

UPPSALA UNIVERSITET **STINT** The Swedish Foundation for International Cooperation in Research and Higher Education

Hyperon structure with BESIII

- strange and complex

14th International Workshop on the Physics of Excited Nucleons, York, UK, June 17-21 2024 Prof. Dr. Karin Schönning, Uppsala University

Outline

- Prologue
- Electromagnetic Form Factors
- Recent results from BESIII
 - Cross sections and effective form factors
 - Spin analyses
- Summary

Prologue

Strong interactions manifest in *e.g.* hadron structure and size \rightarrow quantities at the femtometer scale!

Protons: several independent techniques applicable → rapid progress the last decade!

Now: Precision instrument to understand the strong interaction!

Picture credit: J. Zhou (Duke U.), NuPECC LRP draft

Picture cred. Y-H Lin, U. Bonn

Prologue

The proton is insanely stable ($\tau > 10^{34}$ y). What about the less stable neutron ($\tau \sim 15$ min)?

Electron scattering data + lattice QCD:

The asymmetric distribution of negative *d* quarks and the positive *u* quark results in a negative squared charge radius.*

Next step: Hyperons

Question: How does the heavy strange and charm quarks affect the strong interaction dynamics?

Challenge: Hyperons are unstable!

Proton: $\tau > 10^{34}$ y

Neutron: τ ~ 15 min

Strange hyperons: $\tau \sim 10^{-10}$ s

Charm hyperons: $\tau \sim 10^{-13}$ s

Next step: Hyperons

Question: How does the heavy strange and charm quarks affect the strong interaction dynamics?

Challenge: Hyperons are unstable!

Proton: $\tau > 10^{34}$ y

Neutron: τ ~ 15 min

Strange hyperons: $\tau \sim 10^{-10}$ s

Charm hyperons: $\tau \sim 10^{-13}$ s

Solution: Time-like Electromagnetic form factors!

Electromagnetic Form Factors

- Probed in hadron photon interactions
- Analytic functions of momentum transfer q^2
- Quantify the deviation from point-like behaviour.

Space-like vs. time-like FF's

Cred. E. Perotti, PhD thesis (UU_{2020}^{8})

Space-like vs. time-like FF's

Cred. E. Perotti, PhD thesis (UU_{2020}^9)

Space-like form factors

- Number of EMFFs = $2J+1 \rightarrow \text{spin } \frac{1}{2}$ baryons have 2.
- Sachs FFs: the electric G_E and magnetic G_M
 - Charge radius: $< r_E^2 > = 6 \frac{dG_E(q^2)}{dq^2}|_{q^2=0}$
 - Magnetic radius: $\langle r_M^2 \rangle = \frac{6}{G_M(0)} \frac{dG_M(q^2)}{dq^2} |_{q^2=0}$

Time-like form factors

- Related to space-like EMFFs via dispersion relations.
- Are complex:
 - $G_{E}(q^{2}) = |G_{E}(q^{2})| \cdot e^{i\Phi_{E}} , \quad G_{M}(q^{2}) = |G_{M}(q^{2})| \cdot e^{i\Phi_{M}}$
 - Ratio $R = \frac{|G_E(q^2)|}{|G_M(q^2)|}$ accessible from baryon scattering angle.
 - $\Delta \Phi(q^2) = \Phi_M(q^2) \Phi_E(q^2) =$ phase between G_E and G_M
 - Phase a reflection of intermediate fluctuations of the γ^* into *e.g.* $\pi\pi$ or $\pi\pi\pi$

→ Polarises final state!

Picture credit: Elisabetta Perotti, PhD Thesis, Uppsala U. (2020)

Advantage of hyperons

Polarisation experimentally accessible by the weak, parity violating decay:

Example:

$$I(\cos\theta_{\rm p}) = N(1 + \alpha_{\Lambda} P_{\Lambda} \cos\theta_{\rm p})$$

Nucleon versus hyperon EMFFs

Asymptotic behaviour as $|q^2| \rightarrow \infty$: SL ~TL

- Nucleons: SL and TL accessible.
- Hyperons: Only TL accessible, but also phase! Should be a scale q_{asy}^2 where $SL = TL \leftrightarrow \Delta \Phi(q^2) \rightarrow o$

Zero crossings: How many times do the FFs cross zero? - Information about SL from the TL behaviour!

The **BES**III experiment

- Study $e^+e^- \rightarrow B\overline{B}$, where $B = p, n, \Lambda, \Sigma, \Xi, \Lambda_c^+$
- Beijing Electron Positron Collider (BEPC II):
 - e^+e^- collider within 2.0 4.95 GeV.
 - Optimised in the
 - τ -charm region.

The Beijing Spectrometer (BESIII)

- Near 4π coverage
- Tracking, PID, Calorimetry
- Broad physics scope see *e.g.* talks by Xiaoyan Shen & Xiaorong Zhou

$B\overline{B}$ production in BESIII

Energy Scan

 $e^+e^- \rightarrow B\overline{B}$

- Simple final state
- "Simple" formalism → Straight-forward to analyse
- Requires dedicated data campaigns

Initial State Radiation (ISR)

 $e^+e^- \to e^+e^-\gamma_{ISR} \to \gamma_{ISR} B\bar{B}$

- ISR photon tagged or untagged
- Effective cross section much smaller than in direct $e^+e^- \rightarrow B\overline{B}$
- Possible to benefit from large data samples collected at *e.g.* J/Ψ 16

Production cross sections

- Energy dependence give information about the quark dynamics through
 - The effective form factor: $G_{eff} \propto \sqrt{\sigma}$
 - Di-quark correlations
 - Coupling to vector mesons
 - Coupling to $B\overline{B}$ bound states
- Convenient quantity for studies of
 - Protons and (semi-) stable neutrons
 - Small hyperon data samples

Proton and Neutron EMFFs

Energy dependence of effective form factor:

- $G_{eff} = G_0 + G_{osc}$ G_0 : Dipole-like behaviour
- *G*osc: Oscillating behaviour

BESIII: Oscillations for *p* and *n* have same frequency but different phase:

$$\Delta D = D_p - D_n = 125^{\circ} \pm 12^{\circ}$$

SND: Smaller frequency for neutron oscillations.

BESIII proton EMFFs:

Phys. Rev. D 91, 112004 (2015) Phys. Rev. D 99, 092002 (2019) Phys. Rev. Lett. 124, 042001 (2020) Phys. Lett. B 817, 136328 (2021) **BESIII neutron EMFFs:** BESIII, Nature Phys. 17, p 1200–1204 (2021) BESIII, Phys. Rev. Lett. 130, 151905 (2023) **SND:** Eur. Phys. J. C (2022) 828 761

Single-strange hyperons

Diquark correlations in baryons?

- The Σ^{o} has isospin 1 whereas Λ has isospin o
 - Different isospin in the *ud* diquark for Λ and Σ^{o}
 - \rightarrow Difference in cross section and form factors expected.*
- In Σ^+ , the *uu* should have same spin structure as the *ud* in Λ .

Similar cross sections expected.*

*Dobbs et al.,: Phys. Lett. B 739, 90 (2014)

- Λ/Σ^+ G_{eff} similar as expected from diquark correlations.^{*,**,***}
- Σ^+/Σ^- cross section ratio ~ 9^{**}

100

50

0

*arXiv: 2308.03361v1

Cross section (pb)

New: $\Sigma^0 \Lambda$ Transition Form Factor*

- Probed in $e^+e^- \rightarrow \Sigma^0 \overline{\Lambda} + c.c.$ •
- More precise than BaBar ISR data. •

 $e^+e^- \rightarrow \Lambda \bar{\Sigma} + c.c.$

BABAR

 \sqrt{s} (GeV)

This work

 $\Lambda \bar{\Sigma}^0$ threshold

Fit with pQCD

limina

3

- Slightly larger cross section • measurements than BaBar.
- Plateau near threshold. ٠

2.5

- ISR method applied on 12 fb^{-1} of data between 3.773 GeV and 4.258 GeV*.
- The $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ cross section measured in 16 energy points between 2.231 GeV and 3.0 GeV.
- Cross section enhancement at threshold, observed by BaBar and BESIII, confirmed.

Production of Λ at high q^2

• $\Lambda\overline{\Lambda}$ production near vector charmonia*,**

• $BR(\Psi \rightarrow \Lambda\overline{\Lambda}) > 10$ times $\frac{1}{4}$ larger than assumed in previous studies by CLEO-c***.

* BESIII: Phys. Rev. D 104, L091104 (2021)
** BESIII: Phys. Rev. D 105, L011101 (2022)
*** Dobbs *et al.*: Phys. Rev. D 96, 092004 (2017); Phys. Lett. B 739, 90 (2014)

Single-charm Λ_c^+ baryons

BESIII energy scans published in 2018* and 2023**

- Very precise cross section measurements
- First direct measurement of Λ_c^+ form factors
- Sharp rise in cross section near threshold

Angular distributions enable extraction of ratio $R = |G_E/G_M|$ of Λ_c^+ near threshold* and away from threshold**.

BESIII: *Phys. Rev. Lett. 120, 132001 (2018) ** Phys. Rev. Lett. 131, 191901 (2023)

Single-charm Λ_c^+ baryons

Energy dependence of $R = |G_E/G_M|^*$:

- Described by monopole model + damped oscillations
 - \rightarrow Oscillation frequency ~3.5 times larger than for the proton

$\Lambda_c^* \Lambda_c$ transition EMFF

- $\Lambda_c^*(2595)$ and $\Lambda_c^*(2625)$ studied in $e^+e^- \to \Lambda_c^*\overline{\Lambda}_c + c.c.$
- Transition described by 3 form factors: G_E , G_M and G_C .
- Access to $\frac{|G_E|^2 + 3|G_M|^2}{|G_C|^2}$ through Λ_C^* angular distribution.

Schönning, Batoszkaya, Adlarson & Zhou, Chin. Phys. C 47 052002 (2023)

Spin Analysis

Consider $e^+e^- \rightarrow \overline{Y}Y, Y \rightarrow BM + c.c$

UPPSALA UNIVERSITET

Spin Analysis

θ

e

*Fäldt & Kupsc, PLB 772 (2017) 16.

 $(heta_2, arphi_2)$

 e^+

 π^+

Production parameters of spin ¹/₂ baryons:

- Angular distribution parameter $\eta = \frac{\tau R^2}{\tau + R^2}$ where $\tau = q^2/4M_B^2$
- Phase $\Delta \Phi$

Decay parameters for 2-body decays: α_1 and α_2 . If CP symmetry, $\alpha_1 = -\alpha_2 = \alpha$ **Unpolarized part Polarised part Correlated part**

$$W(\xi) = F_0(\xi) + \eta F_5(\xi) + \alpha^2 (F_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) F_2(\xi) + \eta F_6(\xi)) + \alpha \sqrt{1 - \eta^2} \sin(\Delta \Phi) (F_3(\xi) + F_4(\xi))$$

 $\mathscr{T}_0(\xi) = 1$

- $\mathscr{T}_1(\xi) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$
- $\mathscr{T}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$
- $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$
- $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$
- $\mathscr{T}_5(\xi) = \cos^2 \theta$

 $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$

First complete measurement of Λ EMFF

• New BESIII data at 2.396 GeV with 555 exclusive $\overline{\Lambda}\Lambda$ events in sample.

$$- R = |G_E/G_M| = 0.96 \pm 0.14 \pm 0.02$$

- $\Delta \Phi = 37^o \pm 12^o \pm 6^o$
- $-\sigma = 118.7 \pm 5.3 \pm 5.1 \text{ pb}$

BESIII: Phys. Rev. Lett. 123, 122003 (2019)

31

- Most **precise** result on *R* and σ
- **First** conclusive result on $\Delta \Phi$

Theory interpretation

Dispersive calculations by Mangoni, Pacetti & Tomasi-Gustafsson*:

• Few data points \rightarrow ambiguous solution

 \rightarrow scenarios for phase value at q_{th}^2 and q_{asy}^2

Picture credit: *Mangoni et al., Phys. Rev. D 104, 116016 (2021)

Fit by Mangoni *et al.* * of data from ** and *** to different phase scenarios \rightarrow extraction of charge radius!

*Mangoni *et al.*, Phys. Rev. D 104, 116016 (2021) **BESIII: Phys. Rev. Lett. 123, 122003 (2019) ***BaBar: Phys. Rev. D 76, 092006 (2007)

New: Energy dependent Λ and Σ^+ Spin Analysis

- Utilizes scan data collected in 2015.
- Combines **double-tag** and **single-tag** data.

New: Energy-dependent Λ Spin Analysis

Five data points within 2.386 < q < 3.08 GeV.

• The ratio $R = \left| \frac{G_E(q^2)}{G_M(q^2)} \right|$ fairly constant and consistent with 1.

• Rapid (~ 90°) change of the phase $\Delta \Phi$ between q~2.4 GeV and 2.6 GeV.

New: Σ^+ Spin Analysis

- Energy dependence of R and $\Delta \Phi$ in three different points*
 - Double-tag $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^- \rightarrow p \pi^0 \overline{p} \pi^0$ at 2.64 GeV and 2.9 GeV
 - Single-tag $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^- \rightarrow p\pi^0 X + c. c.$ at 2.396 GeV
 - $\rightarrow \Delta \Phi$ / 180° $\Delta \Phi$ ambiguity
- Better precision in *R* than before**.
- Comparison with $Y\overline{Y}$ potential model ***.

Also at $q = M(J/\Psi)$, the $e^+e^- \rightarrow \Sigma^0 \overline{\Lambda} + c.c.$ process is predominantly **electromagnetic** (b, c), since

- Strong processes (a) are suppressed by $\frac{m_d m_u}{a} \sim 10^{-3}$ due to isospin violation.
- Ratio between cross section at J/Ψ and at the continuum in agreement with expectations from EM processes, and with other EM transitions such as $e^+e^- \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow \eta\pi^+\pi^-$.

At the J/Ψ mass, the cross section is enhanced by vacuum polarization

*BESIII, arXiv[hep-ex]:2309.04139 (2023)

Also at $q = M(J/\Psi)$, the $e^+e^- \rightarrow \Sigma^0 \overline{\Lambda} + c.c.$ process is predominantly **electromagnetic** (b, c), since

- Strong processes (a) are suppressed by $\frac{m_d m_u}{a} \sim 10^{-3}$ due to isospin violation.
- Ratio between cross section at J/Ψ Enables extraction of EMFFs! expectations from EM processes, and with other EM transitions such as $e^+e^- \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow \eta\pi^+\pi^-$.

At the *J*/Yields high precision! enhanced by vacuum polarization

*BESIII, arXiv[hep-ex]:2309.04139 (2023)

New: First complete measuement of the $\Sigma^0 \Lambda$ Transition EMFFs

High-precision EMFF measurement:

 $-R = |G_E/G_M| = 0.860 \pm 0.029 \pm 0.010$ - $\Delta \Phi_1(\bar{\Lambda}\Sigma^0) = 1.011 \pm 0.094 \pm 0.010$ rad - $\Delta \Phi_2(\Lambda \bar{\Sigma}^0) = 2.128 \pm 0.094 \pm 0.010$ rad

CP test: $\Delta \Phi_{CP} = |\pi - (\Delta \Phi_1 + \Delta \Phi_2)| = 0.003 \pm 0.133 \pm 0.014$ rad

Summary

- Hadron structure is a tool to understand the strong interaction.
- Time-like form factors most viable structure function for hyperons.
- Many new results from the BESIII experiment
 - single- and double strange hyperons
 - charm baryons
- Spin polarised and correlated hyperon-antihyperon pairs provide information about space-like structure *e.g.* charge radius.
- More data collected \rightarrow STAY TUNED !!!

Thanks for your attention!

Backup

CP tests with **BES**II

- **Polarised** and **entangled** hyperon-antihyperon pairs enable CP tests in hyperon decays
- **Sequentially decaying** multi-strange and charm hyperons enable
 - Production- and decay parameters
- A **combination** of the two approaches enables separation of strong and weak decay phases

 \rightarrow More sensitive CP tests!

New: CP tests in Ξ decays into neutral and charged final state baryons

*Phys. Rev. Lett. 132, 101801 (2023)

TABLE I. The production and decay asymmetry parameters, the weak- and strong-phase differences from Ξ^- decay, the tests of *CP* symmetry, and the ratios of decay asymmetry parameters, $\alpha_{\Lambda 0}/\alpha_{\Lambda-}$ and $\bar{\alpha}_{\Lambda 0}/\alpha_{\Lambda+}$. The first and second uncertainties are statistical and systematic, respectively.

Parameters	This work	Previous result
$\overline{\alpha_{J/\psi}}$	$0.611 \pm 0.007 ^{+0.013}_{-0.007}$	$0.586 \pm 0.012 \pm 0.010$ [18]
$\Delta \Phi_{J/\psi}$ (rad)	$1.30 \pm 0.03^{+0.02}_{-0.03}$	$1.213 \pm 0.046 \pm 0.016$ [18]
α_{Ξ}	$-0.367 \pm 0.004 \substack{+0.003 \\ -0.004}$	$-0.376 \pm 0.007 \pm 0.003$ [18]
ϕ_{Ξ} (rad)	$-0.016\pm0.012\substack{+0.004\\-0.008}$	$0.011 \pm 0.019 \pm 0.009$ [18]
\bar{a}_{Ξ}	$0.374 \pm 0.004 \substack{+0.003 \\ -0.004}$	$0.371 \pm 0.007 \pm 0.002$ [18]
$\bar{\phi}_{\Xi}$ (rad)	$0.010\pm 0.012^{+0.003}_{-0.013}$	$-0.021 \pm 0.019 \pm 0.007$ [18]
$\alpha_{\Lambda-}$	$0.764 \pm 0.008 \substack{+0.005 \\ -0.006}$	$0.7519 \pm 0.0036 \pm 0.0024 \ [37]$
$\alpha_{\Lambda+}$	$-0.774 \pm 0.009 \substack{+0.005 \\ -0.005}$	$-0.7559 \pm 0.0036 \pm 0.0030$ [37]
$\alpha_{\Lambda 0}$	$0.670 \pm 0.009 \substack{+0.009 \\ -0.008}$	0.75 ± 0.05 [29]
$\bar{lpha}_{\Lambda 0}$	$-0.668 \pm 0.008^{+0.006}_{-0.008}$	$-0.692 \pm 0.016 \pm 0.006$ [17]
$\delta_P - \delta_S$ (rad)	$0.033 \pm 0.020 \substack{+0.008 \\ -0.012}$	$-0.040 \pm 0.033 \pm 0.017$ [18]
$\xi_P - \xi_S$ (rad)	$0.007 \pm 0.020 \substack{+0.018 \\ -0.005}$	$0.012 \pm 0.034 \pm 0.008$ [18]
A_{CP}^{Ξ}	$-0.009\pm0.008^{+0.007}_{-0.002}$	$0.006 \pm 0.013 \pm 0.006$ [18]
$\Delta \phi_{CP}^{\Xi}$ (rad)	$-0.003 \pm 0.008 \substack{+0.003 \\ -0.007}$	$-0.005 \pm 0.014 \pm 0.003$ [18]
A_{CP}^{-}	$-0.007\pm0.008^{+0.002}_{-0.003}$	$-0.0025 \pm 0.0046 \pm 0.0012 \ [37]$
A^0_{CP}	$0.001 \pm 0.009 \substack{+0.005 \\ -0.007}$	
A^{Λ}_{CP}	$-0.004\pm0.007^{+0.003}_{-0.004}$	
$\alpha_{\Lambda 0}/lpha_{\Lambda -}$	$0.877 \pm 0.015 \substack{+0.014 \\ -0.010}$	1.01 ± 0.07 [29]
$\bar{\alpha}_{\Lambda 0}/\alpha_{\Lambda +}$	$0.863 \pm 0.014^{+0.012}_{-0.008}$	$0.913 \pm 0.028 \pm 0.012$ [17]

New: CP tests in Σ decays into neutrons

- Polarised and entangled $\Sigma^+ \overline{\Sigma}^-$ pairs J/Ψ decays*
- Select events where $\Sigma^+ \to n\pi^+$, $\overline{\Sigma}^- \to \overline{p}\pi^0$ or c.c.
- First CP precision test of any hyperon decaying into a neutron.

 $\pi^{-}(\pi^{0})$

¥ n(p)

• Decay parameters α_+ ($\Sigma^+ \rightarrow n\pi^+$) and $\bar{\alpha}_-$ ($\bar{\Sigma}^- \rightarrow \bar{n}\pi^-$) measured.

•
$$A_{CP} = \frac{\alpha_+ + \overline{\alpha}_-}{\alpha_+ + \overline{\alpha}_-} = 0.080 \pm 0.052 \pm 0.028$$

*Phys. Rev. Lett. 131, 191802 (2023)

 $\widetilde{\phi_p}(\phi_n)$

 $\theta_p(\theta_n) \neq p(n)$

5Ш

)(n)

CP tests, world data

BESIII:

Nature Phys. **15**, p 631-634 (2019) Phys. Rev. Lett. 125, 052004 (2020) Nature 606, 64-69 (2022) Phys. Rev. Lett. 129, 131801 (2022) Phys. Rev. D 108, L031106 (2023)

Belle:

Sci. Bull. 68, 583-592 (2023)

HyperCP:

Phys. Rev. Lett. 93, 262001, 2004.

New: The $\Sigma^+ \rightarrow p\gamma$ decay

Most precise measurement so far.

 4.2σ lower than previous world average.

Hara's theorem:

Parity violating amplitudes vanish in the limit of SU(3) flavour symmetry.

UPPSALA UNIVERSITET

Theory Interpretation of Λ EMFFs

Theoretical study of the $e^+e^- \rightarrow Y\overline{Y}$ by Haidenbauer, Meissner and Dai^{*}

- $Y\overline{Y}$ potentials derived using ChEFT with $\overline{p}p \rightarrow \overline{Y}Y$ data from PS185.
- Spin-dependent observables much more sensitive to the $Y\overline{Y}$ potential.
- Fairly good agreement with BESIII data.

- $e^+e^- \rightarrow \Xi^-\overline{\Xi}^+$ and $e^+e^- \rightarrow \Xi^0\overline{\Xi}^0$ studied for the first time.
- Possible resonance around 3 GeV.

