

Structure of the $\Lambda(1405)$ From Photoproduction at Give

Reinhard Schumacher Carnegie Mellon University

With Nilanga Wickramaarachchi (Catholic Univ.) & Peter Hurck (Univ. Glasgow) & Other GlueX Collaborators

6-18-24 NSTAR2024, York, UK

- \blacksquare Place of the $\Lambda(1405)$ in the world
- GlueX measurement for two final states
- \blacksquare K-matrix fits with one or two $\Lambda(1405)$ resonances & two scattering states
- Pole positions and branchings of the two resonances

Recall the Motivation

- What is the place of the $\Lambda(1405)$ in baryonic physics?
 - It's too light, compared to $\Lambda(1520),$ in the quark model.
 - Close to the $N\overline{K}$ mass threshold molecular/penta aspect.
 - Decays to $\Sigma \pi$, but MUST also decay to $N\overline{K}$.
- Chiral unitary models, CPT, LQCD (& others) predict <u>two</u> I=0 states in $\Lambda(1405)$ mass range.
- GlueX has the best data set making it cleanly in photoproduction: $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \{\Sigma^0 \pi^0\} \rightarrow K^+ \{p \ K^-\} (> N\overline{K} \text{ threshold})$

Chiral Unitary Models

Fig. 1. Trajectories of the poles in the scattering amplitudes obtained by changing the SU(3) breaking parameter x gradually. At the SU(3) symmetric limit (x = 0), only two poles appear, one is for the singlet and the other for the octets. The symbols correspond to the step size $\delta x = 0.1$.

- SU(3) baryons irreps 1+8_s+8_a combine with 0 - Goldstone bosons to generate:
 - Two octets and a singlet of $\frac{1}{2^{-}}$ baryons dynamically generated in the SU(3) limit
 - SU(3) breaking leads to two S = -1, I = 0 poles near 1405 MeV
 - ~1420 mostly $N\overline{K}$
 - ~1390 mostly $\Sigma~\pi$
 - Possible weak I=1 pole also predicted

Y Rele positions from the literature

- Higher pole ~1430 MeV couples more strongly to $N\overline{K}$, lower pole ~1390 MeV couples more to $\Sigma\pi$
- Many theorists believe: $N\overline{K}$ quasi-bound state submerged in $\Sigma\pi$ continuum: coupled-channel dynamics
- Most data from low-energy NK scattering, kaonic atoms not very sensitive to $\Sigma\pi$ pole position

GlueX approach is new and different

Pole positions from the literature

B. Cid-Mora, HIM Mainz, MENU 2023 Lattice QCD Theory

J. Bulava et al., Phys Rev Lett 132, 051901 (2024)J. Bulava et al., Phys Rev D 109, 014511 (2024)

GLUE System at JLab

The GlueX Beamline and Detector NIM A 987, 164807 (2021)

- ~ 12 GeV e⁻ beam converted to
 6.5 11.6 GeV photon beam
- 30 cm LH2 target
- ~ 1.5 T Solenoidal magnet
- Drift chambers
- Start counter/Time of flight
- Electromagnetic Calorimeters
- This analysis: Data from "Phase I" runs 2017, 2018

GlueX Competitive Advantages:

• GlueX has world's best data set making $\Lambda(1405)$ cleanly in photoproduction: $\gamma p \rightarrow K^+ \Lambda(1405)$

 $\rightarrow K^+ \{\Sigma^0 \ \pi^0\}$ (pure I = 0, no I = 1 contamination)

$$\rightarrow \mathbf{K}^{+} \{ \{ \gamma \Lambda \} \pi^{0} \} \rightarrow \mathbf{K}^{+} \gamma \mathbf{p} \pi^{-} \gamma \gamma$$

• GlueX also has: $\gamma p \rightarrow K^+ \Lambda(1405)$

 $ightarrow K^+ \ \{p \ K^-\}$ (when above $N\overline{K}$ threshold)

- Do K-matrix fit to both final states together
 - Never done before...

Experimental Method I

• $\Sigma^0 \pi^0$ channel

- Exclusive kinematic fit to beam photon & final state {K⁺ γ p π⁻ γ γ} particles
- Constrain Λ and π^0 masses, but not Σ^0 mass, in each $\Sigma^0 \pi^0$ mass bin
- Background removal fit under Σ^0 in each $\Sigma^0\pi^0$ mass bin
- Use common GlueX acceptance & photon flux normalizations

Experimental Method II

• $\Sigma^0 \pi^0$ channel

- Clean detection of $\Lambda(1405)$ & $\Lambda(1520)$
- Evident pK⁻ threshold effect
- Smooth acceptance

- *p*K⁻ channel
 - $\Lambda(1520)$ sits on top of $\Lambda(1405)$ tails
 - Good, smooth acceptance

Cross Sections Differential in Mass

K-matrix formalism* (outline sketch)

- We have two resonances, $\Lambda(1405)_A$ and $\Lambda(1405)_B$, each coupled to $\Sigma^0 \pi^0$ and p K⁻. The $\Lambda(1520)$ also decays to the same final states.
- Assume J= $\frac{1}{2}$ L=0 states do no interfere with J=3/2 L=2 state

$$\widehat{T} = \left(I - i\widehat{K}\rho\right)^{-1}\widehat{K}$$
$$K = \sum_{\alpha} \frac{m_{\alpha}\Gamma_{\alpha}(m)}{m_{\alpha}^2 - m^2}$$

$$\widehat{K_{ij}} = \sum_{\alpha} \frac{\gamma_{\alpha i} \gamma_{\alpha j} m_{\alpha} \Gamma^0_{\alpha}}{m_{\alpha}^2 - m^2} B^l_{\alpha i} B^l_{\alpha j}$$

Lorentz-invariant T-matrix (2 in x 2 out)

Sum over resonances A & B ; real function, preserves unitarity of *T*

Invariant K-matrix for available decay modes $i, j = \{\Sigma^0 \pi^0, p K^-\}$

* à la S.U. Chung et al., Ann. Physik 4,404 (1995).

K-matrix formalism* (outline sketch)

$$\widehat{P}_{i} = \sum_{\alpha} \frac{\beta_{\alpha} \gamma_{\alpha i} m_{\alpha} \Gamma_{\alpha}^{0}}{m_{\alpha}^{2} - m^{2}}$$
$$\widehat{F}_{i} = \left(I - i\widehat{K}\rho\right)^{-1}\widehat{P}_{i}$$

$$\frac{d\sigma_i(m)}{dm} \sim \rho_i \left| \widehat{F}_i(m) \right|^2$$

Photoproduction vector for decay modes *i* ; same sum over poles as K matrix

Production exp't replacement of *T* matrix "formation exp't" for decay mode *i*

Fit to experimental data for decay mode *i*

$$T_{11}(m) = \rho_{\Sigma^0 \pi^0}(m) \widehat{T}_{11}(m)$$

Compute *T*-matrix to be tested for unitarity and to find "*T*-matrix poles"

* à la S.U. Chung et al., Ann. Physik 4,404 (1995).

13

K-matrix formalism - issues

- \blacksquare Ignore the possibility of $\eta\Lambda$ and $K\Xi$ decays
- Poles "A" & "B" are below threshold for pK⁻ channel
- Define "branching ratio" & "branching fractions" in terms of fitted $\Sigma \pi$ and $N\overline{K}$ final states
 - Calculate using mass-integrated cross sections to each final state computed for each resonance separately
 - Not computed in terms of pole residues
 - (threshold issues make this difficult)

$\frac{1}{K^{+}}$ 2-Pole K-matrix Fit to $\Lambda(1405)$ A,B

• $\Sigma^0 \pi^0$ channel

- Solid fit to data
- Dashed each A,B resonance separately
- Dotted fit to data:
 - full K-matrix fit with coherent $\Lambda(1405){\rm A,B}$ states
 - prior to convolving 7.8 MeV GlueX mass resolution

■ pK⁻ channel

- Solid fit to data:
 - 2.0 MeV GlueX mass resolution
- Dashed coherent tail of $\Lambda(1405)A,B$ states
- Dotted incoherent high-mass background
 - 3rd order polynomial
- $0.00 \le t \le 1.50 \text{ GeV}^2$ (full range)
- $\Lambda(1520)$ cross section agreement < 5%

1-Pole K-matrix Fit to $\Lambda(1405)B$

- $\Sigma^0 \pi^0$ channel
 - Solid fit to data
 - Dashed single $\Lambda(1405)$ resonance

■ pK⁻ channel

- Solid fit to data
- Dashed pK^- tail of $\Lambda(1405)$ state
- Dotted incoherent high-mass background
 - 3rd order polynomial
- $0.00 \le t \le 1.50 \text{ GeV}^2$ (full range)
- Poorer fit than 2-pole ansatz: especially in critical threshold region

Λ(1520) PDG

arLambda(1520) POLE POSITION

REAL PART 1517 to 1518 (≈ 1517.5) MeV

 $-2 \times \text{IMAGINARY PART}$ 14 to 18 (≈ 16) MeV ($\rightarrow \sim 2 \times 8 \text{ MeV}$)

GlueX (preliminary):

 $(1516.5 \pm 0.3) - i (8.3 \pm 0.1) \text{ MeV}$

Good agreement with PDG: suggests the GlueX method is sound

Check Unitarity of the Amplitudes

R. A. Sch./ CMU

- Argand diagram and squared-magnitude for the $\Sigma^0 \pi^0$ amplitude (red)
 - Two $\Lambda(1405)$ resonances with $\Sigma^0 \pi^0$ and pK^- initial/final states.
 - Each amplitude stays properly bounded.
- Separately, $\Lambda(1520)$ is a single pK⁻ amplitude (blue)

Cross Sections & Branching Fractions

Systematic Uncertainty in Pole Locations

- Variations on the procedures:
 - Nominal fit defines central values
 - Shift mass bins by 4 MeV and redo the fits: sensitive to $\ensuremath{pK^{\scriptscriptstyle -}}$ threshold
 - Tighter kinematic fit cut: sensitive to any backgrounds between $\Lambda 's$
 - Looser kinematic fit cut: " " " " "
 - Slice data by t-bin: $0.00 < t < 0.35 \text{ GeV}^2$
 - " " : $0.35 < t < 0.60 \,\mathrm{GeV^2}$
 - $\blacksquare \qquad " \qquad " \qquad : 0.60 < t < 1.50 \, \mathrm{GeV^2}$
 - Resum t-bins to total: sensitive to acceptance modeling
 - Rescale $\Lambda(1520)$ cross section to exactly match in both channels
- How to combine all this information ?
 - Use "Nominal" fit for central values...
 - Use standard deviations of all fits to define systematic spreads

Systematic Tests Summary I

- Pole Positions
 - Nominal
 - Shifted bins
 - Tighter KINFIT
 - Looser KINFIT
 - t-bin 1
 - t-bin 2
 - t-bin 3
 - Resum t-bins
 - Rescale A(1520) cross section

Systematic Tests Summary II

- Branching Fractions
 - Nominal
 - Shifted bins
 - Tight KINFIT
 - Loose KINFIT
 - t-bin 1
 - t-bin 2
 - t-bin 3
 - Resum t-bins
 - Rescale A(1520) cross section

Y 💦 The Landscape Including GlueX Data/Fit

GlueX (preliminary):

Red dot positions and error bars to be finalized...

Recent (year \geq 2000) predictions: M. Mai – Eur. Phys. J. Spec. Top. 230 6, 1593, (2021)

Thresholds: $\Sigma^0 \pi^0$ 1327.62 MeV *p K*⁻ 1431.95 MeV

GLUE

Project each resonance separately onto the real axis • Integrate $\Sigma^0 \pi^0$ & pK⁻ modes across full mass range: σ_{ii} • Define branching ratio as $\sigma_{\Sigma 0 \pi 0}$ / σ_{pK-} , etc.

Summary/Conclusions

- First measurement of the $\Lambda(1405)$ s decaying two separate ways: $\Sigma^0\pi^0$ & pK^-
- K-matrix fit to two intermediate resonances: A & B
- Two-pole ansatz is superior to single-pole ansatz
- Branching ratio/fractions defined and presented
- To do: systematics to be finalized

GlueX acknowledges the support of several funding agencies and computing facilities (http://gluex.org/thanks)

Y \mathbf{K}^{+} Rescaling of pK⁻ and $\Sigma^{0}\pi^{0}$ Data

- Trust that isospin holds exactly
- Trust that PDG branching fractions are all OK
- Part I: Scale (Peter's) $\Lambda(1520) \rightarrow p K^-$ cross section to match (Nilanga's) $\Lambda(1520) \rightarrow \Sigma^0 \pi^0$ cross section
 - $p K^-$ branch to $\Lambda(1520)$ total: x 1/(0.45/2) (scale up)
 - Total $\Lambda(1520)$ to $\Sigma^0 \pi^0$:
- x 0.42 / 3 (scale down)
- Net p K⁻ rescaling factor = 0.6222

Rescaling of pK^- and $\Sigma^0\pi^0$ Data

- The p K⁻ "background" gets rescaled, too... so...
- Part II: Scale (Reinhard's) computed model $\Lambda(1405) \rightarrow p K^-$ <u>tail</u> to match rescaled $\Lambda(1520) \rightarrow \Sigma^0 \pi^0$
 - We see only $\Sigma^0 \pi^0$ but not $\Sigma^+ \pi^- \& \Sigma^- \pi^+ : \times 3.0$ (scale up)
 - (this is the total strength of $\Lambda(1405)$ production)
 - Equal $\Lambda(1405)$ decay to nK^0 and pK^- : x 0.5 (scale down)
 - Adjust for the pK^- data rescaling: x 0.622
 - Net pK⁻ calculated tail curve rescaling = 0.9333

Rescaling of pK^- and $\Sigma^0\pi^0$ Data

- Our quoted $\Lambda(1405)$ branching ratio/fractions are for isospin-corrected $\Sigma \pi$ and $N\overline{K}$
- Part III: Scale measured cross sections to account for isospin
 - We measure (Nilanga) $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$, not $\Sigma^+ \pi^- \& \Sigma^- \pi^+$, so correct for isospin: × 3 (scale up)
 - Computed $N\overline{K}$ tail (Reinhard) from $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$, again correct for isospin: × 3 (scale up)
 - (K-matrix fit does not, in itself, distinguish NK modes)