Physical interpretation of the baryon spectrum

Derek Leinweber

Key collaborators: Curtis Abell, Liam Hockley, Waseem Kamleh, Zhan-Wei Liu, Finn Stokes, Tony Thomas, Jia-Jun Wu

THE UNIVERSITY ofADELAIDE

Closely related presentations this week

- The study of $\mathbf{N}^{*}(1535)$ and $\mathbf{N}^{*}(1650)$ from the lattice data (14:50)

Presenter: Jia-jun Wu (University of Chinese Academy of Science)
Parallel Session: I B - Walmgate Suite (Monday 17 June 2024, 13:30-15:15)

- Three particle interactions on the lattice (10:00)

Presenter: Maxim Mai (University of Bonn / The George Washington University)
Plenary Session: V - (Wednesday 19 June 2024, 09:00-10:30)

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.

Prologue

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.
- It's time to reconsider our early notions about the quark-model and its excitation spectrum.

Accessing the Radial Excitations of the Nucleon - CSSM Techniques

16 smearing sweeps

100 smearing sweeps

35 smearing sweeps

200 smearing sweeps

- Circa 2010.
- Local 3-quark interpolating fields.
- Quark-level source smearing techniques.

Accessing the Radial Excitations of the Nucleon - CSSM Techniques

16 smearing sweeps

100 smearing sweeps

35 smearing sweeps

200 smearing sweeps

- Circa 2010.
- Local 3-quark interpolating fields.
- Quark-level source smearing techniques.
- Correlation matrix techniques
- Identify linear combinations of sources to isolate states.
- Opposite sign superpositions create wave function nodes.

Δ Baryon Interpolating Field Shapes

Δ-baryon spectrum from lattice QCD $-1 s$ and $2 s$ excitations

CSSM: L. Hockley, et al., J. Phys. G 51 (2024) no.6, 065106 [arXiv:2312.11574 [hep-lat]].
Kahn et al.: T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) 034503 [arXiv:2010.03052 [hep-lat]]. HSC: J. Bulava, et al., Phys. Rev. D 82 (2010) 014507 [arXiv:1004.5072 [hep-lat]]. PACS-CS: S. Aoki et al. [PACS-CS], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].

Where's the $\Delta(1600)$ - the Roper-like resonance?

- Roper-like: $1^{\text {st }}$ even-parity excitation sits below the $1^{\text {st }}$ odd-parity, $\Delta(1700)$.

Positive Parity Nucleon Spectrum Circa 2017

- CSSM: Z. W. Liu, et al. [CSSM], Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]
- JLab: R. G. Edwards, et al. [HSC] Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].
- Cyprus: C. Alexandrou, et al. (AMIAS), Phys. Rev. D 91, 014506 (2015) arXiv:1411.6765 [hep-lat]

Landau-Gauge Wave functions from the Lattice

- Measure the overlap of the annihilation operator with the state as a function of the quark positions.
d-quark probability density in the $2^{\text {nd }}$ excited state of proton [CSSM]

Comparison with the Simple Quark Model [CSSM]

D. S. Roberts, W. Kamleh and D. B. Leinweber, Phys. Lett. B 725, 164 (2013) [arXiv:1304.0325 [hep-lat]].

First positive-parity excitation: Magnetic moments

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

The spectrum of a simple quark model: N and Λ baryons
$\mathrm{N}(1 / 2+)$
$\sim 2.0 \mathrm{GeV}$

$$
\begin{aligned}
& \Lambda(1 / 2-) \\
& N(1 / 2-) \\
& \sim 1.5 \mathrm{GeV}
\end{aligned}
$$

```
\Lambda(1/2+)
N(1/2+)
    ~1 GeV Quark Model
```


The challenge of experiment

$$
\begin{aligned}
& \mathrm{N}(1 / 2+) \\
& \sim 2.0 \mathrm{GeV}
\end{aligned}
$$

The spectrum of quark-model-like states is relatively simple $N(1 / 2+)=2 h \omega$
~2.0 GeV

Experiment
Lattice

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta \frac{3}{2}^{+}$resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
- Discuss the composition of excited states.
- Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta \frac{3}{2}^{+}$resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
- Discuss the composition of excited states.
- Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.
- New analysis of $\Lambda \frac{1}{2}^{-}$resonances aimed at describing the $\Lambda(1405)$ and $\Lambda(1670)$.
- Draws on recent advances in experiment.
- Confront new lattice QCD spectra from the Baryon Scattering (BaSc) Collaboration.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta \frac{3}{2}^{+}$resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
- Discuss the composition of excited states.
- Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.
- New analysis of $\Lambda \frac{1}{2}^{-}$resonances aimed at describing the $\Lambda(1405)$ and $\Lambda(1670)$.
- Draws on recent advances in experiment.
- Confront new lattice QCD spectra from the Baryon Scattering (BaSc) Collaboration.
- Roper $N \frac{1}{2}^{+}(1440)$ resonance.

Outline

- Hamiltonian Effective Field Theory (HEFT)
- Coupled-channel analysis technique aimed at resonance physics.
- Incorporates the Lüscher formalism.
- Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta \frac{3}{2}^{+}$resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
- Discuss the composition of excited states.
- Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.
- New analysis of $\Lambda \frac{1}{2}^{-}$resonances aimed at describing the $\Lambda(1405)$ and $\Lambda(1670)$.
- Draws on recent advances in experiment.
- Confront new lattice QCD spectra from the Baryon Scattering (BaSc) Collaboration.
- Roper $N \frac{1}{2}^{+}(1440)$ resonance.
- A new resolution of the missing baryon resonances problem.

Section 2

Hamiltonian Effective Field Theory (HEFT)

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
- HEFT reproduces the finite-volume expansion of chiral perturbation theory.

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
- HEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
- Predictions of the finite-volume spectrum are made.

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]
C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
- Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
- HEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
- Predictions of the finite-volume spectrum are made.
- The eigenvectors of the Hamiltonian provide insight into the composition of the energy eigenstates.
- Insight is similar to that provided by correlation-matrix eigenvectors in Lattice QCD.

Infinite Volume Model

- The rest-frame Hamiltonian has the form $H=H_{0}+H_{I}$, with

$$
H_{0}=\sum_{B_{0}}\left|B_{0}\right\rangle m_{B_{0}}\left\langle B_{0}\right|+\sum_{\alpha} \int d^{3} k|\alpha(\boldsymbol{k})\rangle \omega_{\alpha}(\boldsymbol{k})\langle\alpha(\boldsymbol{k})|,
$$

Infinite Volume Model

- The rest-frame Hamiltonian has the form $H=H_{0}+H_{I}$, with

$$
H_{0}=\sum_{B_{0}}\left|B_{0}\right\rangle m_{B_{0}}\left\langle B_{0}\right|+\sum_{\alpha} \int d^{3} k|\alpha(\boldsymbol{k})\rangle \omega_{\alpha}(\boldsymbol{k})\langle\alpha(\boldsymbol{k})|,
$$

- $\left|B_{0}\right\rangle$ denotes a quark-model-like basis state with bare mass $m_{B_{0}}$.

Infinite Volume Model

- The rest-frame Hamiltonian has the form $H=H_{0}+H_{I}$, with

$$
H_{0}=\sum_{B_{0}}\left|B_{0}\right\rangle m_{B_{0}}\left\langle B_{0}\right|+\sum_{\alpha} \int d^{3} k|\alpha(\boldsymbol{k})\rangle \omega_{\alpha}(\boldsymbol{k})\langle\alpha(\boldsymbol{k})|,
$$

- $\left|B_{0}\right\rangle$ denotes a quark-model-like basis state with bare mass $m_{B_{0}}$.
- $|\alpha(\boldsymbol{k})\rangle$ designates a two-particle non-interacting basis-state channel with energy

$$
\omega_{\alpha}(\boldsymbol{k})=\omega_{\alpha_{M}}(\boldsymbol{k})+\omega_{\alpha_{B}}(\boldsymbol{k})=\sqrt{\boldsymbol{k}^{2}+m_{\alpha_{M}}^{2}}+\sqrt{\boldsymbol{k}^{2}+m_{\alpha_{B}}^{2}},
$$

for $M=$ Meson, $B=$ Baryon.

Infinite Volume Model

- The interaction Hamiltonian includes two parts, $H_{I}=g+v$.
- $1 \rightarrow 2$ particle vertex

$$
g=\sum_{\alpha, B_{0}} \int d^{3} k\left\{|\alpha(\boldsymbol{k})\rangle G_{\alpha, B_{0}}^{\dagger}(k)\left\langle B_{0}\right|+h . c .\right\}
$$

Infinite Volume Model

- The interaction Hamiltonian includes two parts, $H_{I}=g+v$.
- $1 \rightarrow 2$ particle vertex

$$
g=\sum_{\alpha, B_{0}} \int d^{3} k\left\{|\alpha(\boldsymbol{k})\rangle G_{\alpha, B_{0}}^{\dagger}(k)\left\langle B_{0}\right|+h . c .\right\},
$$

- $2 \rightarrow 2$ particle vertex

$$
v=\sum_{\alpha, \beta} \int d^{3} k d^{3} k^{\prime}|\alpha(\boldsymbol{k})\rangle V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)\left\langle\beta\left(\boldsymbol{k}^{\prime}\right)\right|
$$

S-wave vertex interactions

- S-wave one to two-particle interactions take the form

$$
G_{\alpha, B_{0}}(k)=g_{B_{0} \alpha} \frac{\sqrt{3}}{2 \pi f_{\pi}} \sqrt{\omega_{\alpha_{M}}(k)} u(k, \Lambda),
$$

with dipole regulator

$$
u(k, \Lambda)=\frac{1}{\left(1+k^{2} / \Lambda^{2}\right)^{2}} .
$$

P-wave and higher vertex interactions

- P-wave and higher vertex interactions take the form

$$
G_{\alpha, B_{0}}(k)=g_{B_{0} \alpha} \frac{1}{4 \pi^{2}}\left(\frac{k}{f_{\pi}}\right)^{l_{\alpha}} \frac{u(k, \Lambda)}{\sqrt{\omega_{\alpha_{M}}(k)}},
$$

where l_{α} is the orbital angular momentum in channel α.

Two-to-two particle interactions

- For S-wave scattering

$$
V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)=v_{\alpha, \beta} \frac{3}{4 \pi^{2} f_{\pi}^{2}} u(k, \Lambda) u\left(k^{\prime}, \Lambda\right)
$$

with dipole regulator

$$
u(k, \Lambda)=\frac{1}{\left(1+k^{2} / \Lambda^{2}\right)^{2}}
$$

Two-to-two particle interactions

- For P-wave scattering in the N^{*} and Δ channels

$$
V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)=v_{\alpha, \beta} \frac{1}{4 \pi^{2} f_{\pi}^{2}} \frac{k}{\omega_{\alpha_{M}}(k)} \frac{k^{\prime}}{\omega_{\beta_{M}}\left(k^{\prime}\right)} u(k, \Lambda) u\left(k^{\prime}, \Lambda\right) .
$$

Two-to-two particle interactions

- For P-wave scattering in the N^{*} and Δ channels

$$
V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)=v_{\alpha, \beta} \frac{1}{4 \pi^{2} f_{\pi}^{2}} \frac{k}{\omega_{\alpha_{M}}(k)} \frac{k^{\prime}}{\omega_{\beta_{M}}\left(k^{\prime}\right)} u(k, \Lambda) u\left(k^{\prime}, \Lambda\right) \cdot \quad N(\boldsymbol{k})
$$

- For the $\Lambda^{*}(1405)$, the Weinberg-Tomozawa form is considered

$$
V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)=v_{\alpha, \beta}^{\Lambda^{*}} \frac{\left[\omega_{\alpha_{M}}(k)+\omega_{\beta_{M}}\left(k^{\prime}\right)\right] u(k, \Lambda) u\left(k^{\prime}, \Lambda\right)}{16 \pi^{2} f_{\pi}^{2} \sqrt{\omega_{\alpha_{M}}(k) \omega_{\beta_{M}}\left(k^{\prime}\right)}},
$$

Infinite-Volume scattering amplitude

- The T-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$
T_{\alpha, \beta}\left(k, k^{\prime} ; E\right)=\tilde{V}_{\alpha, \beta}\left(k, k^{\prime} ; E\right)+\sum_{\gamma} \int q^{2} d q \frac{\tilde{V}_{\alpha, \gamma}(k, q ; E) T_{\gamma, \beta}\left(q, k^{\prime} ; E\right)}{E-\omega_{\gamma}(q)+i \epsilon} .
$$

Infinite-Volume scattering amplitude

- The T-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$
T_{\alpha, \beta}\left(k, k^{\prime} ; E\right)=\tilde{V}_{\alpha, \beta}\left(k, k^{\prime} ; E\right)+\sum_{\gamma} \int q^{2} d q \frac{\tilde{V}_{\alpha, \gamma}(k, q ; E) T_{\gamma, \beta}\left(q, k^{\prime} ; E\right)}{E-\omega_{\gamma}(q)+i \epsilon}
$$

- The coupled-channel potential is readily calculated from the interaction Hamiltonian

$$
\tilde{V}_{\alpha, \beta}\left(k, k^{\prime}\right)=\sum_{B_{0}} \frac{G_{\alpha, B_{0}}^{\dagger}(k) G_{\beta, B_{0}}\left(k^{\prime}\right)}{E-m_{B_{0}}}+V_{\alpha, \beta}^{S}\left(k, k^{\prime}\right)
$$

Infinite-Volume scattering matrix

- The S-matrix is related to the T-matrix by

$$
S_{\alpha, \beta}(E)=1-2 i \sqrt{\rho_{\alpha}(E) \rho_{\beta}(E)} T_{\alpha, \beta}\left(k_{\alpha \mathrm{cm}}, k_{\beta \mathrm{cm}} ; E\right),
$$

with

$$
\rho_{\alpha}(E)=\pi \frac{\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)}{E} k_{\alpha \mathrm{cm}},
$$

and $k_{\alpha \mathrm{cm}}$ satisfies the on-shell condition

$$
\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right)+\omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)=E .
$$

Infinite-Volume scattering matrix

- The S-matrix is related to the T-matrix by

$$
S_{\alpha, \beta}(E)=1-2 i \sqrt{\rho_{\alpha}(E) \rho_{\beta}(E)} T_{\alpha, \beta}\left(k_{\alpha \mathrm{cm}}, k_{\beta \mathrm{cm}} ; E\right),
$$

with

$$
\rho_{\alpha}(E)=\pi \frac{\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)}{E} k_{\alpha \mathrm{cm}},
$$

and $k_{\alpha \mathrm{cm}}$ satisfies the on-shell condition

$$
\omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right)+\omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right)=E .
$$

- The cross section $\sigma_{\alpha, \beta}$ for the process $\alpha \rightarrow \beta$ is

$$
\sigma_{\alpha, \beta}=\frac{4 \pi^{3} k_{\alpha \mathrm{cm}} \omega_{\alpha_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\alpha_{B}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\beta_{M}}\left(k_{\alpha \mathrm{cm}}\right) \omega_{\beta_{B}}\left(k_{\alpha \mathrm{cm}}\right)}{E^{2} k_{\beta \mathrm{cm}}}\left|T_{\alpha, \beta}\left(k_{\alpha \mathrm{cm}}, k_{\beta \mathrm{cm}} ; E\right)\right|^{2}
$$

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving the integral equations...

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving the integral equations...

πN phase shift and inelasticity

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving the integral equations...

πN phase shift and inelasticity

- The S-matrix is related to the T-matrix by

$$
\begin{aligned}
S_{\pi N, \pi N}(E) & =1-2 i \pi \frac{\omega_{\pi}\left(k_{\mathrm{cm}}\right) \omega_{N}\left(k_{\mathrm{cm}}\right)}{E} k_{\mathrm{cm}} T_{\pi N, \pi N}\left(k_{\mathrm{cm}}, k_{\mathrm{cm}} ; E\right) \\
& =\eta(E) e^{2 i \delta(E)}
\end{aligned}
$$

- In solving the integral equations...

Fit to Scattering Data in the Δ-Resonance Channel

Phase Shift

Inelasticity

L. Hockley, C. Abell, DBL, and A. Thomas, [arXiv:2406.00981 [hep-ph]].

- Consider:
- p-wave πN,
- p-wave $\pi \Delta$, and
- f-wave $\pi \Delta$ channels, dressing
- two bare basis states.
- Fit to SAID data.
[arXiv:2406.00981 [hep-ph]].

Pole Positions for $\Delta(1232), \Delta(1600)$, and $\Delta(1920)$

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$
k_{n}=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}} \frac{2 \pi}{L}
$$

with $n_{i}=0, \pm 1, \pm 2, \ldots$ and integer $n=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$.

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$
k_{n}=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}} \frac{2 \pi}{L}
$$

with $n_{i}=0, \pm 1, \pm 2, \ldots$ and integer $n=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$.

- The degeneracy of each k_{n} is described by $C_{3}(n)$, which counts the number of ways the integers n_{x}, n_{y}, and n_{z}, can be squared and summed to n.

Finite Volume Analysis - Hamiltonian Matrix

- In a finite periodic volume, momentum is quantised to $n(2 \pi / L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$
k_{n}=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}} \frac{2 \pi}{L}
$$

with $n_{i}=0, \pm 1, \pm 2, \ldots$ and integer $n=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$.

- The degeneracy of each k_{n} is described by $C_{3}(n)$, which counts the number of ways the integers n_{x}, n_{y}, and n_{z}, can be squared and summed to n.
- The non-interacting Hamiltonian takes the form

$$
H_{0}=\operatorname{diag}\left(m_{\Delta_{1}}, m_{\Delta_{2}}, \omega_{\pi N}\left(k_{1}\right), \omega_{\pi \Delta}\left(k_{1}\right), \ldots, \omega_{\pi N}\left(k_{n_{\max }}\right), \omega_{\pi \Delta}\left(k_{n_{\max }}\right)\right)
$$

Interaction Hamiltonian Terms

- $1 \rightarrow 2$ particle interaction terms sit in the first rows and columns.

Interaction Hamiltonian Terms

- $1 \rightarrow 2$ particle interaction terms sit in the first rows and columns.
- \bar{V}^{S} describes the $\left(n_{c} \times n_{\max }\right)^{2}, 2 \rightarrow 2$ particle interaction terms, filling out the rest of the matrix.

Relation to infinite-volume contributions

- The finite volume Hamiltonian interaction terms are related to the infinite-volume contributions via

$$
\int k^{2} d k=\frac{1}{4 \pi} \int d^{3} k \rightarrow \frac{1}{4 \pi} \sum_{n \in \mathbb{Z}^{3}}\left(\frac{2 \pi}{L}\right)^{3}=\frac{1}{4 \pi} \sum_{n \in \mathbb{Z}} C_{3}(n)\left(\frac{2 \pi}{L}\right)^{3}
$$

such that

$$
\begin{aligned}
\bar{G}_{\alpha, B_{0}}\left(k_{n}\right) & =\sqrt{\frac{C_{3}(n)}{4 \pi}}\left(\frac{2 \pi}{L}\right)^{\frac{3}{2}} G_{\alpha, B_{0}}\left(k_{n}\right), \\
\bar{V}_{\alpha \beta}^{S}\left(k_{n}, k_{m}\right) & =\sqrt{\frac{C_{3}(n)}{4 \pi}} \sqrt{\frac{C_{3}(m)}{4 \pi}}\left(\frac{2 \pi}{L}\right)^{3} V_{\alpha \beta}^{S}\left(k_{n}, k_{m}\right) .
\end{aligned}
$$

Finite Volume Eigenmode Solution

- Standard Lapack routines provide eigenmode solutions of

$$
\langle i| H|j\rangle\left\langle j \mid E_{\alpha}\right\rangle=E_{\alpha}\left\langle i \mid E_{\alpha}\right\rangle,
$$

- where $|i\rangle$ and $|j\rangle$ are the non-interacting basis states,
- E_{α} is the energy eigenvalue, and
- $\left\langle i \mid E_{\alpha}\right\rangle$ is the eigenvector of the
- Hamiltonian matrix $\langle i| H|j\rangle$.

Mass dependence of HEFT energy eigenstates

L. Hockley, C. Abell, DBL, and A. Thomas, [arXiv:2406.00981 [hep-ph]].

Mass dependence of HEFT energy eigenstates

H_{0} eigenvalue
Largest Δ_{1}
-=: 2nd largest Δ_{1}
Largest Δ_{2}
$\begin{array}{ll}=\mathbf{E} & \text { 2nd largest } \Delta_{2} \\ \mathbf{I} & \text { CSSM - lattice }\end{array}$

- Physical results extended via

$$
m_{\Delta_{i}}\left(m_{\pi}^{2}\right)=m_{\Delta_{i}}+\alpha_{\Delta_{i}}\left(m_{\pi}^{2}-\left.m_{\pi}\right|_{\text {phys }} ^{2}\right) .
$$

- Hadron masses acquire the lattice simulation values.

Finite Volume Eigenmode Solution

- Standard Lapack routines provide eigenmode solutions of

$$
\langle i| H|j\rangle\left\langle j \mid E_{\alpha}\right\rangle=E_{\alpha}\left\langle i \mid E_{\alpha}\right\rangle .
$$

- Eigenvector $\left\langle i \mid E_{\alpha}\right\rangle$ describes the composition of the eigenstate $\left|E_{\alpha}\right\rangle$ in terms of the basis states $|i\rangle$ with

$$
|i\rangle=\left|B_{0}\right\rangle, \quad\left|\pi N, k_{1}\right\rangle, \quad\left|\pi N, k_{2}\right\rangle, \quad \cdots\left|\pi \Delta, k_{1}\right\rangle, \quad\left|\pi \Delta, k_{2}\right\rangle
$$

Finite Volume Eigenmode Solution

- Standard Lapack routines provide eigenmode solutions of

$$
\langle i| H|j\rangle\left\langle j \mid E_{\alpha}\right\rangle=E_{\alpha}\left\langle i \mid E_{\alpha}\right\rangle .
$$

- Eigenvector $\left\langle i \mid E_{\alpha}\right\rangle$ describes the composition of the eigenstate $\left|E_{\alpha}\right\rangle$ in terms of the basis states $|i\rangle$ with

$$
|i\rangle=\left|B_{0}\right\rangle, \quad\left|\pi N, k_{1}\right\rangle, \quad\left|\pi N, k_{2}\right\rangle, \quad \cdots\left|\pi \Delta, k_{1}\right\rangle, \quad\left|\pi \Delta, k_{2}\right\rangle
$$

- The overlap of the bare basis state $\left|B_{0}\right\rangle$ with eigenstate $\left|E_{\alpha}\right\rangle$,

$$
\left\langle B_{0} \mid E_{\alpha}\right\rangle,
$$

is of particular interest,

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χ PT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$
\frac{3}{16} \frac{1}{\left(f_{\pi} L\right)^{2} E_{\pi} L}\left(\frac{E_{N}-M_{N}}{E_{N}}\right) \sim 10^{-3},
$$

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χ PT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$
\frac{3}{16} \frac{1}{\left(f_{\pi} L\right)^{2} E_{\pi} L}\left(\frac{E_{N}-M_{N}}{E_{N}}\right) \sim 10^{-3}
$$

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

- Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

$$
\bar{\chi}(0)|\Omega\rangle \simeq\left|B_{0}\right\rangle
$$

Finite Volume Eigenmode Solution

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χ PT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$
\frac{3}{16} \frac{1}{\left(f_{\pi} L\right)^{2} E_{\pi} L}\left(\frac{E_{N}-M_{N}}{E_{N}}\right) \sim 10^{-3}
$$

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

- Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

$$
\bar{\chi}(0)|\Omega\rangle \simeq\left|B_{0}\right\rangle
$$

- Eigenstates with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$ will be excited and observed in lattice QCD.

Δ Finite Volume Spectrum at $L=3 \mathrm{fm}$

25 Fit Parameters

Parameter	Value	Parameter	Value
$m_{\Delta_{1}} / \mathrm{GeV}$	1.3894	$m_{\Delta_{2}} / \mathrm{GeV}$	2.3177
$g_{\pi N}^{\Delta_{1}}$	0.4974	$g_{\pi N}^{\Delta_{2}}$	0.2914
$g_{\pi \Delta_{p}}^{\Delta_{1}}$	0.5300	$g_{\pi \Delta_{p}}^{\Delta{ }_{2}}$	0.2289
$g_{\pi \Delta_{f}}^{\Delta_{1}}$	0.0004	$g_{\pi \Delta_{f}}^{\Delta_{2}}$	0.0075
$\Lambda_{\pi N}^{\Delta_{1}} / \mathrm{GeV}$	0.8246	$\Lambda_{\pi N}^{\Delta_{2}} / \mathrm{GeV}$	1.3384
$\Lambda_{\pi \Delta_{p}}^{\Delta_{1}} / \mathrm{GeV}$	0.8376	$\Lambda_{\pi \Delta_{p}}^{\Delta_{2}} / \mathrm{GeV}$	0.5428
$\Lambda_{\pi \Delta_{f}}^{\Delta_{1}} / \mathrm{GeV}$	0.5776	$\Lambda_{\pi \Delta_{f}}^{\Delta_{2}} / \mathrm{GeV}$	1.0549
$v_{\pi N, \pi N}$	0.0454	$v_{\pi N, \pi \Delta_{f}}$	-0.0030
$v_{\pi N, \pi \Delta_{p}}$	-1.5545	$v_{\pi \Delta_{p}, \pi \Delta_{f}}$	-0.0053
$v_{\pi \Delta_{p}, \pi \Delta_{p}}$	-0.9694	$v_{\pi \Delta_{f}, \pi \Delta_{f}}$	-0.0001
$\Lambda_{\pi N}^{v} / \mathrm{GeV}$	0.6032	$\Lambda_{\pi \Delta_{f}}^{v} / \mathrm{GeV}$	1.3289
$\Lambda_{\pi \Delta_{p}}^{v} / \mathrm{GeV}$	0.8058		

Bare Slope $\left(\mathrm{GeV}^{-1}\right)$	Value
$\alpha_{\Delta_{1}}$	0.751
$\alpha_{\Delta_{2}}$	0.203

Section 3

$\Delta_{2}^{3}{ }^{+}$State Composition

Δ Finite Volume Spectrum at $L=3 \mathrm{fm}$

Eigenstate Composition: State $1-\Delta_{1}$ dominated

Eigenstate Composition: State $2-\pi N$ dominated

Eigenstate Composition: State 3 - Mix of 3 two-particle channels

Eigenstate Composition: State $4-\pi \Delta_{f}$ dominated

Eigenstate Composition: State $5-\mathrm{Mix}$ of πN and $\pi \Delta_{p}$

Eigenstate Composition: State 6 - Mix of 3 channels and Δ_{2}

Eigenstate Composition: State $7-\pi N$ dominated

Eigenstate Composition: State $8-\pi \Delta_{p}$ dominated

Eigenstate Composition: State 9 - Largest Δ_{2} component

Comparison with other Lattice Collaborations

- CLS Consortium:
C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and A. Walker-Loud, PoS LATTICE2021 (2022), 170 [arXiv:2111.07755 [hep-lat]].

Comparison with other Lattice Collaborations

- CLS Consortium:
C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and A. Walker-Loud, PoS LATTICE2021 (2022), 170 [arXiv:2111.07755 [hep-lat]].
- Cyprus Collaboration:
C. Alexandrou, S. Bacchio, G. Koutsou, T. Leontiou, S. Paul, M. Petschlies and F. Pittler, Phys. Rev. D 109 (2024) no.3, 3 [arXiv:2307.12846 [hep-lat]].

Comparison with other Lattice Collaborations

- CLS Consortium:
C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and A. Walker-Loud, PoS LATTICE2021 (2022), 170 [arXiv:2111.07755 [hep-lat]].
- Cyprus Collaboration:
C. Alexandrou, S. Bacchio, G. Koutsou, T. Leontiou, S. Paul, M. Petschlies and F. Pittler, Phys. Rev. D 109 (2024) no.3, 3 [arXiv:2307.12846 [hep-lat]].
- Hadron Spectrum Collaboration (HSC):
J. Bulava, R. G. Edwards, E. Engelson, B. Joo, H. W. Lin, C. Morningstar, D. G. Richards and S. J. Wallace, Phys. Rev. D 82 (2010), 014507 [arXiv:1004.5072 [hep-lat]].

Comparison with other Lattice Collaborations

- CLS Consortium:
C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and A. Walker-Loud, PoS LATTICE2021 (2022), 170 [arXiv:2111.07755 [hep-lat]].
- Cyprus Collaboration:
C. Alexandrou, S. Bacchio, G. Koutsou, T. Leontiou, S. Paul, M. Petschlies and F. Pittler, Phys. Rev. D 109 (2024) no.3, 3 [arXiv:2307.12846 [hep-lat]].
- Hadron Spectrum Collaboration (HSC):
J. Bulava, R. G. Edwards, E. Engelson, B. Joo, H. W. Lin, C. Morningstar, D. G. Richards and S. J. Wallace, Phys. Rev. D 82 (2010), 014507 [arXiv:1004.5072 [hep-lat]].
- Khan, et al.:
T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) no.3, 034503 [arXiv:2010.03052 [hep-lat]].

CLS Consortium Spectrum at $L=4.16 \mathrm{fm}$ from 2022

Eigenstate Composition: State $1-\Delta_{1}$ dominated

Eigenstate Composition: State $2-\pi N$ dominated

Eigenstate Composition: State 3 - Also πN dominated

Cyprus Collaboration: $m_{\pi}=0.139 \mathrm{GeV}$ and $L=5.1 \mathrm{fm}$ from 2024

HSC Spectrum at $L=1.96$ fm from 2010

Khan et al. Spectrum at $L=3.01 \mathrm{fm}$ from 2021

Section 4

$\Lambda_{2}{ }^{-}$Analysis

New analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, DBL, X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

New analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, DBL, X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Motivated by recent advances in both experiment and theory.

New analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, DBL, X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Motivated by recent advances in both experiment and theory.
- Considerable progress in new $K^{-} p$ scattering data associated with $\Lambda \frac{1}{2}^{-}$baryons.
- 2022: DA Φ NE: Near threshold cross section measurements.
- 2022: J-PARC: $\pi \Sigma$ invariant mass spectra in $K^{-} p$ induced reactions.
- 2021: ALICE: $K^{-} p$ scattering length.

New analysis of low-lying odd-parity Λ resonances

> J. J. Liu, Z. W. Liu, K. Chen, D. Guo, DBL, X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Motivated by recent advances in both experiment and theory.
- Considerable progress in new $K^{-} p$ scattering data associated with $\Lambda \frac{1}{2}^{-}$baryons.
- 2022: DA Φ NE: Near threshold cross section measurements.
- 2022: J-PARC: $\pi \Sigma$ invariant mass spectra in $K^{-} p$ induced reactions.
- 2021: ALICE: $K^{-} p$ scattering length.
- BaSc Lattice QCD collaboration performed coupled-channel simulations with both single baryon and meson-baryon interpolating operators at $m_{\pi}=204 \mathrm{MeV}$.

New analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, DBL, X. Liu and A. W. Thomas,
Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Motivated by recent advances in both experiment and theory.
- Considerable progress in new $K^{-} p$ scattering data associated with $\Lambda \frac{1}{2}^{-}$baryons.
- 2022: DA Φ NE: Near threshold cross section measurements.
- 2022: J-PARC: $\pi \Sigma$ invariant mass spectra in $K^{-} p$ induced reactions.
- 2021: ALICE: $K^{-} p$ scattering length.
- BaSc Lattice QCD collaboration performed coupled-channel simulations with both single baryon and meson-baryon interpolating operators at $m_{\pi}=204 \mathrm{MeV}$.
- Extend the analysis of the cross section data for $K^{-} p$ scattering to K^{-}laboratory momenta of $800 \mathrm{MeV} / \mathrm{c}$ to address the $\Lambda(1670)$.

Analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, D.B.L., X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.
- The mass of $\Lambda(1670)$ is only 130 MeV below the $K \Xi$ threshold.

Analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, D.B.L., X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.
- The mass of $\Lambda(1670)$ is only 130 MeV below the $K \Xi$ threshold.
- 16 two-to-two particle couplings are considered in isospin 0 and 1 .

Analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, D.B.L., X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.
- The mass of $\Lambda(1670)$ is only 130 MeV below the $K \Xi$ threshold.
- 16 two-to-two particle couplings are considered in isospin 0 and 1 .
- Five parameters describe the bare to two-particle interactions

$$
\begin{array}{lllll}
g_{B_{0}, \pi \Sigma}^{0} & g_{B_{0}, \bar{K} N}^{0} & g_{B_{0}, \eta \Lambda}^{0} & g_{B_{0}, K \Xi}^{0} & m_{B_{0}}
\end{array}
$$

Analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, D.B.L., X. Liu and A. W. Thomas, Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]

- Consider $\pi \Sigma, \bar{K} N, \eta \Lambda, K \Xi$ channels, and one bare basis state, B_{0}.
- The mass of $\Lambda(1670)$ is only 130 MeV below the $K \Xi$ threshold.
- 16 two-to-two particle couplings are considered in isospin 0 and 1 .
- Five parameters describe the bare to two-particle interactions

$$
g_{B_{0}, \pi \Sigma}^{0} \quad g_{B_{0}, \bar{K} N}^{0} \quad g_{B_{0}, \eta \Lambda}^{0} \quad g_{B_{0}, K \Xi}^{0} \quad m_{B_{0}}
$$

- No new parameters in going to the finite volume of the lattice.
- The bare mass slope is taken to be $\frac{2}{3}$ of our previous $N \frac{1}{2}^{-}(1535)$ analysis slope.

Fits to experimental cross-section data σ / mb vs $\left|\vec{p}_{\mathrm{lab}}\right| / \mathrm{MeV}$

- Note the presence of two fits, one with and one without a single-particle basis state.

Fits to experimental cross-section data σ / mb vs $\left|\vec{p}_{\mathrm{lab}}\right| / \mathrm{MeV}$

- The peak of $\Lambda(1670)$ can be clearly seen in the $K^{-} p \rightarrow \eta \Lambda$ channel.

Fits to experimental cross-section data σ / mb vs $\left|\vec{p}_{\mathrm{lab}}\right| / \mathrm{MeV}$

- The peaks around 400 MeV are associated with the D-wave $\Lambda(1520)$ state.

Fits to experimental cross-section data σ / mb vs $\left|\vec{p}_{\mathrm{lab}}\right| / \mathrm{MeV}$

- $\bar{K}^{*} N$ and $\pi \Sigma^{*}$ channels (not included) will contribute at large $\left|\vec{p}_{\text {lab }}\right|>500 \mathrm{MeV}$.

Fits to experimental cross-section data σ / mb vs $\left|\vec{p}_{\mathrm{lab}}\right| / \mathrm{MeV}$

- The three poles generated by these fits are very similar.

Fits to experimental cross-section data σ / mb vs $\left|\vec{p}_{\mathrm{lab}}\right| / \mathrm{MeV}$

 — with bare baryon

- Present experimental data are not able to distinguish between these fits.

Finite Volume Λ Spectrum for $L \simeq 3 \mathrm{fm}$

Without a bare Λ basis state.

With a bare Λ basis state.

Coupling	No $\left\|B_{0}\right\rangle$	With $\left\|B_{0}\right\rangle$
$\Lambda(\mathrm{GeV})$	1.000	1.000
$g_{\bar{K} N, \bar{K} N}^{0}$	-2.108	-2.180
$g_{\bar{K} N, \pi \Sigma}^{0}$	0.837	0.620
$g_{\bar{K} N, \eta \Lambda}^{0}$	-0.461	-0.472
$g_{\pi \Sigma, \pi \Sigma}^{0}$	-1.728	-1.200
$g_{\pi \Sigma, K \Xi}^{0}$	-0.001	-1.800
$g_{\eta \Lambda, K \Xi}^{0}$	0.835	1.993
$g_{K \Xi, K \Xi}^{0}$	-3.393	-1.000
$g_{\bar{K} N, \bar{K} N}^{1}$	-0.028	-0.001
$g_{\bar{K} N, \pi \Sigma}^{1}$	0.829	0.985
$g_{\bar{K} N, \pi \Lambda}^{1}$	0.001	0.990
$g_{\bar{K} N, \eta \Sigma}^{1}$	1.557	1.500
$g_{\pi \Sigma, \pi \Sigma}^{1}$	-1.351	-0.001
$g_{\pi \Sigma, K \Xi}^{1}$	-1.017	-1.341
$g_{\pi \Lambda, K \Xi}^{1}$	2.904	0.011
$g_{\eta \Sigma, K \Xi}^{1}$	4.690	0.001
$g_{K \Xi, K \Xi}^{1}$	-0.447	-3.700

21 Fit Parameters

Coupling	No $\left\|B_{0}\right\rangle$	With $\left\|B_{0}\right\rangle$
$g_{B_{0}, \bar{K} N}^{0}$	-	0.091
$g_{B_{0}, \pi \Sigma}^{0}$	-	0.049
$g_{B_{0}, \eta \Lambda}^{0}$	-	-0.164
$g_{B_{0}, K \Xi}^{0}$	-	-0.226
$m_{B}^{0}(\mathrm{MeV})$	-	1750

Pole $1(\mathrm{MeV}) \quad 1336-87 i \quad 1324-67 i$
Pole $2(\mathrm{MeV}) \quad 1430-26 i \quad 1428-24 i$
Pole $3(\mathrm{MeV}) \quad 1676-17 i \quad 1674-11 i$

Finite Volume Λ Spectrum for $L \simeq 3 \mathrm{fm}$

Without a bare Λ basis state.

With a bare Λ basis state.

- A single-particle basis state is required to describe lattice results at large m_{π}^{2}.

Finite Volume Λ Spectrum for $L \simeq 3 \mathrm{fm}$

Without a bare Λ basis state.

With a bare Λ basis state.

- The spectra begin to differ at the $3^{\text {rd }}$ and $4^{\text {th }}$ eigenstate energy.

Eigenstate Composition: $|\pi \Sigma\rangle$ dominated $\rightarrow\left|B_{0}\right\rangle$ dominated

Eigenstate Composition: State $2-|\bar{K} N\rangle \rightarrow|\pi \Sigma\rangle \rightarrow\left|B_{0}\right\rangle$

Eigenstate Composition: State 3 - First significant $\left|B_{0}\right\rangle$

Eigenstate Composition: State $4-|\bar{K} N\rangle$ and $|\pi \Sigma\rangle$

Eigenstate Composition: State $5-|\eta \Lambda\rangle$ and $\left|B_{0}\right\rangle$

Eigenstate Composition: State $6-\left|B_{0}\right\rangle$ dominated at $\sim 1670 \mathrm{MeV}$

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

- $L=4.05 \mathrm{fm}$ lattice at $m_{\pi}=204 \mathrm{MeV}$.
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. Lett. 132 (2024) 051901 [arXiv:2307.10413 [hep-lat]]
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. D 109 (2024) 014511 [arXiv:2307.13471 [hep-lat]]

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

- $L=4.05 \mathrm{fm}$ lattice at $m_{\pi}=204 \mathrm{MeV}$.
- Lattice energies from the $G_{1 u}(0)$ irreducible representation.
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. Lett. 132 (2024) 051901 [arXiv:2307.10413 [hep-lat]]
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. D 109 (2024) 014511 [arXiv:2307.13471 [hep-lat]]

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

- $L=4.05 \mathrm{fm}$ lattice at $m_{\pi}=204 \mathrm{MeV}$.
- Lattice energies from the $G_{1 u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. Lett. 132 (2024) 051901 [arXiv:2307.10413 [hep-lat]]
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. D 109 (2024) 014511 [arXiv:2307.13471 [hep-lat]]

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

- $L=4.05 \mathrm{fm}$ lattice at $m_{\pi}=204 \mathrm{MeV}$.
- Lattice energies from the $G_{1 u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.
- Blue highlights illustrate the uncertainty allowed by expt.
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. Lett. 132 (2024) 051901 [arXiv:2307.10413 [hep-lat]]
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. D 109 (2024) 014511 [arXiv:2307.13471 [hep-lat]]

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

- $L=4.05 \mathrm{fm}$ lattice at $m_{\pi}=204 \mathrm{MeV}$.
- Lattice energies from the $G_{1 u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.
- Blue highlights illustrate the uncertainty allowed by expt.
- Dashed lines indicate the non-interacting threshold energies for $\pi \Sigma$ and $\bar{K} N$.
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. Lett. 132 (2024) 051901 [arXiv:2307.10413 [hep-lat]]
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. D 109 (2024) 014511 [arXiv:2307.13471 [hep-lat]]

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

- $L=4.05 \mathrm{fm}$ lattice at $m_{\pi}=204 \mathrm{MeV}$.
- Lattice energies from the $G_{1 u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.
- Blue highlights illustrate the uncertainty allowed by expt.
- Dashed lines indicate the non-interacting threshold energies for $\pi \Sigma$ and $\bar{K} N$.
- All states are observed, and agree within 1σ.
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. Lett. 132 (2024) 051901 [arXiv:2307.10413 [hep-lat]]
J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. D 109 (2024) 014511 [arXiv:2307.13471 [hep-lat]]

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

Basis includes $\left|B_{0}\right\rangle$

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

- Recall the $3^{\text {rd }}$ and $4^{\text {th }}$ HEFT energies are sensitive to $\left|B_{0}\right\rangle$.

Basis includes $\left|B_{0}\right\rangle$

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

Basis includes $\left|B_{0}\right\rangle$

No $\left|B_{0}\right\rangle$

- Recall the $3^{\text {rd }}$ and $4^{\text {th }}$ HEFT energies are sensitive to $\left|B_{0}\right\rangle$.
- Without a single-particle basis state (right), 1σ agreement is lost.

Baryon Scattering (BaSc) Collaboration Spectrum Comparison

Basis includes $\left|B_{0}\right\rangle$

No $\left|B_{0}\right\rangle$

- Recall the $3^{\text {rd }}$ and $4^{\text {th }}$ HEFT energies are sensitive to $\left|B_{0}\right\rangle$.
- Without a single-particle basis state (right), 1σ agreement is lost.
- Future precision results will decide the role of $\left|B_{0}\right\rangle$ unambiguously.

Section 5

$N \frac{1}{2}^{+}$Analysis

The $2 s$ excitation of the nucleon sits at 1.9 GeV

The $2 s$ excitation of the nucleon sits at 1.9 GeV

- Quark model states are basis states that mix with meson-baryon multiparticle states.

The $2 s$ excitation of the nucleon sits at 1.9 GeV

- Quark model states are basis states that mix with meson-baryon multiparticle states.
- Anticipate the $2 s$ excitation is associated with
- $N 1 / 2^{+}(1880)$ observed in photoproduction.
- $N 1 / 2^{+}(1710)$ only 170 MeV away.

The $2 s$ excitation of the nucleon sits at 1.9 GeV

- Quark model states are basis states that mix with meson-baryon multiparticle states.
- Anticipate the $2 s$ excitation is associated with
- $N 1 / 2^{+}(1880)$ observed in photoproduction.
- $N 1 / 2^{+}(1710)$ only 170 MeV away.
- What about the Roper resonance?

Positive-parity Nucleon Spectrum: Bare Basis State with $m_{0}=1.7 \mathrm{GeV}$

J. j. Wu, DBL, Z. w. Liu and A. W. Thomas, Phys. Rev. D 97 (2018) no.9, 094509 [arXiv:1703.10715 [nucl-th]].

- Consider $\pi N, \pi \Delta$ and σN channels, dressing a bare basis state.
- Fit to
phase shift and inelasticity.

- Fit yields two poles in the region of the PDG estimate $1365 \pm 15-i 95 \pm 15 \mathrm{MeV}$.

Positive-parity Nucleon Spectrum: Bare Basis State with $m_{0}=2.0 \mathrm{GeV}$

J. j. Wu, et al. [CSSM], arXiv:1703.10715 [nucl-th]

- Consider $\pi N, \pi \Delta$ and σN channels, dressing a bare basis state.
- Fit to phase shift and inelasticity. (red curve)

- Fit yields a pole in the regime of the PDG estimate $1365 \pm 15-i 95 \pm 15 \mathrm{MeV}$.

2.0 GeV Bare Basis State: Hamiltonian Model N^{\prime} Spectrum

$\pi N, \pi \Delta$ and σN channels, dressing a bare state.
C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek, Phys. Rev. D 95, no. 1, 014510 (2017) [arXiv:1610.01422 [hep-lat]].

Two different descriptions of the Roper resonance

(left) Resonance generated by strong rescattering in meson-baryon channels. (right) Meson dressings of a quark-model like core.

Section 6

Missing Baryon Resonances

Missing Baryon Resonances

- Many resonances predicted by the constituent quark model (CQM) below 2 GeV are not seen.

Missing Baryon Resonances

- Many resonances predicted by the constituent quark model (CQM) below 2 GeV are not seen.
- Now know the CQM should have been tuned to a $2 s$ resonance at $\sim 1900 \mathrm{MeV}$.
- Further excitations are at energies exceeding 2 GeV .

Missing Baryon Resonances

- Many resonances predicted by the constituent quark model (CQM) below 2 GeV are not seen.
- Now know the CQM should have been tuned to a $2 s$ resonance at $\sim 1900 \mathrm{MeV}$.
- Further excitations are at energies exceeding 2 GeV .
- Provides a new resolution of the missing baryon resonance problem.

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\left\|A_{N \pi}\right\|$ $\left(\mathrm{MeV}^{\frac{1}{2}}\right)$	$N \pi$ state assignment	Rating	$\sqrt{\Gamma_{\text {tot }}(\mathrm{BR})_{N \pi}}$ $\left(\mathrm{MeV}^{\frac{1}{2}}\right)$
$\left[N \frac{1}{2}^{+}\right]_{2}(1540)$	$20.3_{-0.9}^{+0.8}$	$N \frac{1}{2}^{+}(1440)$	$* * * *$	19.9 ± 3.0
$\left[N \frac{1}{2}^{+}\right]_{3}(1770)$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	$* * *$	4.7 ± 1.2
$\left[N \frac{1}{2}^{+}\right]_{4}(1880)$	$2.7_{-0.9}^{+0.6}$			
$\left[N \frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta \frac{3}{2}^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta_{\frac{3}{2}^{+}}{ }^{+}(1232)$	$* * * *$	10.7 ± 0.3
$\left[\Delta \frac{3}{2}^{+}\right]_{2}(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	$* *$	7.6 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{3}(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	$* * *$	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3_{-1.1}^{+0.8}$			

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\begin{aligned} & \left\|A_{N \pi}\right\| \\ & \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{aligned}$	$N \pi$ state assignment	Rating	$\begin{gathered} \sqrt{\Gamma_{\mathrm{tot}}}(\mathrm{BR})_{N \pi} \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{gathered}$
$\left[\mathrm{N}^{\frac{1}{2}}{ }^{+}\right]_{2}(1540) 1900$	$20.3{ }_{-0.9}^{+0.8}$	$N \frac{1}{2}^{+}(1440)$	****	19.9 ± 3.0
$\left[N \frac{1}{2}^{+}\right]_{3}(1770)$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	***	4.7 ± 1.2
$\left[N \frac{1}{2}^{+}\right]_{4}(1880)$	$2.7_{-0.9}^{+0.6}$			
$\left[N \frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta \frac{3}{2}^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	10.7 ± 0.3
$\left[\Delta \frac{3}{2}^{+}\right]_{2}(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	7.6 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{3}(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3{ }_{-1.1}^{+0.8}$			

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\left\|A_{N \pi}\right\|$ $\left(\mathrm{MeV}^{\frac{1}{2}}\right)$	$N \pi$ state assignment	Rating	$\sqrt{\Gamma_{\text {tot }}}(\mathrm{BR})_{N \pi}$ $\left(\mathrm{MeV}^{\frac{1}{2}}\right)$
$\left[N \frac{1}{2}^{+}\right]_{2}(1540)$	1900	$20.3_{-0.9}^{+0.8}$	$N \frac{1}{2}^{+}(1440)$	$* * * *$
$\left[N \frac{1}{2}^{+}\right]_{3}(17 / 0)$	2600	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	$* * *$
$\left[N \frac{1}{2}^{+}\right]_{4}(1880)$	$2.7_{-0.9}^{+0.6}$		19.9 ± 3.0	
$\left[N \frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$		4.7 ± 1.2	
$\left[\Delta \frac{3}{2}^{+}{ }^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}{ }^{+}(1232)$	$* * *$	
$\left[\Delta \frac{3}{2}^{+}\right]_{2}(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	$* *$	10.7 ± 0.3
$\left[\Delta \frac{3}{2}^{+}\right]_{3}(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}{ }^{+}(1920)$	$* * *$	7.6 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3_{-1.1}^{+0.8}$			7.7 ± 2.3

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\left\|A_{N \pi}\right\|$ $\left(\mathrm{MeV}^{\frac{1}{2}}\right)$	$N \pi$ state assignment	Rating	$\sqrt{\Gamma_{\text {tot }}}(\mathrm{BR})_{N \pi}$ $\left(\mathrm{MeV}^{\frac{1}{2}}\right)$
$\left[N \frac{1}{2}^{+}\right]_{2}(1540)$	1900	$20.3_{-0.9}^{+0.8}$	$N \frac{1}{2}^{+}(1440)$	$* * * *$
$\left[N \frac{1}{2}^{+}\right]_{3}(17 / 0)$	2600	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	$* * *$
$\left[N \frac{1}{2}^{+}\right]_{4}(1860)$	3600	$2.7_{-0.9}^{+0.6}$		19.9 ± 3.0
$\left[N \frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$		4.7 ± 1.2	
$\left[\Delta \frac{3}{2}^{+}{ }^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}{ }^{+}(1232)$	$* * *$	
$\left[\Delta \frac{3}{2}^{+}\right]_{2}(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	$* *$	10.7 ± 0.3
$\left[\Delta \frac{3}{2}^{+}\right]_{3}(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}{ }^{+}(1920)$	$* * *$	7.6 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3_{-1.1}^{+0.8}$			7.7 ± 2.3

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\begin{array}{r} \left\|A_{N \pi}\right\| \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{array}$	$N \pi$ state assignment	Rating	$\begin{gathered} \sqrt{\sqrt{\Gamma_{\text {tot }}}(\mathrm{BR})_{N \pi}} \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{gathered}$
$\left[\mathrm{L}^{2}+\right]_{2}(1540) 1900$	$20.33_{-0.9}^{+0.8}$	$N \frac{1}{2}^{+}(1440)$	****	19.9 ± 3.0
$\left[\mathrm{N}^{\frac{1}{2}}\right]_{3}(17 / 0) 2600$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	***	4.7 ± 1.2
$\left[\mathrm{Na}^{+}{ }^{+}\right]_{4}(1880) 3600$	$2.7_{-0.9}^{+0.6}$			
$\left[\frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta_{\frac{3}{2}}{ }^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	10.7 ± 0.3
$\left[\Delta \frac{3}{2}^{+}\right]_{2}(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	7.6 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{3}(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3{ }_{-1.1}^{+0.8}$			

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\begin{array}{r} \left\|A_{N \pi}\right\| \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{array}$	$N \pi$ state assignment	Rating	$\begin{gathered} \sqrt{\sqrt{\Gamma_{\text {tot }}}(\mathrm{BR})_{N \pi}} \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{gathered}$
$\left[\mathrm{N}^{\frac{1}{2}}\right]_{2}(1540) 1900$	$20.33_{-0.9}^{+0.8}$	$N \frac{1}{2}^{+}(1440)$	****	19.9 ± 3.0
$\left[\mathrm{N}^{\frac{1}{2}}{ }^{+}\right]_{3}(17 / 0) 2600$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	***	4.7 ± 1.2
$\left[N^{\frac{1}{2}}{ }^{+}\right]_{4}(1880) 3600$	$2.7_{-0.9}^{+0.6}$			
$\left[\frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta^{\frac{3}{2}}{ }^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}{ }^{(1232)}$	****	10.7 ± 0.3
$\left[\Delta \frac{3}{2}^{+}\right]_{2}(1795) 2140$	8.7 ± 0.2	$\Delta \frac{3}{2}{ }^{+}(1600)$	**	7.6 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{3}(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}{ }^{+}(1920)$	***	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3{ }_{-1.1}^{+0.8}$			

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\begin{array}{r} \left\|A_{N \pi}\right\| \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{array}$	$N \pi$ state assignment	Rating	$\begin{gathered} \sqrt{\Gamma_{\text {tot }}}(\mathrm{BR})_{N \pi} \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{gathered}$
$\left[\mathrm{N}^{\frac{1}{2}}{ }^{+}\right]_{2}(1540) 1900$	$20.33_{-0.9}^{+0.8}$	$N \frac{1}{2}^{+}(1440)$	****	19.9 ± 3.0
$\left[N \frac{1}{2}^{+}\right]_{3}(17 / 0) 2600$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	***	4.7 ± 1.2
$\left[\mathrm{S}^{\frac{1}{2}}\right]_{4}(1880) 3600$	$2.7_{-0.9}^{+0.6}$			
$\left[\frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta \frac{3}{2}^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	10.7 ± 0.3
$\left[\Delta \frac{3}{2}^{+}\right]_{2}(1795) 2140$	8.7 ± 0.2	$\Delta \frac{3}{2}{ }^{+}(1600)$	**	7.6 ± 2.3
$\left[\Delta^{\frac{3}{2}}{ }^{+}\right]_{3}(1815) 3 / 00$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3{ }_{-1.1}^{+0.8}$			

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\begin{array}{r} \left\|A_{N \pi}\right\| \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{array}$	$N \pi$ state assignment	Rating	$\begin{gathered} \sqrt{\Gamma_{\mathrm{tot}}}(\mathrm{BR})_{N \pi} \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{gathered}$
$\left[\mathrm{L}^{2}{ }^{+}\right]_{2}(1540) 1900$	$\underbrace{20.3_{-0.9}^{+0.8}}$	$N \frac{1}{2}^{+}(1440)$	****	19.9 ± 3.0
$\left[N \frac{1}{2}^{+}\right]_{3}(17 / 0) 2600$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	***	4.7 ± 1.2
$\left[\mathrm{Na}^{+}{ }^{+}\right]_{4}(1880) 3600$	$2.7{ }_{-0.9}^{+0.6}$			
$\left[\frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta \frac{3}{2}^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}{ }^{+}$(1232)	****	10.7 ± 0.3
$\left[\Delta^{\frac{3}{2}}\right]_{2}(1 / 95) 2140$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	7.6 ± 2.3
$\left[\Delta^{\frac{3}{2}}{ }^{+}\right]_{3}(1915) 3 / 00$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3{ }_{-1.1}^{+0.8}$			

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\begin{array}{r} \left\|A_{N \pi}\right\| \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{array}$	$N \pi$ state assignment	Rating	$\begin{gathered} \sqrt{\Gamma_{\mathrm{tot}}}(\mathrm{BR})_{N \pi} \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{gathered}$
$\left[\mathrm{S}^{\frac{1}{2}}\right]_{2}(1540) 1900$	$\underbrace{20.3_{-0.9}^{+0.8}}$	$N \frac{1}{2}^{+}(1440)$	****	19.9 ± 3.0
$\left[N \frac{1}{2}^{+}\right]_{3}(17 / 0) 2600$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	***	4.7 ± 1.2
$\left[\mathrm{Na}^{+}{ }^{+}\right]_{4}(1880) 3600$	$2.7_{-0.9}^{+0.6}$			
$\left[\frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta^{\frac{3}{2}}{ }^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}{ }^{+}$(1232)	****	10.7 ± 0.3
$\left[\Delta^{\frac{3}{2}}{ }^{+}\right]_{2}(1795) 2140$	$\xrightarrow[8.7 \pm 0.2]{ }$	$\Delta \frac{3}{2}^{+}(1600)$	**	7.6 ± 2.3
$\left[\Delta_{\frac{3}{2}}{ }^{+}\right]_{3}(1915) 3 / 00$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}{ }^{+}(1920)$	***	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3{ }_{-1.1}^{+0.8}$			

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$\begin{aligned} & \left\|A_{N \pi}\right\| \\ & \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{aligned}$	$N \pi$ state assignment	Rating	$\begin{gathered} \sqrt{\sqrt{\Gamma_{\text {tot }}}(\mathrm{BR})_{N \pi}} \\ \left(\mathrm{MeV}^{\frac{1}{2}}\right) \end{gathered}$
$\left[\mathrm{L}^{2}+\right]_{2}(1540) 1900$	$\underbrace{20.3}{ }_{-0.9}^{+0.8}$	$N_{1}{ }^{+}(1440)$	****	19.9 ± 3.0
$\left[\mathrm{N}^{\frac{1}{2}}\right]_{3}(17 / 0) 2600$	4.2 ± 0.1	$N \frac{1}{2}^{+}(1710)$	***	4.7 ± 1.2
$\left[\mathrm{Na}^{+}{ }^{+}\right]_{4}(1880) 3600$	$2.7{ }_{-0.9}^{+0.6}$			
$\left[\frac{1}{2}^{+}\right]_{5}(1975)$	$2.0_{-0.3}^{+0.2}$			
$\left[\Delta_{\frac{3}{2}}{ }^{+}\right]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}{ }^{(1232)}$	****	10.7 ± 0.3
$\left[\Delta^{\frac{3}{2}}\right]_{2}(1 / 75) 2140$	-8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	7.6 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{3}(1915) 3 / 00$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	7.7 ± 2.3
$\left[\Delta \frac{3}{2}^{+}\right]_{4}(1985)$	$3.3{ }_{-1.1}^{+0.8}$			

Section 7

Conclusions

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- The $\Delta(1600)$ is dynamically generated in πN and $\pi \Delta$ rescattering.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- The $\Delta(1600)$ is dynamically generated in πN and $\pi \Delta$ rescattering.
- The $\Delta(1920)$ is associated with the $2 s$ quark-model single-particle basis state.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- The $\Delta(1600)$ is dynamically generated in πN and $\pi \Delta$ rescattering.
- The $\Delta(1920)$ is associated with the $2 s$ quark-model single-particle basis state.
- The $N(1440)$ Roper is dynamically generated in $\pi N, \pi \Delta$, and σN rescattering.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- The $\Delta(1600)$ is dynamically generated in πN and $\pi \Delta$ rescattering.
- The $\Delta(1920)$ is associated with the $2 s$ quark-model single-particle basis state.
- The $N(1440)$ Roper is dynamically generated in $\pi N, \pi \Delta$, and σN rescattering.
- The $N(1710)$ and $N(1880)$ are associated with the $2 s$ quark-model basis state.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- The $\Delta(1600)$ is dynamically generated in πN and $\pi \Delta$ rescattering.
- The $\Delta(1920)$ is associated with the $2 s$ quark-model single-particle basis state.
- The $N(1440)$ Roper is dynamically generated in $\pi N, \pi \Delta$, and σN rescattering.
- The $N(1710)$ and $N(1880)$ are associated with the $2 s$ quark-model basis state.
- $\Lambda \frac{1}{2}^{-}$resonances:
- The $\Lambda(1405)$ has a two-pole structure generated by $\pi \Sigma$ and $\bar{K} N$ rescattering.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- The $\Delta(1600)$ is dynamically generated in πN and $\pi \Delta$ rescattering.
- The $\Delta(1920)$ is associated with the $2 s$ quark-model single-particle basis state.
- The $N(1440)$ Roper is dynamically generated in $\pi N, \pi \Delta$, and σN rescattering.
- The $N(1710)$ and $N(1880)$ are associated with the $2 s$ quark-model basis state.
- $\Lambda_{\frac{1}{2}}{ }^{-}$resonances:
- The $\Lambda(1405)$ has a two-pole structure generated by $\pi \Sigma$ and $\bar{K} N$ rescattering.
- The $\Lambda(1670)$ is associated with a quark-model-like single-particle basis state.

Conclusions

- Hamiltonian Effective Field Theory (HEFT)
- Connects scattering observables to finite-volume Lattice QCD.
- Connects results at different quark masses within a single formalism.
- Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
- The $\Delta(1600)$ is dynamically generated in πN and $\pi \Delta$ rescattering.
- The $\Delta(1920)$ is associated with the $2 s$ quark-model single-particle basis state.
- The $N(1440)$ Roper is dynamically generated in $\pi N, \pi \Delta$, and σN rescattering.
- The $N(1710)$ and $N(1880)$ are associated with the $2 s$ quark-model basis state.
- $\Lambda \frac{1}{2}^{-}$resonances:
- The $\Lambda(1405)$ has a two-pole structure generated by $\pi \Sigma$ and $\bar{K} N$ rescattering.
- The $\Lambda(1670)$ is associated with a quark-model-like single-particle basis state.
- These results provide a novel solution to the missing baryon resonances problem.

[^0]
Section 8

Supplementary Information

Two different descriptions of the Roper resonance

(left) Resonance generated by strong rescattering in meson-baryon channels. (right) Meson dressings of a quark-model like core.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.
Produces poles in accord with PDG.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well. Produces poles in accord with PDG.

Score Card

$$
\text { Criteria } \quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}
$$

Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$

Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
$2^{\text {nd }}$ lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
$2^{\text {nd }}$ lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
$2^{\text {nd }}$ lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
$2^{\text {nd }}$ lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
$2^{\text {nd }}$ lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.
HEFT predicts three-quark states that exist in lattice QCD.

Score Card

Criteria $\quad m_{0}=1.7 \mathrm{GeV} \quad m_{0}=2.0 \mathrm{GeV}$
Describes experimental data well.
Produces poles in accord with PDG.
$1^{\text {st }}$ lattice scattering state created via σN interpolator has dominant $\left\langle\sigma N \mid E_{1}\right\rangle$ in HEFT.
$2^{\text {nd }}$ lattice scattering state created via πN interpolator has dominant $\left\langle\pi N \mid E_{2}\right\rangle$ in HEFT.
L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\left\langle B_{0} \mid E_{\alpha}\right\rangle$.
HEFT predicts three-quark states that exist in lattice QCD.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

- The $2 s$ excitation of the nucleon is dressed to lie at $\sim 1.9 \mathrm{GeV}$

HEFT Extensions

- Formalism for partial-wave mixing in HEFT has been developed in Y. Li, J. J. Wu, C. D. Abell, D. B. L. and A. W. Thomas. Phys. Rev. D 101, no.11, 114501 (2020) [arXiv:1910.04973 [hep-lat]]
- And extended to moving and elongated finite-volumes in Y. Li, J. J. Wu, D. B. L. and A. W. Thomas Phys. Rev. D 103 no.9, 094518 (2021) [arXiv:2103.12260 [hep-lat]].

Room for non-resonant three-body contributions in $N 1 / 2^{+}$

Room for non-resonant three-body contributions in $N 1 / 2^{+}$

Room for non-resonant three-body contributions in $\Delta 3 / 2^{+}$

Room for non-resonant three-body contributions in $\Delta 3 / 2^{+}$
Inelasticity

Δ Finite Volume Spectrum at $L=3 \mathrm{fm}$

Δ Finite Volume Spectrum at $L=3 \mathrm{fm}$ with $\pi \pi N$ states

Evidence the $2 s$ state is associated with the $N 1 / 2^{+}(1710)$ and $N 1 / 2^{+}(1880)$

- The $N 1 / 2^{+}(1880)$ was observed in photoproduction while missed in πN scattering.

Evidence the $2 s$ state is associated with the $N 1 / 2^{+}(1710)$ and $N 1 / 2^{+}(1880)$

- The $N 1 / 2^{+}(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N 1 / 2^{+}(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV .
- The $N 1 / 2^{+}$(1880) was observed in photoproduction while missed in πN scattering.
- The $N 1 / 2^{+}(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV .
- Both suggest the $2 s$ excitation on the lattice may be insensitive to modifications of the meson dressings.
- The $N 1 / 2^{+}(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N 1 / 2^{+}(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV .
- Both suggest the $2 s$ excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.

Evidence the $2 s$ state is associated with the $N 1 / 2^{+}(1710)$ and $N 1 / 2^{+}(1880)$

- The $N 1 / 2^{+}(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N 1 / 2^{+}(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV .
- Both suggest the $2 s$ excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.
- Couplings to meson dressings are suppressed.

Evidence the $2 s$ state is associated with the $N 1 / 2^{+}(1710)$ and $N 1 / 2^{+}(1880)$

- The $N 1 / 2^{+}(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N 1 / 2^{+}(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV .
- Both suggest the $2 s$ excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.
- Couplings to meson dressings are suppressed.
- Quark-model dominated states will be insensitive to quenching.

Evidence the $2 s$ state is associated with the $N 1 / 2^{+}(1710)$ and $N 1 / 2^{+}(1880)$

- The $N 1 / 2^{+}(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N 1 / 2^{+}(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV .
- Both suggest the $2 s$ excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.
- Couplings to meson dressings are suppressed.
- Quark-model dominated states will be insensitive to quenching.
- Is there a state $\sim 1.9 \mathrm{GeV}$ that is insensitive to quenching?

Comparison of $2+1$ flavour and quenched lattice simulation results

Model (in)dependence in HEFT: Lüscher formalism

- HEFT incorporates the Lüscher formalism.

Model (in)dependence in HEFT: Lüscher formalism

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.

Model (in)dependence in HEFT: Lüscher formalism

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.

Model (in)dependence in HEFT: Lüscher formalism

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.
- Need to have a sufficient number of tunable parameters within the Hamiltonian.

Model (in)dependence in HEFT: Lüscher formalism

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.
- Need to have a sufficient number of tunable parameters within the Hamiltonian.
- The Hamiltonian is only mediary.

Model (in)dependence in HEFT: Lüscher formalism

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.
- Need to have a sufficient number of tunable parameters within the Hamiltonian.
- The Hamiltonian is only mediary.
- However, the Lüscher formalism provides no avenue for changing the quark mass.

Model (in)dependence in HEFT - Quark mass variation

- Finite-volume HEFT reproduces finite-volume χ PT in the perturbative limit by construction.

Model (in)dependence in HEFT - Quark mass variation

- Finite-volume HEFT reproduces finite-volume χ PT in the perturbative limit by construction.
- In the multi scattering-channel case, the Hamiltonian becomes tightly constrained.
- Experimental data is described accurately for only a limited range of parameters with specific regulator shapes.

Model (in)dependence in HEFT - Quark mass variation

- Finite-volume HEFT reproduces finite-volume χ PT in the perturbative limit by construction.
- In the multi scattering-channel case, the Hamiltonian becomes tightly constrained.
- Experimental data is described accurately for only a limited range of parameters with specific regulator shapes.
- The consideration of quark masses away from the physical point further constrains the Hamiltonian.

Model (in)dependence in HEFT - Quark mass variation

- Finite-volume HEFT reproduces finite-volume χ PT in the perturbative limit by construction.
- In the multi scattering-channel case, the Hamiltonian becomes tightly constrained.
- Experimental data is described accurately for only a limited range of parameters with specific regulator shapes.
- The consideration of quark masses away from the physical point further constrains the Hamiltonian.
- The Hamiltonian has become a tightly constrained model.

Model (in)dependence in HEFT - Quark mass variation

- Draw on model-independent constraints to determine the Hamiltonian.
- Lattice QCD and experiment.

Model (in)dependence in HEFT - Quark mass variation

- Draw on model-independent constraints to determine the Hamiltonian.
- Lattice QCD and experiment.
- One set of lattice QCD results is required to determine the quark mass dependence of the bare basis state(s).
- A term linear in the quark mass is usually sufficient to describe lattice QCD results.

Model (in)dependence in HEFT - Quark mass variation

- Draw on model-independent constraints to determine the Hamiltonian.
- Lattice QCD and experiment.
- One set of lattice QCD results is required to determine the quark mass dependence of the bare basis state(s).
- A term linear in the quark mass is usually sufficient to describe lattice QCD results.
- Make predictions of the finite-volume spectrum considered by other lattice groups.
- Different volumes and different quark masses can be addressed.

Model (in)dependence in HEFT - Quark mass variation

- Draw on model-independent constraints to determine the Hamiltonian.
- Lattice QCD and experiment.
- One set of lattice QCD results is required to determine the quark mass dependence of the bare basis state(s).
- A term linear in the quark mass is usually sufficient to describe lattice QCD results.
- Make predictions of the finite-volume spectrum considered by other lattice groups.
- Different volumes and different quark masses can be addressed.
- Model independence is governed by the distance from the physical point.
- For example, $m_{\pi}=204 \mathrm{MeV}$ considered by the BaSc collaboration.

Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.

Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.

Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.

Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.
- They are similar to the eigenvectors of lattice-QCD correlation matrices.
- They describe the linear combination of interpolating fields isolating energy eigenstates on the lattice.

Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.
- They are similar to the eigenvectors of lattice-QCD correlation matrices.
- They describe the linear combination of interpolating fields isolating energy eigenstates on the lattice.
- These too are model dependent.

Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.
- They are similar to the eigenvectors of lattice-QCD correlation matrices.
- They describe the linear combination of interpolating fields isolating energy eigenstates on the lattice.
- These too are model dependent.
- However, the composition of the states drawn from the lattice correlation matrix is similar to the description provided by HEFT.

Model (in)dependence in HEFT - Summary

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.

Model (in)dependence in HEFT - Summary

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.

Model (in)dependence in HEFT - Summary

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.
- The Hamiltonian eigenvectors describing the basis-state composition of finite-volume energy eigenstates are model dependent.

Model (in)dependence in HEFT - Summary

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.
- The Hamiltonian eigenvectors describing the basis-state composition of finite-volume energy eigenstates are model dependent.
- They are analogous to the interpolator dependent eigenvectors of lattice QCD correlation matrices describing the linear combination of interpolating fields isolating energy eigenstates.

Model (in)dependence in HEFT - Summary

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.
- The Hamiltonian eigenvectors describing the basis-state composition of finite-volume energy eigenstates are model dependent.
- They are analogous to the interpolator dependent eigenvectors of lattice QCD correlation matrices describing the linear combination of interpolating fields isolating energy eigenstates.
- The similarity displayed by these two different sets of eigenvectors suggests that they do indeed provide insight into hadron structure.

The $\Lambda(1405)$ in Lattice QCD

- First observed in
B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. 108 (2012) 112001 [arXiv:1109.6716 [hep-lat]].

The $\Lambda(1405)$ in Lattice QCD

- First observed in
B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. 108 (2012) 112001 [arXiv:1109.6716 [hep-lat]].
- Excited by local three-quark operators.
- A mix of two flavour-octet interpolators and a flavour-singlet operator.
- A variety of quark distributions via smeared sources.

The $\Lambda(1405)$ in Lattice QCD

- First observed in
B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. 108 (2012) 112001 [arXiv:1109.6716 [hep-lat]].
- Excited by local three-quark operators.
- A mix of two flavour-octet interpolators and a flavour-singlet operator.
- A variety of quark distributions via smeared sources.
- Appeared to be a local three quark state.
- But a study of the strange magnetic form factor revealed an exotic structure.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})-p(u, u, d)$ bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})-n(d, d, u)$ bound state.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})-p(u, u, d)$ bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})-n(d, d, u)$ bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})-p(u, u, d)$ bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})-n(d, d, u)$ bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

- Provides direct insight into the possible dominance of a molecular $\bar{K} N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
- A u, \bar{u} pair making a $K^{-}(s, \bar{u})-p(u, u, d)$ bound state, or
- A d, \bar{d} pair making a $\bar{K}^{0}(s, \bar{d})-n(d, d, u)$ bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the $\Lambda(1405)$ when it is dominated by a $\bar{K} N$ molecule.

Strange Magnetic Form Factor of the $\Lambda(1405)$

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

Electric form factors of the $\Lambda(1405)$ at $Q^{2} \sim 0.16 \mathrm{GeV}^{2}$

B. J. Menadue, W. Kamleh, DBL, M. Selim Mahbub and B. J. Owen, PoS LATTICE2013 (2014), 280 [arXiv:1311.5026 [hep-lat]]

Smeared Source Correlation Functions

Positive Parity Nucleon Spectrum CsSm

Positive Parity Nucleon Spectrum CSSM \& JLab HSC

Negative Parity Nucleon Spectrum CSSM

Negative Parity Nucleon Spectrum CSSM \& JLab HSC

Other Calculations of the Nucleon Spectrum

- Berlin-Graz-Regensburg (BGR) collaboration
G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

Other Calculations of the Nucleon Spectrum

- Berlin-Graz-Regensburg (BGR) collaboration
G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.
- χ QCD Collaboration results
K. F. Liu, et al., "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.

Other Calculations of the Nucleon Spectrum

- Berlin-Graz-Regensburg (BGR) collaboration
G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.
- χ QCD Collaboration results
K. F. Liu, et al., "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.
- One correlator versus $28 \times 28=784$ correlators analysed by the HSC.

Other Calculations of the Nucleon Spectrum

- Berlin-Graz-Regensburg (BGR) collaboration
G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]].

In agreement but with large uncertainties.

- χ QCD Collaboration results
K. F. Liu, et al., "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.
- One correlator versus $28 \times 28=784$ correlators analysed by the HSC.
- Obtained a result 300 MeV below that of the HSC.

Other Calculations of the Nucleon Spectrum

- Berlin-Graz-Regensburg (BGR) collaboration
G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]].

In agreement but with large uncertainties.

- χ QCD Collaboration results
K. F. Liu, et al., "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.
- One correlator versus $28 \times 28=784$ correlators analysed by the HSC.
- Obtained a result 300 MeV below that of the HSC.
- Conjectured the HSC results are wrong.
- Their source smearing is too small to see the wave function node.

Other Calculations of the Nucleon Spectrum

- Berlin-Graz-Regensburg (BGR) collaboration
G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]].

In agreement but with large uncertainties.

- χ QCD Collaboration results
K. F. Liu, et al., "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.
- One correlator versus $28 \times 28=784$ correlators analysed by the HSC.
- Obtained a result 300 MeV below that of the HSC.
- Conjectured the HSC results are wrong.
- Their source smearing is too small to see the wave function node.
- Argument already excluded by the CSSM results.

Other Calculations of the Nucleon Spectrum

- Berlin-Graz-Regensburg (BGR) collaboration
G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]].

In agreement but with large uncertainties.

- χ QCD Collaboration results
K. F. Liu, et al., "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.
- One correlator versus $28 \times 28=784$ correlators analysed by the HSC.
- Obtained a result 300 MeV below that of the HSC.
- Conjectured the HSC results are wrong.
- Their source smearing is too small to see the wave function node.
- Argument already excluded by the CSSM results.
- Further discussion in
D. Leinweber, et al. JPS Conf. Proc. 10 (2016), 010011 [arXiv:1511.09146 [hep-lat]].

Other Calculations of the Nucleon Spectrum

- Cyprus Twisted Mass and Clover Fermion results
C. Alexandrou, et al., Phys. Rev. D 89 (2014) no.3, 034502 [arXiv:1302.4410 [hep-lat]].

Other Calculations of the Nucleon Spectrum

- Cyprus Twisted Mass and Clover Fermion results
C. Alexandrou, et al., Phys. Rev. D 89 (2014) no.3, 034502 [arXiv:1302.4410 [hep-lat]].
- Correlation functions subsequently analysed in the Athens Model Independent Analysis Scheme (AMIAS).
C. Alexandrou, et al., Phys. Rev. D 91 (2015) no.1, 014506 [arXiv:1411.6765 [hep-lat]].

Search for low-lying lattice QCD eigenstates in the Roper regime

A. L. Kiratidis, et al., [CSSM] Phys. Rev. D 95, no. 7, 074507 (2017) [arXiv:1608.03051 [hep-lat]].

[^0]: 94 of 124

