

Exploring Polarization Variables in Two-Pion Photoproduction: Insights from the CLAS Experiment

Alessandra Filippi INFN Torino, Italy

The light baryon $\left(N^{*}, \Delta\right)$ spectrum in the Constituent Quark Model

- Quarks confined into colorless hadrons

mesons

baryons
- Description by first principle QCD and constituent Quark Models:
- Blue lines: expected states
- Yellow/orange
 boxes: observations

The light baryon spectrum: experimental status

- Lowest lying N^{*} and Δ^{*} resonances
- 1.3-2 GeV mass range: second resonant region
- Overlapping states in the same mass region
- Broad widths (short lifetimes)
- Shared decay modes
- Most of the available information from pion/kaon beams experiments
- Missing states: too small couplings with mesons
- How to disentangle each signal and spot missing resonances?
- Difficult task if based only on the measurement of cross-sections
- Use new approaches: analysis of polarization observables (additional information: spin)
- Perform precision measurements in as many reactions as possible

N^{*} / Δ^{*} in photoproduction reactions

- Photon induced reaction could favor the formation of missing resonances which might couple strongly to the $\gamma \mathrm{N}$ vertex
γ reactions not studied extensively in the past - lack of good enough (energy/intensity) photon beams

Dominant contributions to the "second resonant region": doublepion and η channels

- Double-pion photoproduction: good tool to investigate this mass region

Photonuclear cross sections

Photoproduction of $\pi^{+} \pi^{-}$pairs off protons (unpolarized)

E. Golovatch (CLAS) PL B788 (2019), 371

Measurement of 9×1-fold differential cross sections of the $\gamma p \rightarrow \pi^{+} \pi^{-} p$ reaction in the $(1.6,2) \mathrm{GeV}$ range
$\triangleright \quad$ Attempt to reproduce the cross-sections using the JM17 meson-baryon reaction model

- Reasonable description
- A PWA fit provides the intermediate resonances contributions \& parameters
- Intermediate channels: $\pi^{-} \Delta^{++}, \pi^{+} \Delta^{0}, p \rho^{0}, \pi^{-} \pi^{+} p$ direct production, $\pi^{+} N(1530) 3 / 2^{-}, \pi^{+} N(1685)$ 5/2+
- Extraction of masses, widths, photocouplings
- (new) Excited states required in the model:
- $\quad \mathbf{N}(\mathbf{1 4 4 0}) \mathbf{1 / 2} \mathbf{2}^{+}, \boldsymbol{N}(1520) \mathbf{3 / 2}, N(1535) 1 / \mathbf{2}^{-}$, $N(1650) 1 / 2^{-}, N(1680) 5 / 2^{-}, N^{\prime}(1720) 3 / 2^{+}$, $\boldsymbol{N}(\mathbf{2 1 9 0}) \mathbf{7 / 2}$
- $\Delta(1620) 1 / 2^{-}, \Delta(1700) 3 / 2^{-}, \Delta(1905) 5 / 2^{+}$, $\Delta(1950) 7 / 2^{+}$

Photoproduction of $\pi^{+} \pi^{-}$pairs from protons
with circularly polarized beam
Photoproduction of $\pi^{+} \pi^{-}$pairs from protons
with circularly polarized beam

S. Strauch et al. (CLAS) PLR95 (2005), 162003

\triangleright CLAS data: $1.35<\mathrm{W}<2.30 \mathrm{GeV}$

- Missing resonances predicted to lie in the region $\mathrm{W}>1.8$ GeV
- Circularly polarized photon beam, no polarization specified for target and recoil proton \triangleright First measurement of beam-helicity asymmetry
distributions as a function of the helicity angle: First measurement of beam-helicity asymmetry
distributions as a function of the helicity angle:

$$
I^{\odot}=\frac{1}{P_{\gamma}} \frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}
$$

- Odd trend in all W sub-ranges
- Compared with models based on electroproduction of doublecharged pions including a set of quasi-two body intermediate states (Mokeev et al.):
 distibution as a function of the helity angle:
\qquad
-

[^0]

Experimental method - polarized beam and target

- CLAS-g14 data taking (2011-2012): circularly polarized photon beam with momentum up to $2.5 \mathrm{GeV} / \mathrm{c}$ interacting on a cryogenic HD longitudinally polarized target
- Beam: circularly polarized photons by bremsstrahlung from a longitudinally polarized electron beam (>85\%) through a gold foil radiator
- Circular: \uparrow / \downarrow (960 Hz flip frequency)
- Energy dependent γ polarization

$$
\delta_{\odot}=P_{e l} \frac{4 x-x^{2}}{4-4 x+3 x^{2}}
$$

- Target: "brute-force + aging" polarization method (< 30\%)
- Longitudinal (along beam direction): \Rightarrow / \Leftarrow
- Fixed in different data-sets
- Protons + neutrons

Study of polarization observables in the $\vec{\gamma} \vec{N} \rightarrow \pi^{+} \pi^{-} N$ reaction

$$
\frac{d \sigma}{d x_{i}}=\sigma_{0}\left\{\left(1+\Lambda_{z} \cdot \mathbf{P}_{\mathbf{z}}\right)+\delta_{\odot}\left(\mathbf{I}^{\odot}+\Lambda_{z} \cdot \mathbf{P}_{z}^{\odot}\right)\right\}
$$

- Differential cross-section expressed as a function of polarization observables, weighted by the amount of beam δ_{\odot} and/or target Λ polarization
- The trend of the polarization observables depends on the resonance content in a given energy range
- Polarization observables are bilinear combinations of partial amplitudes (Roberts, Oed PRC71 (2005), 0552001): very sensitive to interference effects

Polarization observables extraction

Problem: extract from the number of collected events the I^{\odot}, P, P^{\odot} observables as a function of the Φ azimuthal angle in the helicity reference system, in W energy ranges

- Related to differential cross-section asymmetries
- Depending on the relative beam/target spin configurations
- Two data sets with opposite target $(\Rightarrow / \Leftarrow)$ polarizations needed (with proper normalization)
- Each data-set contains both helicities

Polarization asymmetries in $\varphi_{\text {hel }}$ bins

$$
\frac{d \sigma}{d x_{i}}=\sigma_{0}\left\{\left(1+\Lambda_{z} \cdot \mathbf{P}_{\mathbf{z}}\right)+\delta_{\odot}\left(\mathbf{I}^{\odot}+\Lambda_{z} \cdot \mathbf{P}_{z}^{\odot}\right)\right\}
$$

\triangleright This equation (Roberts et al., PRC 718(2005), 055201) can be split in four depending on the orientation of beam helicity and target polarization (along z)
\triangleright Two data sets with opposite target polarization need to be used (properly normalized)
$\triangleright \quad$ The system of equations can be solved analytically extracting, in every φ bin, $I^{\odot}, P_{z}, P_{z}^{\odot}$ and σ_{0}

$$
\begin{aligned}
& N_{\text {exp }}^{\rightarrow \Rightarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1+\Lambda_{z} P_{z}+\delta_{\odot}\left(I_{\odot}+\Lambda_{z} P_{z}^{\odot}\right)\right] \\
& N_{\text {exp }}^{\leftarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left[1+\Lambda_{z} P_{z}-\delta_{\odot}\left(I_{\odot}+\Lambda_{z} P_{z}^{\odot}\right)\right] \\
& N_{\text {exp }}^{\rightarrow \leftarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1-\Lambda_{z} P_{z}+\delta_{\odot}\left(I_{\odot}-\Lambda_{z} P_{z}^{\odot}\right)\right] \\
& N_{\text {exp }}^{\leftarrow \Leftarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1-\Lambda_{z} P_{z}-\delta_{\odot}\left(I_{\odot}-\Lambda_{z} P_{Z}^{\odot}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& I_{\odot}=\frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}}+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{L_{\text {eff } 1}}{L_{\text {eff } 2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow}-N_{2}^{\leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{L_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)} \\
& P_{z}^{\odot}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow}}{\delta_{\odot 1}}-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow}-N_{2}^{\leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)} \\
& P_{z}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{Leff1}^{L_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}{}}
\end{aligned}
$$

Data selection - exclusive $\vec{\gamma} \vec{p} \rightarrow \pi^{+} \pi^{-} p$ reaction

Description	Cut
Particle multiplicity	negative, 2 positives
Time coincidence	Time coincidenœ between: 1 proton, $1 \pi^{+}, 1 \pi^{-}$
$2 \pi p$ z-vertex in HD target	$-9.5<z_{\text {vertex }}<-5.8 \mathrm{~cm}$
	$p_{\pi^{ \pm}} / \sqrt{p_{\pi^{2}}^{2} p_{m}+\left(m_{\pi}-80[\mathrm{MeV}]\right)^{2}} \leq \beta_{\pi^{ \pm}}^{\text {orr }} \leq p_{\pi^{ \pm}} / \sqrt{p_{\pi^{ \pm}}^{2}+\left(m_{\pi}+80[\mathrm{MeV}]\right)^{2}}$
$2 \pi p$ pId: $\beta_{\text {corr }}$	$p_{p} / \sqrt{p_{p}^{2}+\left(m_{p}-200[\mathrm{MeV}]\right)^{2}} \leq \beta_{p}^{\text {orr }} \leq p_{p} / \sqrt{p_{p}^{2}+\left(m_{p}+200[\mathrm{MeV}]\right)^{2}}$
	$\left\|\Delta\left(\beta_{p}\right)\right\|<0.08$
$2 \pi p$ pId: $\|\Delta \beta\|$	$p_{\pi^{ \pm}} \leq 500[\mathrm{MeV} / c]:\left\|\Delta\left(\beta_{\pi^{ \pm}}\right)\right\|<0.08$
	$p_{\pi^{ \pm}} \geq 500[\mathrm{MeV} / c]:\left\|\Delta\left(\beta_{p)^{ \pm}}\right)\right\|<0.2$
Missing mass for proton pId	$\pi^{+} \& \& \pi^{-} \& \& p$ within fiducial volume
Total missing mass	$0.824 \leq \mathrm{m} \cdot \mathrm{m} \cdot\left(\pi^{+} \pi^{-}\right) \leq 1.052\left[\mathrm{GeV} / c^{2}\right]$
Fermi momentum	m.m. $\left(\pi^{+} \pi^{-} p\right)<0\left[\mathrm{GeV} / c^{2}\right]$
Coplanarity	$p_{F}<100 \mathrm{MeV} / c$

Particle ID for $\pi^{+} \pi^{-}$and p based on TOF
Further selection on ($\pi^{+} \pi^{-}$) missing mass to identify the proton

Total missing mass cut

Missing momentum cut: reject reactions without spectator at rest

Coplanarity cut for pion pairs

Experimental data: empty target subtraction

- Selection of events from the HD target: fiducial cut in r and z
- The events selected in the fiducial volume of the target contain the contribution from the target walls (unpolarized)
- Empty target subtraction needed
- Relative normalization of different runs: height of Kel-F wall peak
- Subtraction with empty-target runs
- Events in the Kel-F peak also used for relative luminosity normalizations between different data sets

Set w/ positive target polarization

Set w/ negative target polarization

- Inputs: azimuthal angular distributions ($\varphi_{\text {hel }}$)
- Bin by bin: number of events selected with
- given helicity (positive/negative in the same data set)
- given target polarization (in different data sets)
- selection in W energy ranges ($\sim 100 \mathrm{MeV}$ wide window)
- counts to be properly normalized between different data sets
- Slight differences when selecting different combinations of helicities/target polarization: physics!
preliminary

Evaluation of experimental beam-helicity asymmetries E*

- E* can be extracted from all available data samples (with similar experimental conditions)
- For each data set:

$$
E^{*}=\frac{1}{\delta_{\odot}} \frac{N^{+}-N^{-}}{N^{+}+N^{-}}
$$

The E^{*} values agree with previous measurements with polarized beam only (blue points) - Gigantic systematic errors (grey bars) from the spread of values obtained with different data sets - to be refined!

Blue points from S. Strauch et al., CLAS Coll., PRL95 (2005), 162003

Again on the observables extraction

Recall: two data sets needed to extract the polarization observables

- Each has its own normalization (i.e. luminosity)
- Each data set was acquired with a given trigger (which might have different efficiency)
- Each data set is characterized by a different acceptance

$$
\begin{aligned}
& I_{\odot}=\frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}}+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow}-N_{2}^{\leftarrow \leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \leftrightarrows}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{L_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)} \\
& P_{z}^{\odot}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow} \Rightarrow}{\delta_{\odot 1}}-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow}-N_{2}^{\leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)} \\
& P_{z}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{\text {z1 }}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff }}}{\mathrm{L}_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}
\end{aligned}
$$

${ }^{\triangleright} \quad L_{e f f 1} / L_{e f f 2}$ is extracted from the data based on the assumption of the equality of $\left(\frac{d \sigma}{d \Omega}\right)_{0}$ in all data taking periods

Preliminary results - I^{\odot} on proton

- According to general symmetry principles I^{\odot} is expected to be an odd function of the helicity angle
- It depends only on the ratio of target polarization amounts
- The trend is in reasonable agreement with the earlier observations by CLAS based on a different data-set (E* with unpolarized target)
- Counts are acceptance corrected

Blue points from S. Strauch et al., CLAS Coll., PRL 95 (2005), 162003

Preliminary results $-P_{z}$ on proton

- No other results available for comparisons: first results ever
- $\quad P_{z}$ expected to be odd based on partial amplitudes symmetry
- Vanishing at zero angle: coplanarity condition
- When the helicity angle is oriented in the bottom hemisphere a sign flip occurs in Roberts' equations and, consequently, in the parity of the solutions
- Improvingly symmetric odd trend with W increase
- The lack of left/right symmetry in some bins could be due to instrumental biases (different acceptance for forward/backward hemispheres, unprecise assessment of target polarization, ...)

Preliminary results $-\boldsymbol{P}_{z}{ }^{\odot}$ on proton

No other results available for comparisons: first results ever $P_{z}{ }^{\ominus}$ expected to be even based on partial amplitudes symmetry $P_{z}{ }^{\circ}$ does not show a clear-cut symmetry

- Statistical uncertainties mostly obtained from the error propagation of the system solutions - small extent overall of target polarization (23\% max.)
- Including systematic uncertainties (work in progress expected <20\%) most probably the trend will become consistent with zero

Summary and outlook

- The study of polarization observables in double-pion photoproduction with polarized beam and target is a novel tool to extract information about the baryonic spectrum
- $\gamma \mathrm{p}$ channel
- Extraction of results for all compatible data sets pairs underway, to deliver final averages (problem: data-sets are badly correlated! Only one set with negative target polarization)
- Final evaluation of systematics in progress
- Outlook: $\gamma \mathrm{n}$ channel - in progress
- Same data analysis chain used for $\gamma \mathrm{p}$ to be applied to the $\pi^{+} \pi^{-n}(\mathrm{p})$ final state
- Use the same W binning and overall analysis approach
- The interpretation of results in terms of partial amplitudes contributions calls for new models to reproduce the new observables suitably updating the interference patterns
- So far, none of the available reaction models agrees satisfactorily with the extracted asymmetries

Backup slides

Photoproduction of $\pi^{0} \pi^{0}$ pairs from protons and neutrons

M. Oberle et al. (CB, TAPS \& A2 @MAMI) PLB271 (2013), 237

- Beam-helicity asymmetries in double- π^{0} production on $\mathrm{LH}_{2} / \mathrm{LD}_{2}$ target (free $p+$ quasi-free $p \& n$) with circularly polarized photons up to 1.4 GeV @MAMI
- $\quad{ }^{\ominus}$ evaluated through cross-section asymmetries
- Identical beam-helicity asymmetry measured for free and quasi-free protons; very similar results from neutrons
- Expected up to the second resonance region (W < 1.6 GeV)
- Surprising at larger energies due to difference resonances produced
- Reasonable reproduction of ρ^{\ominus} trend by Bonn-Gatchina and two-pion MAID models (much worse for Valencia), at least up to the second resonance region

$I^{\odot}(\varphi)=\sum_{n=1}^{\infty} A_{n} \sin (n \varphi)$

quasi-free n

Photoproduction of $\pi^{0} \pi^{ \pm}$pairs from protons and neutrons

M. Oberle et al. (CB, TAPS \& A2 @MAMI) EPJ A (2014), 50

- Beam-helicity asymmetries in double mixed-charge π production on $\mathrm{LH}_{2} / \mathrm{LD}_{2}$ target (free $p+$ quasi-free p \& n) with circularly polarized photons up to 1.4 GeV @MAMI
- Sensitive channels to $\rho^{ \pm}$production effects
- More background-populating channels compared to $2 \pi^{0}$
$\triangleright \quad I^{\ominus}$ evaluated through cross-section asymmetries ordering particles by charge and by mass
- Good agreement between measurements on free and quasi-free proton, reasonable with quasi-free neutrons
- Worse agreement with models compared to $2 \pi^{0}$, especially at higher energies:
- more contributions from mixed charge channels, call to finer tuning of models
- Two-pions MAID model behaves better, overall
- Beam-helicity asymmetries are very sensitive to interference terms

Photoproduction of $\pi^{0} \pi^{0}$ pairs off protons

V. Sokhoyan (CB@ELSA/TAPS) EPJ A51 (2015), 95

$\triangleright \quad$ The double- π^{0} production is suitable to investigate the $\Delta(1232) \pi$ intermediate channel

- Less channels contribute compared to the charged pion channel, especially to the non resonant background

- Diffractive ρ production
- Dissociation of the proton into $\Delta^{++} \pi^{-}$
- π exchange is not possible
- Use of real linearly polarized photons (ELSA) from 600 MeV to 2500 MeV : access to the $4^{\text {th }}$ resonance region
- Extraction of:
- total cross section
- PWA of the Dalitz plot
- Beam-helicity asymmetries for double- π^{0} production on the proton

[^0]: $\pi \Lambda, \rho N, \pi N(1520), \pi N(1680)+$ contributions from $\Delta(1600), N(1700)$,
 $N(1710), N(1720)$
 The agreement is not satisfactory, calls for a more detailed description
 The $I \odot$ observable is critically sensitive to interferences
 $\pi \Delta, \rho N, \pi N(1520), \pi N(1680)+$ contributions from $\Delta(1600), N(1700)$,
 $N(1710), N(1720)$
 The agreement is not satisfactory, calls for a more detailed description
 The I^{\odot} observable is critically sensitive to interferences
 $\pi \Lambda, \rho N, \pi N(1520), \pi N(1680)+$ contributions from $\Delta(1600), N(1700)$,
 $N(1710), N(1720)$
 The agreement is not satisfactory, calls for a more detailed description
 The $I{ }^{\odot}$ observable is critically sensitive to interferences
 $\pi \Delta, \rho N, \pi N(1520), \pi N(1680)+$ contributions from $\Delta(1600), N(1700)$,
 $N(1710), N(1720)$
 The agreement is not satisfactory, calls for a more detailed description
 The I^{\odot} observable is critically sensitive to interferences

