye^+e^-$
 - Determine electric and magnetic time-like form factors
 - Decay rates sensitive to structure, q² dependence
 - Low branching fractions accessible at SIS100 energies with CBM
 - Study of weak transition form factors ($\Omega \to \Xi^* \bar{\nu}_{\ell} \ell^-$)
 - Many theoretical activities: Eichmann, Fischer, Leupold, Pena, ...

	"Facilities exploiting exclusive hyperon studies"					
Timeline	2024		2028		2032	
Probe:	FAIR	Phase 0	FS+		MSVc	
$\pi \perp m / \Delta$		HA Stage 1	ADES Stage 2		HADES available? Stage 3	
$\pi + p/21$			JPARC			
m + m/A		HADES@S	IS18	CBM / HADES@SIS100?		
$\bar{p} + p/A$					PANDA?	
			KLF			
$\frac{\kappa + p}{A}$	JPARC					
$\gamma^{(*)} + p/A$	N	MAMI/ELSA/GLueX/CLAS12		EIC		
$e^+ + e^-$	BESIII/BelleII			BelleII/		

"Facilities exploiti
2024
FAIR Phase 0
Stage 1
HADES@
MAMI/ELSA/GLueX
BESIII/Be

ing exclusive hyperon studies"

2028	2032		
FS+	MSVc		
IADES Stage 2	HADES available? Stage 3		
JPARC			
SIS18	CBM / HADEs SIS100?		
CERN / JPARC / NICA			
	PANDA?		
KLF			
JPARC			
CLAS12 EIC			
lell	BelleII/		

Conceptual long-term pion program

Conceptual long-term pion program

Stage 1: "N/ Δ * spectroscopy, dynamics and structure"

- N^*/Δ ; Cold matter studies

Stage 2: "Y(|S|=1) spectroscopy and dynamics"

fears

- transition studies (γ/e^+e^-) of (excited) hyperons
- Energies points selected within $\sqrt{s} = 1.8 2.0 \,\text{GeV}$

Stage 3: "Y(|S|=1) structure"

• Scan various c.m. energies at moderate luminosities (~10⁵ - 10⁶ π /spill) <u>Physics</u>: precision data in S=0, e.g. $\pi N \rightarrow \pi \pi N / \eta N / \omega N / KY$; eTFF with

• Energies range $\sqrt{s} = 1.4 - 2.0 \,\text{GeV}$ (including 2014 & 2025 runs)

• Selected c.m. energies at high luminosities (~10⁶ - 10⁷ π /spill)

<u>Physics</u>: precision data in |S|=1 sector with hadronic final states; radiative

Precision di-lepton spectroscopy with high q² sensitivity in Y^{*} e.m. decays