NSTAR24

Study of Ξ^* and other Hyperons at Belle/Belle II

Mizuki Sumihama

Gifu University / Osaka University RCNP

for the Belle/BelleII collaborations

1. Introduction to Belle and Belle II Experiments 2. Experimental Results of Ξ^* and $\Lambda_c(2625)^+$ 3. Summary of the Talk

Belle experiment

- Belle experiment is the experiment at KEK B factory with Belle detector dedicated for the CP violation physics of B mesons.
- Data acquisition was finished in June 2010 (running 1999-2010).
- $\sqrt{s} \sim 10.6 \ GeV$
- $1 ab^{-1}$ integrated luminosity
- A lot of hadrons → hadron physics

Belle detector

Detect charged particle($e^{\pm} \mu^{\pm} \pi^{\pm} K^{\pm}$ p) and γ

 $c au_{\Lambda} = 7.98\ cm$ $c au_{\Xi^-} = 4.91\ cm$ Long lifetime

Belle → Belle II experiment

- Belle II experiment
 - KEKB -> SuperKEKB (accelerator) Belle detector -> Belle II detector
 - aiming one order higher luminosity
- Belle II experiment is now running. Upgrades in all parts of the detector

Belle/Belle II experiment

Access to various production/decay processes.

Study charmed and strange baryons as resonant substructures in B meson decays or direct production from e^+e^- collisions.

Ξ^* and cusp structures in Λ_c^+ decay

Physics motivation -Status of Ξ^{\ast}

Particle Data Group, Phys. Rev. D 110, 030001 (2024)

Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels	
$\Xi(1318)$	1/2+	****					Decays weakly	
$\Xi(1530)$	3/2+	****	****					
$\Xi(1620)$		**	**					
$\Xi(1690)$		***	**	***	**			
$\Xi(1820)$	3/2 -	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**					3-body decays	
$\Xi(2370)$		**					3-body decays	
$\Xi(2500)$	•	First excited states with 1/2+, 1/2 - are not identified.					3-body decays	
	Important test of our understanding							
	• Analog of $\Lambda(1405)$ with ½-							
	• $\Xi(1620)/\Xi(1690)$ are candidates for $\frac{1}{2}$, $\frac{1}{2}$							
	\rightarrow Inconsistent with constituent quark model					uark model		

Prediction by constituent QM

- Predicted first excited state in constituent quark model is around 1800 MeV.
- Controversy regarding the theoretical interpretation of $\Xi(1690)$ and $\Xi(1620)$

Previous experiments on $\Xi(1620)^0/\Xi(1690)^0$

$\Xi(1620)/\Xi(1690)$ in $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$ at Belle

PhysRevLett.122.072501

Ξ^{*0} in $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$ at Belle experiment

Charmed baryons have an advantage in finding strange baryons as a substructure in the weak decay of charmed baryons.

All data sample, 980 fb^{-1}

The best condition due to a good efficiency and momentum resolution of charged particles

Dalitz plot and $M(\Xi^-\pi^+)$ of $\Xi_c^+ \rightarrow \Xi^-\pi_L^+\pi_H^+$

Invariant mass spectrum $\Xi^- \pi_L^+$

Determination of mass and width of $\Xi(1620)^0$

- ✓ Fitting function:
 - **E(1530)** -relativistic P-wave Breit-Wigner
 - $\Xi(1620)$ -relativistic S-wave Breit-Wigner convoluted with Gaussian
 - $\Xi(1690)$ -relativistic S-wave Breit-Wigner convoluted with Gaussian
 - (fixed mass/width)
 - •Nonresonant- S-wave 3 body decay
 - (phase space)
 Combinatorial background (sideband events)

Interference between $\Xi(1620)$ and nonresonant

Invariant mass spectrum $\Xi^- \pi_L^+$

Determination of mass and width of $\Xi(1620)^0$

- Mass: $1610.4 \pm 6.0(stat.)^{+6.1}_{-4.2}(syst.) MeV/c^2$
- Width:
 - $59.9 \pm 4.8(stat.)^{+2.8}_{-7.1}(syst.) MeV$
 - Consistent with previous experiments
 - Much more precise
 - ✓ Large width
- Significance

 25σ for $\Xi(1620)^0$, 4.0σ for $\Xi(1690)^0$

Asymmetric shape of mass peak

Is interference the best explanation for the asymmetric shape?

 $M(\Xi^{-}\pi^{+}) GeV/c^{2}$

PHYS. REV. D 108, L031104 (2023)

Peak at $\Lambda\eta$ threshold in pK^- of $\Lambda_c^+ \to pK^-\pi^+$

PHYSICAL REVIEW LETTERS 130, 151903 (2023)

PHYSICAL REVIEW LETTERS 130, 151903 (2023)

Signal in $M(\Lambda \pi^{\pm})$ in $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$

Theoretical calculations

Some studies can generate both $\Xi(1620)$ and $\Xi(1690)$.

These two resonances are generated dynamically from the interaction in coupled channels of $\pi \Xi$, $\overline{K}\Lambda$, $\overline{K}\Sigma$, $\eta \Xi$ within the chiral unitary approach.

Some studies mention the $\overline{K}N$ threshold effect.

The threshold cusp effect can distort the mass distribution and should be taken into account to determine the pole position.

PhysRevLett.122.072501

 $M(\Xi^{-}\pi^{+})$ in $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi_{L}^{+}\pi_{H}^{+}$

Asymmetric shape → We need further study Including a threshold cusp.

BELLE

Ξ^* in missing mass

PRL 51.951 (1983) BNL

 $K^-p\to K^+X$

 $e^+e^- \rightarrow \Xi^- \overline{\Xi}^+$

PRL 124,032002(2020) BESIII

Some resonances might select specific production processes

22

Missing mass of photoproduction from CLAS

No evidence for higher mass Ξ^*

This could be due to limited statistics. Alternatively, heavy resonances might not be producible with photons.

23

PhysRevLett.122.072501

 $M(\Xi^{-}\pi^{+})$ in $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$

- Resonance structures are seen in Ξ_c^+ decay.
- Only $\Xi(1530)$ is seen in the sideband spectrum.

 Ξ_{c}^{+}

13 GeV/c²) 0009 0009

100^{.0})/4000

Events 0005

2000

1000

2.4

2.42

2.44

2.48

2.46

m(Ξππ) (GeV/c²)

PhysRevLett.122.072501

 $M(\Xi^-\pi^+)$ in $\Xi_c^+ \rightarrow \Xi^-\pi^+\pi^+$

- Resonance structures are seen in Ξ_c^+ decay.
- Only $\Xi(1530)$ is seen in the sideband spectrum.
- Some resonances can be generated through the charmed baryons but may not be generated in a prompt production.

Observation of $\Xi_c(2923) / \Xi_c(2939)$

Summary of Ξ^{\ast} study

Decay processes

- Invariant mass : select specific decay modes
- Missing mass : include all decay modes

investigate the nature of resonances

Production processes

- $*K^{-}$ beam
- Photon beam

 $*e^+e^-$ collider

→ Direct (prompt) production / Substructure of charmed baryons investigate the nature of resonances

Some resonances select specific production processes, production processes can also be a valuable tool to investigate the nature of resonances.

$\Lambda_c (2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^- \text{ and } \Sigma_c \pi$

PRD 107, 032008 (2023)

$$\Lambda_c (2625)^+$$
 in PDG
 $I(J^P) = O(\frac{3}{2}^-)$ Status: ***

• Mass difference

$$\Lambda_c (2625)^+ - \Lambda_c^+ = 341.65 \pm 0.13 \, MeV$$

• Width

$$\Gamma < 0.97 \ MeV$$

• Decay mode

$$\Lambda_{c}^{+}\pi^{+}\pi^{-} \sim 67\% (P - wave decay)$$

 $\Sigma_{c}^{++,0}\pi^{\pm} < 5\% (D - wave decay)$

 $J^p = 3/2 - ->$ both P and D-wave decay

/			\sim
	Λ_c^+	$1/2^{+}$	****
	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***
	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***
	$\Lambda_{c}(2765)^{+}$		*
	$\Lambda_{c}(2860)^{+}$	$3/2^{+}$	***
	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
	$\Lambda_{c}(2940)^{+}$	$3/2^{-}$	***
	$\Sigma_c(2455)$	$1/2^{+}$	****
	$\Sigma_{c}(2520)$	$3/2^{+}$	***
	$\Sigma_{c}(2800)$		***

Measurement results of Λ_c (2625)⁺

• Mass difference

 $\Lambda_c (2625)^+ - \Lambda_c^+ = \frac{341.518 \pm 0.006 \pm 0.049 \, MeV/c^2}{(World average : 341.65 \pm 0.13 \, MeV/c^2)}$

• Width

 $\begin{array}{ll} \Gamma < 0.52 \ MeV \\ (World average : 0.97 \ MeV) \end{array} \qquad \mbox{Much precise} \end{array}$

• Branching fraction ratios

$$\frac{B(\Lambda_c \ (2625)^+ \to \Sigma_c^0 \pi^-)}{B(\Lambda_c \ (2625)^+ \to \Lambda_c^+ \pi^+ \pi^-)} = (5.19 \pm 0.23 \pm 0.40)\%$$

$$\frac{B(\Lambda_c \ (2625)^+ \to \Sigma_c^{++} \pi^-)}{B(\Lambda_c \ (2625)^+ \to \Lambda_c^+ \pi^+ \pi^-)} = \frac{(5.13 \pm 0.26 \pm 0.32)\%}{World \text{ average}} = \frac{(5.13 \pm 0.26 \pm 0.32)}{World \text{ av$$

Summary

- Belle & Belle II are actively working on hadron physics.
- Ξ* resonances
 Observe Ξ(1620)⁰ and Ξ(1690)⁰ resonances in Ξ⁺_c → Ξ⁻π⁺π⁺
 Finding structure at 1620 is asymmetric shape.
 There is another possibility for this structure, threshold cusp.
- Studies of threshold cusp

Peak in pK^- of $\Lambda_c^+ \to pK^-\pi^+ \to \text{the } \eta\Lambda$ threshold cusp Signal in $M(\Lambda\pi^{\pm})$ in $\Lambda_c^+ \to \Lambda\pi^+\pi^+\pi^- \to \text{the } \overline{K}N$ threshold cusp or Σ resonance?

• $\Lambda_c (2625)^+$

Precise measurement of mass and width, and first measurement of branching ratios

These measurements can be used as inputs to theoretical models to understand $\Lambda_c(2625)^+$

• Belle & Belle II will discover more hadrons, and measure observables of hadrons.

