HYPERON DALITZ DECAYS

WITH PANDA@HADES

NSTAR2024 YORK

JANA RIEGER FOR THE HADES COLLABORATION

JUNE 17-21, 2024

Hadron Structure

Interactions of virtual photons with hadrons reveal their inner structure

nucleon charge density from electron-nucleon elastic scattering

The Hype about Hyperons

The Hype about Hyperons

They are strange!

Strangeness extends the baryon spectrum

UPPSALA UNIVERSITET

Electromagnetic Transition Form Factors

- Coupling of virtual photon to hadron, dependent on four-momentum transfer $Q^2=-q^2 \label{eq:Q2}$

Sensitive to charge and magnetization density

Electromagnetic Transition Form Factors

Sensitive to charge and magnetization density

Electromagnetic Transition Form Factors

Sensitive to charge and magnetization density

 Δ and $N^*(1520)$ baryon Dalitz decay measured by HADES $_{Phys.\ Rev.\ C\ 95,\ 065205;\ arXiv:2205.15914}$ Talk by I.Ciepal (Tuesday plenary)

What can we learn from them? $\Sigma^0 \to \Lambda \text{ Transition Form Factors}$

$\text{BESIII: } \mathbf{e}^+\mathbf{e}^- \to \Lambda \boldsymbol{\bar{\Sigma}}^0$

- Large $q > M_{\Lambda} + M_{\Sigma^0}$
- Extract effective FFs $\frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}$ $F(s) = \sqrt{2}$ $e^+e^- \rightarrow \Lambda \bar{\Sigma} + c.c.$ (b) 0.3 This work Sffective FF |F(s)|BARAB $\Lambda \overline{\Sigma}^0$ threshold 0.2 0.1 0 2.53 \sqrt{s} (GeV) arXiv:2308.03361 [hep-ex]

What can we learn from them? $\Sigma^0 \to \Lambda \text{ Transition Form Factors}$

$\text{BESIII: } \mathbf{e}^+\mathbf{e}^- \to \Lambda \boldsymbol{\bar{\Sigma}}^0$

• Large $q > M_{\Lambda} + M_{\Sigma^0}$

HADES: $\pmb{\Sigma^0} \rightarrow \pmb{\Lambda e^+ e^-}$

Predicted BR: 0.55% Eur. Phys. J. C (2020) 80: 218

- $q < 77 \,\mathrm{MeV}$
- Extrapolate TFF to photon point →magnetic moment
- Increase predictive power of dispersion theory

LIDDSAL /

LINUVED STTE

What can we learn from them?

 $\Lambda(1520)/\Sigma^0(1385) \to \Lambda e^+e^- \qquad \mbox{Strange "partner" of $\mathsf{N}^*(1520)$}$

Predicted BR: $10^{-2}\,\%$

- $q < 270 405 \,\mathrm{MeV}$
- Probe the size of hadrons
- Test vector dominance model

Phys. Rev. D 102, 054016

Never measured before!

INUMERSITY

$\bar{\mathsf{P}}\mathsf{ANDA}$ @HADES – Setup for pp @ 4.5 GeV Beam Time

AND ITS CHALLENGES

The Slow Lepton Challenge

- Small $\Sigma^0 \Lambda$ mass difference \rightarrow $\,$ slow leptons
- At least one of leptons gets bent out of acceptance by magnetic field

11

Overcome the Slow Lepton Challenge

- Require 1 full lepton track + 1 "mini-tracklet"
- Mini-tracklet: RICH ring plus hits in MDC I+II
- Advantage: Small $\Sigma^0 \Lambda$ mass difference
- Full lepton track carries most of the energy
- Σ^0 can be seen in Λe invariant mass
- Estimate mini-tracklet momentum
- RICH ring radius depends on momentum for $p<\approx 100\,{\rm MeV}$
- New method in HADES work in progress

Estimation of Mini-Tracklet Momentum

Ring radius depends on momentum for $\mathit{p_e} < \approx 100 \, \mathrm{MeV}$

- $p_e = 20 \,\mathrm{MeV} \hat{=} r = 21 \,\mathrm{mm}$
- $p_e = 80 \,\mathrm{MeV} \hat{=} r = 23.5 \,\mathrm{mm}$

but also on polar angle.

Solution: Simulation study Angle dependent ring radius – momentum matching

momentum mean and standard deviation

Example: positrons at 34 degree

Estimation of Mini-Tracklet Momentum

Ring radius depends on momentum for $\mathit{p_e} < \approx 100 \, \mathrm{MeV}$

- $p_e = 20 \,\mathrm{MeV} \hat{=} r = 21 \,\mathrm{mm}$
- $p_e = 80 \,\mathrm{MeV} \hat{=} r = 23.5 \,\mathrm{mm}$

but also on polar angle.

Solution: Simulation study Angle dependent ring radius – momentum matching

momentum mean and standard deviation

Dilepton mass – opening angle relation

Example: positrons at 34 degree

Estimation of Mini-Tracklet Momentum

Ring radius depends on momentum for $p_e \ll 100 \,\mathrm{MeV}$

- $p_e = 20 \,\mathrm{MeV} \hat{=} r = 21 \,\mathrm{mm}$
- $p_e = 80 \,\mathrm{MeV} \hat{=} r = 23.5 \,\mathrm{mm}$

but also on polar angle.

Solution: Simulation study Angle dependent ring radius - momentum matching

momentum mean and standard deviation

Example: positrons at 34 degree

Dilepton mass – opening angle relation

LINUVED STTE

The Λ Hyperon Challenge

- A mean life: $2.6 \cdot 10^{-10} s$
- Decays in displaced vertex with $c au=7.89\,\mathrm{cm}$
- Only charged decay mode (BR = 64%) seen in HADES
- Worse resolution for off-vertex tracks ($\approx 5\%$)
- p and π^- slightly slower since they travel some distance "inside" Λ

Overcome the Λ Hyperon Challenge

Event selection using special decay topology

Important variables:

Primary Vertex

- Coordinates of POCA of e^- and beam
- Distance of closest approach of e^- and beam

Secondary Vertex

- Coordinates of POCA of p and π
- Distance of closest approach of p and π
- Opening angle of p and π

Pointing Vector Angle (PVA)

Λ Hyperon Signal – with e^+e^- pair in same event

p in HADES

- 1. Preselection on vertices, preserves almost all Λ hyperon signal
- 2. Selection on PVA ${<}0.5$ for high Λ signal significance

Preliminary Result: $\Lambda e^{+/-}$ Invariant Mass

 $\Sigma^0
ightarrow \Lambda e^+ e^-\,$ MC, 100 million events

• Fit bifurcated Gaussian to signal

Preliminary Result: $\Lambda e^{+/-}$ Invariant Mass

 $\Sigma^0 \rightarrow \Lambda e^+ e^-$ MC, 100 million events

- Fit bifurcated Gaussian to signal
- Estimate background from $pp \rightarrow pK^+ \Lambda \pi^0$ simulation

Preliminary Result: $\Lambda e^{+/-}$ Invariant Mass

pp data, 7 days, A sideband subtracted

- Fit signal function + background to pp data
- Parameters limited from sim result

 $\Sigma^0
ightarrow \Lambda e^+ e^-$ MC, 100 million events

- Fit bifurcated Gaussian to signal
- Estimate background from $pp \rightarrow pK^+\Lambda\pi^0$ simulation

16

Final Challenge: Conversion

It looks basically the same.

MC, $\Sigma^0 \rightarrow \Lambda \gamma$, 100 million events

Final Challenge: Conversion

It looks basically the same.

MC, $\Sigma^0 \rightarrow \Lambda \gamma$, 100 million events

But there is hope.

- Conversion supression cut on primary vertex and RICH observables
- Estimate from Simulation: For BR= $5 \cdot 10^{-3}$: almost 3 × more Dalitz decays than photon conversion in peak

UPPSALA UNIVERSITET

Towards the Form Factor Measurement

Needed: Differential Σ^0 decay width as a function of the di-lepton invariant mass

Towards the Form Factor Measurement

Needed: Differential Σ^0 decay width as a function of the di-lepton invariant mass

OUTLOOK ON $\Lambda(1520)$ AND $\Sigma^0(1385)$

BOTH LEPTON TRACKS FULLY RECONSTRUCTED

Expectations from Simulations

- True p and π^- from Λ , e^+ and e^- in acceptance
- 500 000 MC events analyzed
- pp@4.5 GeV Luminosity: $\mathcal{L} = 6.47 \, \mathrm{pb}^{-1}$

(1) PDG, Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

(2) HADES, Eur. Phys. J. A (2021) 57: 138

Hyperon	$\Lambda\gamma^{(1)}$	Λe^+e^- (prediction)	cross section ⁽²⁾	$\# Y^* ightarrow \Lambda e^+ e^-$
Σ ⁰ (1385)	1.25%	$1.25 \cdot 10^{-2} \%$	$56.2\mu b$	378
٨(1520)	0.85%	$0.85 \cdot 10^{-2} \%$	$69.6\mu b$	439

Summary

- Inclusive analysis with mini tracklet seems promising
- Relatively clean Λ hyperon signal by exploiting decay topology
- Σ^0 observed in Λe^- invariant mass spectrum
- Differential measurement in q^2 possible
- HADES can do first measurement of a hyperon electromagnetic Dalitz decay!

Summary

- Inclusive analysis with mini tracklet seems promising
- Relatively clean Λ hyperon signal by exploiting decay topology
- Σ^0 observed in Λe^- invariant mass spectrum
- Differential measurement in q^2 possible
- HADES can do first measurement of a hyperon electromagnetic Dalitz decay!

Outlook

- Fine-tune analysis
- Run on full pp@4.5 GeV data set
- Do $\Sigma^0 \to \Lambda \gamma$ analysis for normalization
- Measure Dalitz decay branching ratio
- Measure first estimate of electromagnetic $\Sigma^0 \Lambda$ Transition Form Factor at low q^2
- Do full analysis for Heavy hyperon Dalitz decays
 - ightarrow Measure upper limit of Dalitz decay branching ratio

BACKUP

Geometric Λ Pre-Selection

Primary Vertex

Distance of closest approach e+beam

Secondary Vertex – DOCA $p + \pi^-$

p in Forward Detector

Conversion Rejection

Fired Photomultipliers in RICH Ring

track

