

Outline

Cover Image - Brookhaven National Lab, https://www.flickr.com/photos/brookhavenlab/

Stephen JD Kay Universit

University of York

20/06/24

Meson Form Factors - Context

Cover Image - Brookhaven National Lab, https://www.flickr.com/photos/brookhavenlab/

Stephen JD Kay University of York

20/06/24

- Meson Form Factors Context
- Measuring Form Factors

Stephen JD Kay

- Meson Form Factors Context
- Measuring Form Factors
- Light Meson Form Factors at JLab

University of York

20/06/24

Stephen JD Kay

- Meson Form Factors Context
- Measuring Form Factors
- Light Meson Form Factors at JLab
- Light Meson Form Factors at the EIC

University of York

<u>20</u>/06/24

• Interactions and structure are not isolated ideas in nuclear matter

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay
 - Properties of hadrons are emergent phenomena

University of York

3

15

20/06/24

Image - A. Deshpande, Stony Brook University

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay
 - Properties of hadrons are emergent phenomena

<u>University</u> of York

20/06/24

15

• Mechanism known as Dynamical Chiral Symmetry Breaking (DCSB) plays a part in generating hadronic mass

Image - A. Deshpande, Stony Brook University

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay
 - Properties of hadrons are emergent phenomena

- Mechanism known as Dynamical Chiral Symmetry Breaking (DCSB) plays a part in generating hadronic mass
- QCD behaves very differently at short and long distances (high and low energy)

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay
 - Properties of hadrons are emergent phenomena

<u>20/06</u>/24

- Mechanism known as Dynamical Chiral Symmetry Breaking (DCSB) plays a part in generating hadronic mass
- QCD behaves very differently at short and long distances (high and low energy)
 - How do our two distinct regions of QCD behaviour connect?
 - $\,\circ\,$ How does QCD generate \sim 99% of the mass of hadrons?

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay
 - Properties of hadrons are emergent phenomena

- Mechanism known as Dynamical Chiral Symmetry Breaking (DCSB) plays a part in generating hadronic mass
- QCD behaves very differently at short and long distances (high and low energy)
 - How do our two distinct regions of QCD behaviour connect?
 - $\,\circ\,$ How does QCD generate \sim 99% of the mass of hadrons?
- A major puzzle of the standard model to try and resolve!

Stephen JD Kay

15

Revealing the structure of light pseudoscalar mesons at the electron-ion collider

> J Arrington¹, C. Ayerbe Gayoso¹, P. C. Barry^{1,1}, V. Berdisko¹, O. Biosa¹, C. Lonard², M. Dielenbaer¹, M. Dieg¹, R. Brit¹, T. Fredericc¹, Y. Furtstow¹, M. Dieg¹, R. Brit¹, T. Fredericc¹, Y. Furtstow¹, B. Biotheg¹, C. Kopp¹, H. Hur, Tin¹, C. Marra¹, R. Montgonery¹, S. L. Peg¹, K. Rayi. ¹¹, D. Reimer¹, J. Richtgues-Culmtero¹¹, D. Romano¹, G. Salmé¹¹, J. Richt¹, D. Dieberts¹¹, ¹¹, J. Richt¹, ¹¹, D. Dieberts¹¹, ¹¹, J. Biothyses-Culmtero¹¹, D. Romano¹, G. Salmé¹¹, J. Richt¹, ¹¹, ¹¹

Image - G. Huber, modified figure from paper listed.

Stephen JD Kay

University of York

20/06/24

- Only the portion in red is directly from the Higgs current
- Multiple mechanisms at play to give hadrons their mass

20/06/24

15

4

Image - G. Huber, modified figure from paper listed.

Stephen JD Kay

- Only the portion in red is directly from the Higgs current
- Multiple mechanisms at play to give hadrons their mass

University of York

Mass generation mechanisms intricately connected to structure

<u>20</u>/06/24

15

Stephen JD Kav

- Only the portion in red is directly from the Higgs current
- Multiple mechanisms at play to give hadrons their mass

University of York

Mass generation mechanisms intricately connected to structure

<u>20</u>/06/24

15

• The simple $q\bar{q}$ valence structure of mesons makes them an excellent testing ground

Stephen JD Kav

- Only the portion in red is directly from the Higgs current
- Multiple mechanisms at play to give hadrons their mass
 - Mass generation mechanisms intricately connected to structure
- The simple $q\bar{q}$ valence structure of mesons makes them an excellent testing ground
- What can we examine to look at their structure?

15

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Describe momentum space distributions of partons within hadrons

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Describe momentum space distributions of partons within hadrons

20/06/24

5 / 15

University of York

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Describe momentum space distributions of partons within hadrons

20/06/24

5 / 15

 ϕ_{π}^{hard} , the hard tail

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Describe momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_{\pi}^{\rm soft}$ $(k < k_0)$ and $\phi_{\pi}^{\rm hard}$, the hard tail
 - Can treat $\phi_{\pi}^{\mathrm{hard}}$ in pQCD, cannot with $\phi_{\pi}^{\mathrm{soft}}$
 - Form factor is the overlap between the two tails (right figure)

<u>20/06</u>/24

5 / 15

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Describe momentum space distributions of partons within hadrons

- Meson wave function can be split into $\phi_{\pi}^{\rm soft}$ $(k < k_0)$ and $\phi_{\pi}^{\rm hard}$, the hard tail
 - Can treat $\phi_{\pi}^{\mathrm{hard}}$ in pQCD, cannot with $\phi_{\pi}^{\mathrm{soft}}$
- Form factor is the overlap between the two tails (right figure)
 F_π and F_K of special interest in hadron structure studies

- Charged pion (π[±]) and kaon (K[±]) form factors (F_π, F_K) are key QCD observables
 - Describe momentum space distributions of partons within hadrons

- Meson wave function can be split into ϕ_{π}^{soft} $(k < k_0)$ and ϕ_{π}^{hard} , the hard tail
 - Can treat $\phi_{\pi}^{\mathrm{hard}}$ in pQCD, cannot with $\phi_{\pi}^{\mathrm{soft}}$
 - Form factor is the overlap between the two tails (right figure)
- \bullet F_{π} and $\mathit{F}_{\mathcal{K}}$ of special interest in hadron structure studies
 - π Lightest QCD quark system, simple
 - K Another simple system, contains strange quark

Stephen JD Kay

University of York

20/06/24

University of York

• Calculating the pion PDA, ϕ_{π} , without incorporating DCSB produces a broad, concave shape

20/06/24

6

15

- Calculating the pion PDA, ϕ_{π} , without incorporating DCSB produces a broad, concave shape
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA

Stephen JD Kay

University of York

- Calculating the pion PDA, ϕ_{π} , without incorporating DCSB produces a broad, concave shape
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA
- Pion structure and hadron mass generation are interlinked

Stephen JD Kay

University of York

20/06/24

University of York

- Calculating the pion PDA, ϕ_{π} , without incorporating DCSB produces a broad, concave shape
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA
- Similar effect seen with kaon, PDA asymmetric due to heavier *s* quark

Stephen JD Kay

<u>20</u>/06/24

15

6

Form Factors and N* Resonances, Interconnections

• Can gain insight on dressed quark mass function from structure measurements

Form Factors and N* Resonances, Interconnections

• Feed into N* electroexcitation measurements/predictions

Image - V. I Mokeev, New Opportunities for Insight into the Emergence of Hadron Mass from Studies of Nucleon Resonance Electroexcitation, APS DNP Fall 2022, https://meetings.aps.org/Meeting/DNP22/Session/2WC.1

20/06/24

15

University of York

Form Factors and N* Resonances, Interconnections

• Describing all with the same dressed quark mass function \rightarrow Critical validation of insights into emergent mass generation

Image - V. I Mokeev, New Opportunities for Insight into the Emergence of Hadron Mass from Studies of Nucleon Resonance Electroexcitation, APS DNP Fall 2022, https://meetings.aps.org/Meeting/DNP22/Session/2WC.1

20/06/24

15

University of York

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$

<u>20</u>/06/24

- To access F_{π} at high Q^2 , must measure F_{π} indirectly
 - Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$
- At small -t, the pion pole process dominates σ_L

University of York

8 / 15

20/06/24

Stephen JD Kay

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

8 / 15

20/06/24

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

• At small -t, the pion pole process dominates σ_L

University of York

• In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

We do not use the Born term model

8 / 15

20/06/24

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+ n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -

Stephen JD Kay

- Isolating σ_L experimentally challenging
- Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)

8 / 15

University of York

20/06/24

• To access F_{π} at high Q^2 , must measure F_{π} indirectly

• Use the "pion cloud" of the proton via $p(e, e'\pi^+n)$

- At small -t, the pion pole process dominates σ_L
- In the Born term model, F_{π}^2 appears as -

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)
 - Measure Deep Exclusive Meson Production (DEMP)

8 / 15

20/06/24

Stephen JD Kay

University of York
$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$

Stephen JD Kay University of York

• Physical cross section for the electroproduction process is - $2\pi \frac{d^2\sigma}{dt_L} = \epsilon \frac{d\sigma_L}{dt_L} + \frac{d\sigma_T}{dt_L} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt_L} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt_L} \cos 2\phi$

$$\pi \frac{dtd\phi}{dtd\phi} = \epsilon \frac{dt}{dt} + \frac{dt}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{dt}{dt} \cos \phi + \epsilon \frac{dt}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

<u>20/06/24</u>

9 / 15

• $\epsilon \rightarrow$ Virtual photon polarisation

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon \rightarrow$ Virtual photon polarisation

University of York

 In JLab Hall C, L-T separation can be used to isolate σ_L from σ_T

Stephen JD Kay

20/06/24

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon \rightarrow$ Virtual photon polarisation

- In JLab Hall C, L-T separation can be used to isolate σ_L from σ_T
- Need data at lowest -t possible, σ_L has maximum pole contribution here

Stephen JD Kay

20/06/24

9 / 15

University of York

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi,$$
$$\epsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^{-1}$$

• $\epsilon
ightarrow$ Virtual photon polarisation

- In JLab Hall C, L-T separation can be used to isolate σ_L from σ_T
- Need data at lowest -t possible, σ_L has maximum pole contribution here
- Measure at 2(+) values of ϵ

Stephen JD Kay University of York

20/06/24

Stephen JD Kay University of York

20/06/24 10 / 15

Stephen JD Kay University of York

20/06/24 10 / 15

Stephen JD Kay

University of York

20/06/24

JLab F_{π} and F_{K} Measurements - Projections

20/06/24

11 / 15

 JLab 12 GeV program includes measurements of F_π and F_K to higher Q²

JLab F_{π} and F_{K} Measurements - Projections

- JLab 12 GeV program includes measurements of F_{π} and F_{K} to higher Q^{2}
- Major experimental campaign ran from 2018 -2022
- JLab Hall C is the only facility worldwide that can perform this L-T separated measurement
- y-positioning arbitrary, error bars from statistics and projected systematics

Stephen JD Kay

- High precision F_{π} to $Q^2 = 6 \ GeV^2$
- Lower precision F_{π} point at $Q^2 = 8.5~GeV^2$

University of York

20/06/24

JLab F_{π} and F_{K} Measurements - Projections

- JLab 12 GeV program includes measurements of F_π and F_K to higher Q²
- Major experimental campaign ran from 2018 -2022
- JLab Hall C is the only facility worldwide that can perform this L-T separated measurement
- y-positioning arbitrary, error bars from statistics and projected systematics

Stephen JD Kay

- First measurement of *F_K* well above resonance region
- Potentially measure up to $Q^2 = 5.5 \ GeV^2$

University of York

20/06/24

• Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}

Stephen JD Kay University of York

20/06/24

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however

University of York

Stephen JD Kay

• Need good identification of $p(e, e'\pi^+n)$ triple coincidences

20/06/24

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however

Stephen JD Kay

- Need good identification of $p(e, e'\pi^+n)$ triple coincidences
- $\circ\,$ Conventional L-T separation not possible \to would need lower than feasible proton energies to access low $\epsilon\,$

20/06/24

12 / 15

• Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$

University of York

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however
 - Need good identification of $p(e, e'\pi^+n)$ triple coincidences
 - $\circ\,$ Conventional L-T separation not possible \to would need lower than feasible proton energies to access low $\epsilon\,$

<u>20</u>/06/24

12 / 15

- Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- Feasibility of pion form factor measurements demonstrated with ECCE simulations

A. Bylinkin. et. al., NIMA 1052 (2023) 168238 https://doi.org/10.1016/j.nima.2023.168238

University of York

Stephen JD Kay

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however

Stephen JD Kay

- Need good identification of $p(e, e'\pi^+n)$ triple coincidences
- $\circ\,$ Conventional L-T separation not possible \to would need lower than feasible proton energies to access low $\epsilon\,$
- Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- Feasibility of pion form factor measurements demonstrated with ECCE simulations
 - Events generated from DEMP event generator DEMPgen
 - Need to refine simulations with mature ePIC design

A. Bylinkin. et. al., NIMA 1052 (2023) 168238 https://doi.org/10.1016/j.nima.2023.168238, DEMPgen https://github.com/JeffersonLab/DEMPgen/releases/tag/v1.1.0

<u>20</u>/06/24

12 / 15

University of York

- Measurements of the $p(e, e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_{π}
- A challenging measurement however
 - Need good identification of $p(e, e'\pi^+n)$ triple coincidences
 - $\circ\,$ Conventional L-T separation not possible \to would need lower than feasible proton energies to access low $\epsilon\,$
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- Feasibility of pion form factor measurements demonstrated with ECCE simulations
 - Events generated from DEMP event generator DEMPgen
 - Need to refine simulations with mature ePIC design
- Event generator recently modified to generate kaon events
 - Next extension of studies \rightarrow Can we measure F_K too?

A. Bylinkin. et. al., NIMA 1052 (2023) 168238 https://doi.org/10.1016/j.nima.2023.168238, DEMPgen https://github.com/JeffersonLab/DEMPgen/releases/tag/v1.1.0

<u>20</u>/06/24

12 / 15

University of York

Stephen JD Kay

• ECCE appeared to be capable of measuring F_{π} to $Q^2 \sim 32.5~GeV^2$

Stephen JD Kay Universit

University of York

20/06/24

- ECCE appeared to be capable of measuring F_{π} to $Q^2 \sim 32.5~GeV^2$
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - R = 0.013 014 at

lowest -t from VR model

20/06/24

13 / 15

Stephen JD Kay

University of York

- ECCE appeared to be capable of measuring F_{π} to $Q^2 \sim 32.5~GeV^2$
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 014 at lowest -*t* from VR model
- Uncertainties dominated by R at low Q^2
- Statistical uncertainties dominate at high Q²

<u>20</u>/06/24

13 / 15

- ECCE appeared to be capable of measuring F_{π} to $Q^2 \sim 32.5~GeV^2$
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L / \sigma_T$
 - *R* = 0.013 − 014 at lowest −*t* from VR model
- Uncertainties dominated by *R* at low *Q*²
- Statistical uncertainties dominate at high Q²

- Results look promising, need to test π^- too
- ePIC looks comparable or better so far

20/06/24

• Need to process full F_{π} analysis again with ePIC

Stephen JD Kay University of York

20/06/24

• Need to process full F_{π} analysis again with ePIC

University of York

- Analysis roadblocks cleared \rightarrow New projections imminent!
 - Event weight accessible
 - ZDC HCal now implemented
 - B. Schmookler and group at UCRiverside working on ZDC HCal design/construction

20/06/24

14 / 15

https://arratialab.ucr.edu/eic

Stephen JD Kay

- Need to process full F_{π} analysis again with ePIC
- Analysis roadblocks cleared \rightarrow New projections imminent!
 - Event weight accessible
 - ZDC HCal now implemented
 - B. Schmookler and group at UCRiverside working on ZDC HCal design/construction
- DEMP is a key benchmarking channel for FF detectors
 - Well defined, but progressively more complicated reconstruction

- Need to process full F_{π} analysis again with ePIC
- Analysis roadblocks cleared \rightarrow New projections imminent!
 - Event weight accessible
 - ZDC HCal now implemented
 - B. Schmookler and group at UCRiverside working on ZDC HCal design/construction
- DEMP is a key benchmarking channel for FF detectors
 - Well defined, but progressively more complicated reconstruction

• ep
$$ightarrow e'\pi^+$$
n

- Need to process full F_{π} analysis again with ePIC
- Analysis roadblocks cleared \rightarrow New projections imminent!
 - Event weight accessible
 - ZDC HCal now implemented
 - B. Schmookler and group at UCRiverside working on ZDC HCal design/construction

<u>20</u>/06/24

14 / 15

- DEMP is a key benchmarking channel for FF detectors
 - Well defined, but progressively more complicated reconstruction

•
$$ep \to e'\pi^+ n$$

• $ep \to e'K^+\Lambda^0(\Lambda^0 \to n\pi^0 \text{ OR } \Lambda^0 \to \pi^- p)$
• $ep \to e'K^+\Sigma^0(\Sigma^0 \to e\Lambda^0)$

•
$$ep \rightarrow e' K^+ \Sigma^0 (\Sigma^0 \rightarrow \gamma \Lambda^0)$$

- Need to process full F_{π} analysis again with ePIC
- Analysis roadblocks cleared \rightarrow New projections imminent!
 - Event weight accessible
 - ZDC HCal now implemented
 - B. Schmookler and group at UCRiverside working on ZDC HCal design/construction

20/06/24

14 / 15

• DEMP is a key benchmarking channel for FF detectors

Well defined, but progressively more complicated reconstruction

•
$$ep \rightarrow e'\pi^+ n$$

• $ep \rightarrow e'K^+\Lambda^0(\Lambda^0 \rightarrow n\pi^0 \text{ OR } \Lambda^0 \rightarrow \pi^- p)$
• $ep \rightarrow e'K^+\Sigma^0(\Sigma^0 \rightarrow \gamma\Lambda^0)$

• Need last two for F_K at the EIC

- Need to process full F_{π} analysis again with ePIC
- Analysis roadblocks cleared \rightarrow New projections imminent!
 - Event weight accessible
 - ZDC HCal now implemented
 - B. Schmookler and group at UCRiverside working on ZDC HCal design/construction

20/06/24

14 / 15

- DEMP is a key benchmarking channel for FF detectors
 - Well defined, but progressively more complicated reconstruction

•
$$ep \rightarrow e'\pi^+ n$$

• $ep \rightarrow e'K^+\Lambda^0(\Lambda^0 \rightarrow n\pi^0 \text{ OR } \Lambda^0 \rightarrow \pi^- p)$
• $ep \rightarrow e'K^+\Sigma^0(\Sigma^0 \rightarrow \gamma\Lambda^0)$

- Need last two for F_K at the EIC
- Very challenging to detect
 - Directly influence design choices for ZDC/FF

University of York

- Light meson form factors are a clean tool to use to study fundamental features of QCD
 - $\,\circ\,$ Insights into dressed quark mass function $\rightarrow\,N^*$ resonances

20/06/24

- Light meson form factors are a clean tool to use to study fundamental features of QCD
 - $\,\circ\,$ Insights into dressed quark mass function $\rightarrow\,N^*$ resonances
- Light meson form factors can provide insight into mass generation mechanisms of QCD

Stephen JD Kay

- Light meson form factors are a clean tool to use to study fundamental features of QCD
 - $\,\circ\,$ Insights into dressed quark mass function $\rightarrow\,N^*$ resonances

20/06/24

15 / 15

• Light meson form factors can provide insight into mass generation mechanisms of QCD

University of York

• High quality, L-T separated data recently acquired at JLab

Stephen JD Kay

- Light meson form factors are a clean tool to use to study fundamental features of QCD
 - $\,\circ\,$ Insights into dressed quark mass function $\rightarrow\,N^*$ resonances
- Light meson form factors can provide insight into mass generation mechanisms of QCD

University of York

- High quality, L-T separated data recently acquired at JLab
 - Results expected very soon \rightarrow separated kaon cross sections

20/06/24

15 / 15

• $F_{K}(Q^{2})$?

Stephen JD Kay

- Light meson form factors are a clean tool to use to study fundamental features of QCD
 - $\,\circ\,$ Insights into dressed quark mass function $\rightarrow\,N^*$ resonances
- Light meson form factors can provide insight into mass generation mechanisms of QCD
- High quality, L-T separated data recently acquired at JLab
 - Results expected very soon → separated kaon cross sections
 F_K(Q²)?

<u>20/06</u>/24

15 / 15

• Projections for F_{π} at the EIC look very promising

University of York

- Light meson form factors are a clean tool to use to study fundamental features of QCD
 - $\,\circ\,$ Insights into dressed quark mass function $\rightarrow\,N^*$ resonances
- Light meson form factors can provide insight into mass generation mechanisms of QCD
- High quality, L-T separated data recently acquired at JLab
 - Results expected very soon → separated kaon cross sections
 F_K(Q²)?

20/06/24

15 / 15

- Projections for F_{π} at the EIC look very promising
 - Updated projections using ePIC imminent
 - F_K at the EIC now under investigation

University of York

Stephen JD Kay

Thanks for listening, any questions?

With thanks to all of my colleagues in the Pion/KaonLT collaboration, ePIC Collaboration and the Meson Structure Working Group.

stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grants ST/W004852/1, ST/V001035/1 and the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2021-00026
Backup Zone

What About the Kaon?

Stephen JD Kay

- K^+ PDA, ϕ_K , is also broad and concave, but asymmetric
- Heavier s quark carries more bound state momentum than the u quark

C. Shi, et al., PRD 92 (2015) 014035, F. Guo, et al., PRD 96(2017) 034024 (Full calculation)

University of York

20/06/24

Chew-Low Method to determine F_{π}

- $p(e, e'\pi^+)n$ data obtained away from $t = m_\pi^2$ pole
- "Chew Low" extrapolation method must know analytical dependence of $d\sigma_L/dt$ in unphysical region
- Extrapolation method last used in 1972 by Devenish and Lyth
- Very large systematic uncertainties
- Failed to produce a reliable result
- Different polynomial fits equally likely in physical region

Stephen JD Kay

 Form factor values divergent when extrapolated

19 / 15

<u>20/06</u>/24

• We do not use the Chew-Low method

Extracting F_{π} at JLab

Stephen JD Kay

- Only reliable approach for extracting F_{π} from σ_L is to use a model that incorporates the π^+ production mechanism and the spectator nucleon
- JLab F_{π} experiments so far use the VGL Regge model
 - Reliably describes σ_L across a wide kinematic domaon
- Ideally, want a better understanding of the model dependence of the result
- There has been considerable recent interest
 - T.K. Choi, K.J. Kong, B.G. Yu, arXiv 1508.00969
 - T. Vrancx, J. Ryckebusch, PRC 89(2014)025203
 - M.M. Kaskulov, U. Mosel, PRC 81(2010)045202
 - S.V. Goloskokov, P.Kroll, EPJC 65(2010)137
- We aim to publish our experimentally measured cross section data so that updated values of F_{π} can be extracted as the models improve

VGL - Vanderhaeghen-Guidal-Laget Model - Vanderhaeghen, Guidal, Laget, PRC 57(1998) 1454

University of York

20/06/24

Measuring $\frac{d\sigma_L}{dt}$ at JLab

- Rosenbluth separation required to isolate σ_L
 - Fix W, Q^2 and -t, measure cross section at two beam energies
 - Carry out simultaneous fit at two different ϵ values to determine interference terms
- Careful control of point-to-point systematics crucial, $1/\Delta\epsilon$ error amplification in σ_L
- Spectrometer acceptance, kinematics and efficiencies must all be carefully studied and understood

20/06/24

21

15

T. Horn, et al., PRL 97(2006) 192001

$F_{\pi}(Q^2)$ from JLab Data

VGL model incorporates π^+ production mechanism and spectator neutron effects

- Feynman propagator $\frac{1}{t-m_{\pi}^2}$ replaced by π and ρ Regge propagators
- Represents the exchange of a series of particles, compared to a single particle
- Free parameters $\Lambda_{\pi}, \Lambda_{\rho}$ -Trajectory cutoff parameters
- At small -t, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1+Q^2/\Lambda_{\pi}^2}$$

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature. Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

20/06/24

22 / 15

$$\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2$$

T. Horn, et al., PRL 97(2006) 192001

- Low Q^2 data is an important test
 - Does electroproduction really measure the on-shell form factor?
- Test with $p(e, e'\pi^+)n$ measurements at same kinematics as $e\pi^+$ elastics
- New data points at $Q^2 = 0.375$ and 0.425 $GeVc^{-2}$, DESY (Ackermann) point at 0.35 $GeVc^{-2}$
- -t closer to pole than DESY data, 0.008 GeV² vs 0.013 GeV²

Amendolia, et al., NPB 277(1986) p168, P. Brauel, et al., ZPhysC (1979), p101, H. Ackerman, et al., NPB137 (1978), p294

Stephen JD Kay Universit

University of York

20/06/24

23

15

Two F_{π} Validation Methods

- Test #1 Measure F_{π} at fixed Q^2/W , but vary -t
 - *F*_π values should not depend on -t
- Test #2 π⁺ t-channel diagram is purely isovector
- Use a deuterium target to measure σ_L [n(e, e'π⁻)p]
- Examine the ratio -

Stephen JD Kay

$$R = \frac{\sigma_L [n(e, e'\pi^-)p]}{\sigma_L [p(e, e'\pi^+)n]} = \frac{|A_V - A_S|^2}{|A_V + A_S|^2}$$

 Will test at Q² = 1.6, 3.85, 6.0 GeV²

T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001 G. Huber et al, PRL112 (2014)182501 R. J. Perry et al., arXiV:1811.09356 (2019)

University of York

20/06/24

Isolating σ_L from σ_T in an e-p Collider

• For a collider -

$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

• y is the fractional energy loss

• Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$

• Ideally, $\Delta \epsilon > 0.2$

- To access $\epsilon < 0.8$ with a collider, need y > 0.5
 - Only accessible at small s_{tot}
 - $\circ\,$ Requires low proton energies ($\sim 10\,$ GeV), luminosity too low

20/06/24

25 / 15

• Conventional L-T separation not practical, need another way to determine σ_L

Model Validation via π^-/π^+ ratios

- Measure exclusive ${}^{2}H(e, e'\pi^{+}n)n$ and ${}^{2}H(e, e'\pi^{-}p)p$ in same kinematics as $p(e, e'\pi^{+}n)$
- π *t*-channel diagram is purely isovector \rightarrow G-Parity conserved

$$R = \frac{\sigma [n(e, e'\pi^- p)]}{\sigma [p(e, e'\pi^+ n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}$$

- R will be diluted if σ_T not small or if there are significant non-pole contributions to σ_L
- Compare R to model expectations

University of York

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

Stephen JD Kay

26 / 15

20/06/24

DEMP Kinematics for $-t < 0.5 \ GeV^2$

- $5(e^{-})$ on 100(p) GeV collisions, 25 mrad crossing angle
- Events weighted by cross section
- No smearing
- Old YR plots, just to demonstrate event kinematics

• Neutrons within 0.2° of outgoing proton beam, offset is due to the crossing angle (25 mrad $\approx 1.4^{\circ}$)

20/06/24

27

15

Stephen JD Kay University of York

Simulation Results - t Reconstruction

• Reconstruction of -t from detected e' and π^+ tracks proved highly unreliable

•
$$-t = -(p_e - p_{e'} - p_{\pi})^2$$

 Calculation of -t from reconstructed neutron track matched "truth" value closely

•
$$-t_{alt} = -(p_p - p_n)^2$$

 Only possible due to the excellent position accuracy provided by a good ZDC

Stephen JD Kay

Plot from ECCE analysis

20/06/24

 Note that the x-axis -t scale here runs to 10 GeV²!

28 / 15

More details in NIMA 1052 (2023), 168238 https://doi.org/10.1016/j.nima.2023.168238

Simulation Results - t Reconstruction

• Reconstruction of -t from detected e' and π^+ tracks proved highly unreliable

•
$$-t = -(p_e - p_{e'} - p_{\pi})^2$$

 Calculation of -t from reconstructed neutron track matched "truth" value closely

•
$$-t_{alt} = -(p_p - p_n)^2$$

 Only possible due to the excellent position accuracy provided by a good ZDC

Stephen JD Kay

- Plot from ECCE analysis
- x-axis -t scale an order of magnitude smaller now!

29 / 15

20/06/24

More details in NIMA 1052 (2023), 168238 https://doi.org/10.1016/j.nima.2023.168238

σ_L Isolation with a Model at the EIC

- QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and Waccessible at the EIC, phenomenological models predict $\sigma_L \gg \sigma_T$ at small -t
- Can attempt to extract σ_L by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$
- Examine π^+/π^- ratios as a test of the model

Stephen JD Kay

Predictions are assuming $\epsilon > 0.9995$ with the kinematic ranges seen earlier T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

30 / 15

20/06/24

ePIC F_{π} Simulations - t Resolution

- Preliminary ePIC studies under way
- -t resolution looks improved
 - Beampipe exit window in simulation
- Next step is to study DEMP kaon events

• Same -t determination method as ECCE

20/06/24

31 / 15

Kaon channels implemented in DEMPgen recently

University of York

Plot from L.Preet, University of Regina

F_K at the EIC - Generator Updates

- URegina MSc student Love Preet added new Kaon DEMP event generator module to DEMPgen
 - Starting with $p(e, e'K^+\Lambda)$
- Parametrise a Regge-based model
- For p(e, e'K⁺Λ) module, use the Vanderhagen, Guidal, Laget (VGL) model
- Parametrise σ_L , σ_T for $1 < Q^2 < 35$, 2 < W < 10, -t < 2.0

Parametrise with a polynomial, exponential and exponential

<u>20</u>/06/24

32 / 15

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, PRC 61 (3000) 025204

University of York

F_K at the EIC - Generator Updates

 URegina MSc student Love Preet added new Kaon DEMP event generator module to DEMPgen

• Starting with $p(e, e'K^+\Lambda)$

- Parametrise a Regge-based model
- For p(e, e'K⁺Λ) module, use the Vanderhagen, Guidal, Laget (VGL) model
- Parametrise σ_L , σ_T for $1 < Q^2 < 35$, 2 < W < 10, -t < 2.0

• Parametrise with a polynomial, polynomial and exponential

<u>20</u>/06/24

33 / 15

VGL Model - M. Guidal, J.-M. Laget, M. Vanderhaeghen, PRC 61 (3000) 025204

University of York

Rigorous Predictions for the Pion from pQCD

• At very large four-momentum transfer squared, Q^2 , F_{π} can be calculated using pQCD

34 / 15

• As $Q^2 \rightarrow \infty$, the pion distribution amplitude, ϕ_{π} becomes -

 $\phi_{\pi}(x)
ightarrow rac{3f_{\pi}}{\sqrt{n_c}} x(1-x) \;\; f_{\pi} = 93 \; MeV, \; \pi^+
ightarrow \mu^+
u$ decay constant

• F_{π} can be calculated with pQCD in this limit to be -

$$Q^2 F_{\pi} \xrightarrow[Q^2 \to \infty]{} 16\pi \alpha_s(Q^2) f_{\pi}^2$$

- This is a rigorous prediction of pQCD
- Q^2 reach of existing data doesn't extend into transition region

• Need unique, cutting edge experiments to push into this region Eqns - G.P. Lepage, S.J. Brodsky, PLB 87, p359, 1979

20/06/24

Stephen JD Kay University of York

The Pion in pQCD

• At very large Q^2 , F_π can be calculated using pQCD via -

DEMP Event Generator - Pions

- Want to examine exclusive reactions
 - $p(e, e'\pi^+n)$ exclusive reaction is reaction of interest $\rightarrow p(e, e'\pi^+)X$ SIDIS events are background
- Generator uses Regge-based p(e, e'π⁺)n model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) - arXiv 1508.00969
 - MC event generator created by parametrising CKY σ_L , σ_T for $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2

20/06/24

DEMP Event Generator - Pions

- Want to examine exclusive reactions
 - $p(e, e'\pi^+n)$ exclusive reaction is reaction of interest $\rightarrow p(e, e'\pi^+)X$ SIDIS events are background
- Generator uses Regge-based p(e, e'π⁺)n model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) - arXiv 1508.00969
 - MC event generator created by parametrising CKY σ_L , σ_T for $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2

<u>20</u>/06/24

Selecting Good Simulated Events

- Pass through a full Geant4 simulation (ECCE)
 - More realistic estimates of detector acceptance/performance than earlier studies
- Identify $e'\pi^+n$ triple coincidences in the simulation output
- For a good triple coincidence event, require -
 - Exactly two tracks
 - One positively charged track going in the +z direction (π^+)
 - One negatively charged track going in the -z direction (e')
 - At least one hit in the zero degree calorimeter (ZDC)
 - For 5 (e', GeV) on 100 (p, GeV) events, require that the hit has an energy deposit over 40 GeV
- Both conditions must be satisfied

Stephen JD Kay

• Determine kinematic quantities for remaining events

20/06/24

F_K Validation

Stephen JD Kay

- Need to simultaneously study Λ^0 and Σ^0 channels
- Can conduct a pole dominance test through the ratio - $\frac{\sigma_L \left[p(e, e'K^+) \Sigma^0 \right]}{\sigma_L \left[p(e, e'K^+) \Lambda^0 \right]}$
- Should be similar to ratio of $g_{pK\Lambda}^2/g_{pK\Sigma}^2$ if t-channel exchange dominates

15

Simulation Results - Neutron Reconstruction

- High energy ZDC hit requirement used as a veto
 - ZDC neutron ERes is relatively poor though
 - $\,\circ\,$ However, position resolution is excellent, $\sim 1.5~mm$
 - Combine ZDC position info with missing momentum track to reconstruct the neutron track

$$p_{miss} = |ec{p_e} + ec{p_p} - ec{p_{e'}} - ec{p_{\pi^+}}|$$

- Use ZDC angles, θ_{ZDC} and ϕ_{ZDC} rather than the missing momentum angles, θ_{pMiss} and ϕ_{pMiss}
- Adjust E_{Miss} to reproduce m_n

Stephen JD Kay

 After adjustments, reconstructed neutron track matches "truth" momentum closely

20/06/24

35%

2%

15

40

Simulation Results - $Q^2 5 - 7.5 \ GeV^2$

• Predicted $e'\pi^+n$ triple coincidence rate, binned in Q^2 and -t

- 5 (e', GeV) on 100 (p, GeV) events
- $\mathcal{L} = 10^{34} cm^{-2} s^{-1}$ assumed
- -t bins are 0.04 GeV^2 wide
- Cut on θ_n ($\theta_n = 1.45 \pm 0.5^\circ$) and $\vec{p}_{miss} = \vec{p}_e + \vec{p}_p \vec{p}_{e'} \vec{p}_{\pi^+}$ (varies by Q^2 bin) to simulate removal of SIDIS background
 - New cut on difference between p_{miss} and detected ZDC angles implemented too, $|\Delta \theta| < 0.6^\circ$, $|\Delta \phi| < 3.0^\circ$

• $-t_{min}$ migrates with Q^2 as expected

Stephen JD Kay

University of York

20/06/24

Simulation Results - $Q^2 15 - 20 \ GeV^2$

• Predicted $e'\pi^+n$ triple coincidence rate, binned in Q^2 and -t

- 5 (e', GeV) on 100 (p, GeV) events
- $\mathcal{L} = 10^{34} cm^{-2} s^{-1}$ assumed
- -t bins are 0.04 GeV^2 wide
- Cut on θ_n ($\theta_n = 1.45 \pm 0.5^\circ$) and $\vec{p}_{miss} = \vec{p}_e + \vec{p}_p \vec{p}_{e'} \vec{p}_{\pi^+}$ (varies by Q^2 bin) to simulate removal of SIDIS background
 - New cut on difference between p_{miss} and detected ZDC angles implemented too, $|\Delta \theta| < 0.6^\circ$, $|\Delta \phi| < 3.0^\circ$

20/06/24

42 / 15

• $-t_{min}$ migrates with Q^2 as expected

Stephen JD Kay

Simulation Results - $Q^2 30 - 35 \ GeV^2$

• Predicted $e'\pi^+n$ triple coincidence rate, binned in Q^2 and -t

- 5 (e', GeV) on 100 (p, GeV) events
- $\mathcal{L} = 10^{34} cm^{-2} s^{-1}$ assumed
- -t bins are 0.04 GeV^2 wide
- Cut on θ_n ($\theta_n = 1.45 \pm 0.5^\circ$) and $\vec{p}_{miss} = \vec{p}_e + \vec{p}_p \vec{p}_{e'} \vec{p}_{\pi^+}$ (varies by Q^2 bin) to simulate removal of SIDIS background
 - New cut on difference between p_{miss} and detected ZDC angles implemented too, $|\Delta \theta| < 0.6^\circ$, $|\Delta \phi| < 3.0^\circ$

• $-t_{min}$ migrates with Q^2 as expected

Stephen JD Kay

University of York

20/06/24

$\Delta \theta$ and $\Delta \phi$ Cuts

Stephen JD Kay

- Make use of high angular resolution of ZDC
- Compare hit θ/φ positions of neutron on ZDC to calculated θ/φ from p_{miss}
- If no other particles produced, quantities should be correlated
 - True for DEMP events
- Energetic neutrons from inclusive background processes will be less correlated
 - Additional lower energy particles produced

- $\theta_{pMiss} \theta_{ZDC}$ and $\phi_{pMiss} - \phi_{ZDC}$ cut upon, in addition to other cuts
- $\begin{array}{|c|c|} \bullet & |\theta_{pMiss} \theta_{ZDC}| < 0.6^{\circ}, \\ |\phi_{pMiss} \phi_{ZDC}| < 3.0^{\circ} \end{array}$

44 / 15

University of York

20/06/24

DEMPGen Improvements

- In addition to adding the $p(e, e'K^+\Lambda)$ module, improvements to the generator implemented
- New method to interpolate parametrisation

University of York

- Interpolation matches generator output very closely
 - Even at points far from the initial parametrisation
- Will incorporate improvements in pion model too in the near future

<u>20</u>/06/24

45

15