An H-dibaryon search experiment at J-PARC and its various byproducts

Fumiya OURA

(Tohoku University, Japan) for the J-PARC E42 collaboration

NSTAR2024 York, UK, June 17th, 2024

NSTAR2024

NSTAR2024

- Search for H-dibaryon
 - History of search for H-dibaryon
 - New attempt at J-PARC (E42 experiment)
 - Current status
- Other topics
 - Kaonic nucleus search via exclusive ${}^{12}C(K^-, p)$ reaction
 - [•] Measurement of Ξ -nucleus optical potential via ${}^{12}C(K^-, K^+)$
 - □ Polarization measurement of Ξ and $\Xi^*(1535)$ via $p(K^-, K^+)\Xi/\Xi^*$
 - [•] Study of ChSB effect by measurement of $K^*(892)$ vector mass via ${}^{12}C(K^-, p)$

024

5

Search for H-dibaryon

H-dibaryon : exotic hadron, six quark state of uuddss (I=0, J=0)

- Bound or resonance? Mass close to $\Lambda \Lambda$ or ΞN threshold?
 - Very meaningful because this state is deeply related to $\Lambda \Lambda \Sigma \Sigma \Xi N$ coupling channel
 - Lattice QCD calculation \rightarrow near ΞN threshold

History of H-dibaryon search

KEK-PS E522

statistics & resolution not enough

C. J. Yoon *et al.* Phys. Rev. C **75**, 022201(2007)

Search for H-dibaryon

- H-dibaryon : exotic hadron, six quark state of uuddss (I=0, J=0)
- Bound or resonance? Mass close to $\Lambda \Lambda$ or ΞN threshold?

• Lattice QCD calculation \rightarrow near ΞN threshold

History of H-dibaryon search

J-PARC E42 experiment

- J-PARC (Japan Proton Accelerator Research Complex) high energy and high intensity proton beam is available
- Hadron hall

We can use a variety of secondary beams such as kaon, pion, and so on.

6

J-PARC E42 experiment

- Invariant mass spectroscopy of H-dibaryon using HypTPC (J-PARC E42)
 Completed in 2021
 - -1.8 GeV/c Kaon beam on a diamond target

Analysis of KURAMA spectrometer 7 for the forward scattered particles

F.Oura, NSTAR24,

June17th2024 Analysis of Hyperon Spectrometer (HypTPC) for decay particles

F.Oura, NSTAR24,

$\Lambda\Lambda$ reconstruction

	Summary of past experiments		
$3000 \Lambda\Lambda$ events are reconstructed		KEK E224	KEK E522
not full data)	Beam K ⁻	p_(K ⁻) = 1.65 GeV/c	p_(K ⁻) = 1.66 GeV/c
Not full date 1.15 1.10 1.11 1.11 1.13 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15	p_(K⁺) [GeV/c]	0.95 <p_(k<sup>+) <1.3</p_(k<sup>	0.9 <p_(k<sup>+) <1.3</p_(k<sup>
	$d\sigma/d\Omega(\Lambda\Lambda)$	7.6 µb/sr	12.8 µb/sr
	$\Lambda\Lambda$ yield	35 events	68 events
	Comparison with expected yield		
	p_(K⁺) [GeV/c]	0.95 <p_(k⁺) <<="" td=""><td>1.3 0.5 < p_(K⁺)</td></p_(k⁺)>	1.3 0.5 < p_(K ⁺)
	Assumed $d\sigma/d\Omega(\Lambda\Lambda)$	7.6 µb/sr 12.	8 µb/sr
	Expected $\Lambda\Lambda$	337 events 570	events
	Expected $\Lambda\Lambda$ yield	520 events 880	events
$M_{\Lambda 1}(GeV(C^2))$	Measured $\Lambda\Lambda$ yield	1,390 event	s 3,030 events

More than expected! We will open H-dibaryon box soon!

10

HypTPC enables investigation in many other topics as well

We are currently working on the following topics using E42 data;

- 1. Kaonic nucleus search via exclusive ${}^{12}C(K^-, p)$ reaction
- 2. Measurement of Ξ -nucleus optical potential via ${}^{12}C(K^-, K^+)$
- 3. Polarization measurement of Ξ and $\Xi^*(1535)$ via $p(K^-, K^+)\Xi/\Xi^*$
- 4. Study of ChSB effect by measurement of $K^*(892)$ vector mass via ${}^{12}C(K^-, p)$

Hopefully, there may be many other byproducts!

Byproduct1. **Kaonic nucleus search** - KN interaction & bound system -

- $\overline{K}N$ (I=0) attractive interaction results in $\Lambda^*(1405)$? [1]
- $\overline{K}NN$ state search (J-PARC E15) [2]
 - Clear bump structure in I.M. via ${}^{3}\text{He}(K^{-},\Lambda p)n$
 - Lightest kaonic nucleus
 - [•] $B_K = 42 \pm 3 {}^{+3}_{-4}$ MeV / $\Gamma_K = 100 \pm 7 {}^{+19}_{-9}$ MeV
 - Due to $\overline{K}N$ and Λ^*N attraction?

F.Oura, NSTAR24, June17th2024

11

[1] T. Hyodo, D. Jido Prog. Part. Nucl. Phys., **67**, 021D01 (2015)

Byproduct1. Kaonic nucleus search - $\overline{K}N$ interaction & bound system -

F.Oura, NSTAR24, June17th2024

12

[3] Y. Ichikawa et al., PTEP 2020, 123D01(2020)

(a

160E

ŝ

d²σ/dΩ/dM

+ Data

"n" $\rightarrow \Sigma^+ \pi \pi$

"n" $\rightarrow \Lambda \pi \pi \pi$ BreitWigner

< θ_{Kp(Lab)} < 4.5

- \square ¹²C(K⁻, p) missing mass • Optical potential between K^- and the core nucleus $(V_0, W_0) = (-80, -40) \text{ [MeV]}$ [3] $(V_0, W_0: real/imaginary part)$
 - Event excess in a deeper energy region.
 - Come from a Y^* bound state? Y^* nucleus?

Byproduct1. Kaonic nucleus search via ${}^{12}C(K^-,p)$

F.Oura, NSTAR24,

June17th2024

- In parallel with H search, we can search \overline{K} nucleus via the same ${}^{12}C(K^-, p)$ Possible to measure decay particles Λp using Time-Projection chamber, HypTPC
- Possible to observe a clear bump structure with good S/N ratio

Byproduct2. Measurement of Ξ^- -nucleus optical potential via $12C(K^-, K^+)$

• Many experiments have studied Ξ^- -nucleus interaction but its imaginary part have not been well determined yet. Difficult to determine from the inclusive measurement.

200 - Total

-40

to be published

Background

J-PARC E05

Resolution:

-20

MeV (FWHN

lchikawa *et al*., PTEP,

0

 $\theta_{lab} < 14$

BNL E885

J-PARC E05/E70 ¹²C(K⁻, K⁺) inclusive spectrum

40

-B₌ [MeV]

20

Best resolution 2 MeV will be achieved in E70

F.Oura, NSTAR24,

June17th2024

F.Oura, NSTAR24,

HypTPC

E = 130V/cn

and Target

June17th2024

15

- E42 experiment can investigate
 - Ξ^- escape or $\Xi^- p \rightarrow \Lambda\Lambda$ conversion spectra
 - \rightarrow Sensitive to the imaginary part of the potential!

¹²C(K⁻, K⁺) inclusive spectrum

Byproduct3. Polarization measurement of Ξ and $\Xi^*(1535)$ via $p(K^-, K^+)\Xi/\Xi^*$

- Some "bump" structures in forward region of $p(K^-, K^+)\Xi^-$ with existing data [4]
- $^{_{\rm D}}$ Accounted for by significant contribution from s-channel A(2100, 7/2-) and $\Sigma(2300,\,7/2+)_{[5]}$
- Polarization study is required to investigate the spin structure
- E42 can approach cosθ>0.83 region.
 Decay amplitude → angular distribution
 Angular distribution → polarization

[4] G. Burgun et al., Nucl. Phys. B 8, 447 (1968)

 $\vec{F} \propto K^{-} \times \Xi^{-} \qquad \Lambda(a | \frac{1}{2}, \frac{1}{2} > \\ +b | -\frac{1}{2}, \frac{1}{2} >)$ $\vec{F} = -(|\frac{1}{2}, \frac{1}{2} >)$ $\vec{F} = -(|\frac{1}{2}, \frac{1}{2} >)$ $\vec{F} = -(|\frac{1}{2}, \frac{1}{2} >)$

F.Oura, NSTAR24,

June17th2024

Byproduct4.F.Oura, NSTAR24,
June17th2024Study of ChSB effect by measuring17 $K^*(892)$ vector mass via ${}^{12}C(K^-, p)$

- Chiral symmetry is believed to be partially restored in nuclear medium
- K*(892) are suitable for studying possible in-medium modification of mass because of smaller width of the mass than other meson candidates
- ^a HypTPC can observe $K^*(892)$ by reconstructing $K_s^0 \to \pi^+\pi^-$ and finally $K^*(892) \to K_s^0\pi^-$

18

Summary

- H-dibryon search
 - Existence and properties of H-dibaryon are still under discussion
 - We performed a new search experiment called E42 at J-PARC using TPC
 - TPC analysis is ongoing for opening the H-dibaryon box soon
- Byproducts
 - 1. Kaonic nucleus search via exclusive ${}^{12}C(K^-, p)$ reaction
 - 2. Measurement of Ξ -nucleus optical potential via ${}^{12}C(K^-, K^+)$
 - 3. Polarization measurement of Ξ and $\Xi^*(1535)$ via $p(K^-, K^+)\Xi/\Xi^*$
 - 4. Study of ChSB effect by measurement of $K^*(892)$ vector mass via ${}^{12}C(K^-, p)$
 - We are analyzing data for these topics in parallel. Many, new results are coming soon!
 NSTAR2024