Physical interpretation of the baryon spectrum

Derek Leinweber

Key collaborators: Curtis Abell, Liam Hockley, Waseem Kamleh, Zhan-Wei Liu, Finn Stokes, Tony Thomas, Jia-Jun Wu

- The study of N*(1535) and N*(1650) from the lattice data (14:50)
 Presenter: Jia-jun Wu (University of Chinese Academy of Science)
 Parallel Session: I B Walmgate Suite (Monday 17 June 2024, 13:30 15:15)
- Three particle interactions on the lattice (10:00)
 Presenter: Maxim Mai (University of Bonn / The George Washington University)
 Plenary Session: V (Wednesday 19 June 2024, 09:00 10:30)

• The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.

- The idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades.
- What's new are formalisms able to bring these descriptions to the finite-volume of lattice QCD.
- Lattice QCD calculations of the excitation spectrum provide new constraints.
- It's time to reconsider our early notions about the quark-model and its excitation spectrum.

Accessing the Radial Excitations of the Nucleon - CSSM Techniques

35 smearing sweeps

 $^{32}28}24}{20}{16}_{12}$ × 12¹⁶^{20^{24^{28³}}} 8 12¹⁶^{20^{24^{28°.}}} ⁴20₁₆12 8 100 smearing sweeps 200 smearing sweeps ${}^{{}^{32}{}_{28}}{}^{24}{}^{20}{}^{16}{}^{12}{}_{8}{}^{4}$ 8 12¹⁶^{20²⁴^{28³²}} ${}^{{}^{32}{}_{28}{}_{24}{}_{20}{}_{16}{}_{12}{}_{8}{}_{4}$ 8 12¹⁶^{20^{24^{28³}}}

16 smearing sweeps

- Circa 2010.
- Local 3-quark interpolating fields.
- Quark-level source smearing techniques.

Accessing the Radial Excitations of the Nucleon - CSSM Techniques

- Circa 2010.
- Local 3-quark interpolating fields.
- Quark-level source smearing techniques.
- Correlation matrix techniques
 - Identify linear combinations of sources to isolate states.
 - Opposite sign superpositions create wave function nodes.

Δ Baryon Interpolating Field Shapes

Δ -baryon spectrum from lattice QCD – 1s and 2s excitations

CSSM: L. Hockley, et al., J. Phys. G 51 (2024) no.6, 065106 [arXiv:2312.11574 [hep-lat]].
 Kahn et al.: T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) 034503 [arXiv:2010.03052 [hep-lat]].
 HSC: J. Bulava, et al., Phys. Rev. D 82 (2010) 014507 [arXiv:1004.5072 [hep-lat]].
 PACS-CS: S. Aoki et al. [PACS-CS], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].

Where's the $\Delta(1600)$ – the Roper-like resonance?

• Roper-like: 1^{st} even-parity excitation sits below the 1^{st} odd-parity, $\Delta(1700)$.

Positive Parity Nucleon Spectrum Circa 2017

- CSSM: Z. W. Liu, et al. [CSSM], Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]
- JLab: R. G. Edwards, et al. [HSC] Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].
- Cyprus: C. Alexandrou, et al. (AMIAS), Phys. Rev. D 91, 014506 (2015) arXiv:1411.6765 [hep-lat]

Landau-Gauge Wave functions from the Lattice

• Measure the *overlap* of the annihilation operator with the state as a function of the quark positions.

d-quark probability density in ground state proton [CSSM]

$\mathit{d}\text{-quark}$ probability density in the 1^{st} excited state of proton [CSSM]

d-quark probability density in the 2nd excited state of proton [CSSM]

Comparison with the Simple Quark Model [CSSM]

First positive-parity excitation: Magnetic moments

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

The spectrum of a simple quark model: N and Λ baryons

~1 GeV Quark Model

The challenge of experiment

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Coupled-channel analysis technique aimed at resonance physics.
 - Incorporates the Lüscher formalism.
 - $\circ~$ Connects scattering observables to the finite-volume spectrum of lattice QCD.

- Hamiltonian Effective Field Theory (HEFT)
 - Coupled-channel analysis technique aimed at resonance physics.
 - Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta_2^{3^+}$ resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
 - Discuss the composition of excited states.
 - $\circ~$ Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Coupled-channel analysis technique aimed at resonance physics.
 - Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta \frac{3}{2}^+$ resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
 - Discuss the composition of excited states.
 - $\circ~$ Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.
- New analysis of Λ_2^{1-} resonances aimed at describing the $\Lambda(1405)$ and $\Lambda(1670)$.
 - Draws on recent advances in experiment.
 - $\circ~$ Confront new lattice QCD spectra from the Baryon Scattering (BaSc) Collaboration.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Coupled-channel analysis technique aimed at resonance physics.
 - Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta \frac{3}{2}^+$ resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
 - Discuss the composition of excited states.
 - $\circ~$ Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.
- New analysis of Λ_2^{1-} resonances aimed at describing the $\Lambda(1405)$ and $\Lambda(1670)$.
 - Draws on recent advances in experiment.
 - Confront new lattice QCD spectra from the Baryon Scattering (BaSc) Collaboration.
- Roper $N_{\frac{1}{2}}^{+}(1440)$ resonance.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Coupled-channel analysis technique aimed at resonance physics.
 - Incorporates the Lüscher formalism.
 - Connects scattering observables to the finite-volume spectrum of lattice QCD.
- New analysis of $\Delta \frac{3}{2}^+$ resonances aimed at describing the $\Delta(1600)$ and $\Delta(1920)$.
 - $\,\circ\,$ Discuss the composition of excited states.
 - $\circ~$ Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.
- New analysis of A_{2}^{1-} resonances aimed at describing the A(1405) and A(1670).
 - Draws on recent advances in experiment.
 - $\circ~$ Confront new lattice QCD spectra from the Baryon Scattering (BaSc) Collaboration.
- Roper $N_{\frac{1}{2}}^{\pm}(1440)$ resonance.
- A new resolution of the missing baryon resonances problem.

Section 2

Hamiltonian Effective Field Theory (HEFT)

J. M. M. Hall, *et al.* [CSSM], Phys. Rev. D **87** (2013) 094510 [arXiv:1303.4157 [hep-lat]] C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D **106** (2022) 034506 [arXiv:2110.14113 [hep-lat]]

An extension of chiral effective field theory incorporating the Lüscher formalism
 Linking the energy levels observed in finite volume to scattering observables.

J. M. M. Hall, *et al.* [CSSM], Phys. Rev. D **87** (2013) 094510 [arXiv:1303.4157 [hep-lat]] C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D **106** (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
 Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
 - $\circ~$ HEFT reproduces the finite-volume expansion of chiral perturbation theory.

J. M. M. Hall, *et al.* [CSSM], Phys. Rev. D **87** (2013) 094510 [arXiv:1303.4157 [hep-lat]] C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D **106** (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
 Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
 NEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
 - $\circ~$ Predictions of the finite-volume spectrum are made.

J. M. M. Hall, *et al.* [CSSM], Phys. Rev. D **87** (2013) 094510 [arXiv:1303.4157 [hep-lat]] C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D **106** (2022) 034506 [arXiv:2110.14113 [hep-lat]]

- An extension of chiral effective field theory incorporating the Lüscher formalism
 Linking the energy levels observed in finite volume to scattering observables.
- In the light quark-mass regime, in the perturbative limit,
 NEFT reproduces the finite-volume expansion of chiral perturbation theory.
- Fitting resonance phase-shift data and inelasticities,
 - $\circ~$ Predictions of the finite-volume spectrum are made.
- The eigenvectors of the Hamiltonian provide insight into the composition of the energy eigenstates.
 - Insight is similar to that provided by correlation-matrix eigenvectors in Lattice QCD.

• The rest-frame Hamiltonian has the form $H = H_0 + H_I$, with

$$H_0 = \sum_{B_0} \ket{B_0} m_{B_0} ra{B_0} + \sum_{lpha} \int d^3k \ket{lpha(m{k})} \omega_{lpha}(m{k}) ra{lpha(m{k})},$$

• The rest-frame Hamiltonian has the form $H = H_0 + H_I$, with

$$H_0 = \sum_{B_0} \ket{B_0} m_{B_0} ra{B_0} + \sum_{lpha} \int d^3k \ket{lpha(m{k})} \omega_{lpha}(m{k}) ra{lpha(m{k})},$$

• $|B_0\rangle$ denotes a quark-model-like basis state with bare mass m_{B_0} .

• The rest-frame Hamiltonian has the form $H = H_0 + H_I$, with

$$H_0 = \sum_{B_0} \ket{B_0} m_{B_0} ra{B_0} + \sum_{lpha} \int d^3k \ket{lpha(m{k})} \omega_{lpha}(m{k}) ra{lpha(m{k})},$$

- $|B_0\rangle$ denotes a quark-model-like basis state with bare mass m_{B_0} .
- $|lpha(m{k})
 angle$ designates a two-particle non-interacting basis-state channel with energy

$$\omega_lpha(oldsymbol{k})=\omega_{lpha_M}(oldsymbol{k})+\omega_{lpha_B}(oldsymbol{k})=\sqrt{oldsymbol{k}^2+m^2_{lpha_M}}+\sqrt{oldsymbol{k}^2+m^2_{lpha_B}}\,,$$

for M = Meson, B = Baryon.

.

- The interaction Hamiltonian includes two parts, $H_I = g + v$.
- $1 \rightarrow 2$ particle vertex

$$g = \sum_{\alpha, B_0} \int d^3k \left\{ \left| \alpha(\mathbf{k}) \right\rangle G^{\dagger}_{\alpha, B_0}(k) \left\langle B_0 \right| + h.c. \right\}, \qquad \underbrace{\Delta(\mathbf{0})}_{N(\mathbf{k})} \left\langle \mathbf{m}(\mathbf{k}) \right\rangle = \frac{\Delta(\mathbf{0})}{N(\mathbf{k})} \left\langle \mathbf{m}(\mathbf{k}) \right\rangle$$

- The interaction Hamiltonian includes two parts, $H_I = g + v$.
- $1 \rightarrow 2$ particle vertex

$$g = \sum_{\alpha, B_0} \int d^3k \left\{ \left| \alpha(\mathbf{k}) \right\rangle G^{\dagger}_{\alpha, B_0}(k) \left\langle B_0 \right| + h.c. \right\} \,,$$

• $2 \rightarrow 2$ particle vertex

$$v = \sum_{lpha,eta} \int d^3k \; d^3k' \ket{lpha(m{k})} V^S_{lpha,eta}(k,k') raket{eta(m{k}')}$$

23 of 124

S-wave vertex interactions

• S-wave one to two-particle interactions take the form

$$G_{\alpha,B_0}(k) = \frac{g_{B_0\alpha}}{2\pi f_\pi} \sqrt{\omega_{\alpha_M}(k)} u(k, \Lambda),$$

with dipole regulator

$$u(k, \mathbf{\Lambda}) = \frac{1}{\left(1 + k^2/\mathbf{\Lambda}^2\right)^2}.$$

P-wave and higher vertex interactions

• P-wave and higher vertex interactions take the form

$$G_{\alpha,B_0}(k) = g_{B_0\alpha} \frac{1}{4\pi^2} \left(\frac{k}{f_\pi}\right)^{l_\alpha} \frac{u(k,\boldsymbol{\Lambda})}{\sqrt{\omega_{\alpha_M}(k)}}$$

•

where l_{α} is the orbital angular momentum in channel α .

Two-to-two particle interactions

• For S-wave scattering

$$V^{S}_{lpha,eta}\,(\,k,\,k'\,) = v_{lpha,eta}\,rac{3}{4\pi^2\,f_{\pi}^2}\,u(k,\Lambda)\,u(k',\Lambda)$$

with dipole regulator

$$u(k, \Lambda) = \frac{1}{(1 + k^2/\Lambda^2)^2}.$$

Two-to-two particle interactions

- For P-wave scattering in the N^* and \varDelta channels

$$V_{\alpha,\beta}^{S}(k,k') = v_{\alpha,\beta} \frac{1}{4\pi^{2} f_{\pi}^{2}} \frac{k}{\omega_{\alpha_{M}}(k)} \frac{k'}{\omega_{\beta_{M}}(k')} u(k,\Lambda) u(k',\Lambda) \cdot \underbrace{\begin{array}{c} \pi(-k) \\ N(k) \end{array}}_{N(k)} \frac{\pi(-k')}{\Delta(k')} \frac{$$

Two-to-two particle interactions

- For P-wave scattering in the N^* and \varDelta channels

- For the $\varLambda^{*}(1405),$ the Weinberg-Tomozawa form is considered

$$V_{\alpha,\beta}^{S}(k, k') = v_{\alpha,\beta}^{\Lambda^*} \frac{\left[\omega_{\alpha_M}(k) + \omega_{\beta_M}(k')\right] u(k, \Lambda) u(k', \Lambda)}{16 \pi^2 f_{\pi}^2 \sqrt{\omega_{\alpha_M}(k) \omega_{\beta_M}(k')}},$$

Infinite-Volume scattering amplitude

• The *T*-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$T_{lpha,eta}(k,k';E) = ilde{V}_{lpha,eta}(k,k';E) + \sum_{\gamma} \int q^2 dq \, rac{ ilde{V}_{lpha,\gamma}(k,q;E) \, T_{\gamma,eta}(q,k';E)}{E - \omega_{\gamma}(q) + i\epsilon} \, .$$

Infinite-Volume scattering amplitude

• The *T*-matrices for two particle scattering are obtained by solving the coupled-channel integral equations

$$T_{\alpha,\beta}(k,k';E) = \tilde{V}_{\alpha,\beta}(k,k';E) + \sum_{\gamma} \int q^2 dq \, \frac{\tilde{V}_{\alpha,\gamma}(k,q;E) \, T_{\gamma,\beta}(q,k';E)}{E - \omega_{\gamma}(q) + i\epsilon}$$

• The coupled-channel potential is readily calculated from the interaction Hamiltonian

$$\tilde{V}_{\alpha,\beta}(k,k') = \sum_{B_0} \frac{G^{\dagger}_{\alpha,B_0}(k) G_{\beta,B_0}(k')}{E - m_{B_0}} + V^S_{\alpha,\beta}(k,k'),$$

$$\pi(-k) \cdot \Delta(0) \cdot \pi(-k') + \pi(-k) \cdot \pi(-k')$$

$$N(k) \cdot \Delta(k') + N(k) \cdot \Delta(k')$$

Infinite-Volume scattering matrix

• The S-matrix is related to the T-matrix by

$$S_{\alpha,\beta}(E) = 1 - 2i\sqrt{\rho_{\alpha}(E)\,\rho_{\beta}(E)} T_{\alpha,\beta}(k_{\alpha\,\mathrm{cm}},k_{\beta\,\mathrm{cm}};E)\,,$$

with

$$\rho_{\alpha}(E) = \pi \frac{\omega_{\alpha_M}(k_{\alpha\,\mathrm{cm}})\,\omega_{\alpha_B}(k_{\alpha\,\mathrm{cm}})}{E}\,k_{\alpha\,\mathrm{cm}}\,,$$

and $k_{\alpha\,{
m cm}}$ satisfies the on-shell condition

$$\omega_{\alpha_M}(k_{\alpha\,\mathrm{cm}}) + \omega_{\alpha_B}(k_{\alpha\,\mathrm{cm}}) = E \,.$$

Infinite-Volume scattering matrix

• The S-matrix is related to the $T\mbox{-matrix}$ by

$$S_{\alpha,\beta}(E) = 1 - 2i\sqrt{\rho_{\alpha}(E)\,\rho_{\beta}(E)} T_{\alpha,\beta}(k_{\alpha\,\mathrm{cm}},k_{\beta\,\mathrm{cm}};E)\,,$$

with

$$\rho_{\alpha}(E) = \pi \frac{\omega_{\alpha_M}(k_{\alpha\,\mathrm{cm}})\,\omega_{\alpha_B}(k_{\alpha\,\mathrm{cm}})}{E}\,k_{\alpha\,\mathrm{cm}}\,,$$

and $k_{\alpha\,\mathrm{cm}}$ satisfies the on-shell condition

$$\omega_{\alpha_M}(k_{\alpha\,\mathrm{cm}}) + \omega_{\alpha_B}(k_{\alpha\,\mathrm{cm}}) = E \,.$$

• The cross section $\sigma_{\alpha\,,\beta}$ for the process $\alpha o \beta$ is

$$\sigma_{\alpha,\beta} = \frac{4\pi^3 k_{\alpha\,\mathrm{cm}} \,\omega_{\alpha_M}(k_{\alpha\,\mathrm{cm}}) \,\omega_{\alpha_B}(k_{\alpha\,\mathrm{cm}}) \,\omega_{\beta_M}(k_{\alpha\,\mathrm{cm}}) \,\omega_{\beta_B}(k_{\alpha\,\mathrm{cm}})}{E^2 \,k_{\beta\,\mathrm{cm}}} \left| T_{\alpha,\beta}(k_{\alpha\,\mathrm{cm}},k_{\beta\,\mathrm{cm}};E) \right|^2$$

• The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\rm cm}) \,\omega_N(k_{\rm cm})}{E} \,k_{\rm cm} \,T_{\pi N,\pi N}(k_{\rm cm},k_{\rm cm};E) ,$$

= $\eta(E) \,e^{2i\,\delta(E)} .$

• The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\rm cm}) \,\omega_N(k_{\rm cm})}{E} \,k_{\rm cm} \,T_{\pi N,\pi N}(k_{\rm cm},k_{\rm cm};E) \,,$$

= $\eta(E) \,e^{2i\,\delta(E)} \,.$

$$\begin{array}{c|c} \pi(-\boldsymbol{k}) & \pi(-\boldsymbol{k}') & \pi(-\boldsymbol{k}') \\ \hline & N(\boldsymbol{k}) & N(\boldsymbol{k}') & N(\boldsymbol{k}') \\ \hline \end{array} \\ \end{array}$$

• The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\rm cm}) \,\omega_N(k_{\rm cm})}{E} \,k_{\rm cm} \,T_{\pi N,\pi N}(k_{\rm cm},k_{\rm cm};E) \,,$$

= $\eta(E) \,e^{2i\,\delta(E)} \,.$

• The S-matrix is related to the T-matrix by

$$S_{\pi N,\pi N}(E) = 1 - 2i\pi \frac{\omega_{\pi}(k_{\rm cm}) \,\omega_N(k_{\rm cm})}{E} \,k_{\rm cm} \,T_{\pi N,\pi N}(k_{\rm cm},k_{\rm cm};E) ,$$

= $\eta(E) \,e^{2i\,\delta(E)} .$

$$\begin{array}{c} \pi(-\mathbf{k}) & \pi(-\mathbf{k}') & \pi(-\mathbf{k}') & \pi(-\mathbf{k}'') & \pi(-\mathbf{k}'') & \Delta(\mathbf{0}) & \Delta(\mathbf{0}) \\ \hline & N(\mathbf{k}) & N(\mathbf{k}') & N(\mathbf{k}') & \Delta(\mathbf{k}'') & \Delta(\mathbf{k}'') & N(\mathbf{k}') \\ \end{array}$$

Fit to Scattering Data in the Δ -Resonance Channel

L. Hockley, C. Abell, DBL, and A. Thomas, [arXiv:2406.00981 [hep-ph]].

30 of 124

Pole Positions for $\Delta(1232)$, $\Delta(1600)$, and $\Delta(1920)$

• In a finite periodic volume, momentum is quantised to $n (2\pi/L)$.

- In a finite periodic volume, momentum is quantised to $n (2\pi/L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \frac{2\pi}{L},$$

with $n_i = 0, \pm 1, \pm 2, \ldots$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

- In a finite periodic volume, momentum is quantised to $n (2\pi/L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \frac{2\pi}{L}$$

with $n_i = 0, \pm 1, \pm 2, ...$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

• The degeneracy of each k_n is described by $C_3(n)$, which counts the number of ways the integers n_x , n_y , and n_z , can be squared and summed to n.

- In a finite periodic volume, momentum is quantised to $n (2\pi/L)$.
- In a cubic volume of extent L on each side, define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \frac{2\pi}{L}$$
,

with $n_i = 0, \pm 1, \pm 2, ...$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

- The degeneracy of each k_n is described by $C_3(n)$, which counts the number of ways the integers n_x , n_y , and n_z , can be squared and summed to n.
- The non-interacting Hamiltonian takes the form

$$H_0 = \mathsf{diag}\left(m_{\Delta_1}, \, m_{\Delta_2}, \, \omega_{\pi N}(k_1), \, \omega_{\pi \Delta}(k_1), \, \dots, \omega_{\pi N}(k_{n_{\mathsf{max}}}), \, \omega_{\pi \Delta}(k_{n_{\mathsf{max}}})\right) \, .$$

Interaction Hamiltonian Terms

,

• $1 \rightarrow 2$ particle interaction terms sit in the first rows and columns.

$$H_{I} = \begin{pmatrix} 0 & 0 & \bar{G}_{\pi N}^{\Delta_{1}}(k_{1}) & \bar{G}_{\pi \Delta}^{\Delta_{1}}(k_{1}) & \bar{G}_{\pi \Delta}^{\Delta_{1}}(k_{2}) & \bar{G}_{\pi \Delta}^{\Delta_{1}}(k_{2}) & \dots & \bar{G}_{\pi N}^{\Delta_{1}}(k_{n_{\max}}) & \bar{G}_{\pi \Delta}^{\Delta_{1}}(k_{n_{\max}}) \\ 0 & 0 & \bar{G}_{\pi N}^{\Delta_{2}}(k_{1}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{1}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{2}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{2}) & \dots & \bar{G}_{\pi N}^{\Delta_{2}}(k_{n_{\max}}) \\ \bar{G}_{\pi N}^{\Delta_{1}}(k_{1}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{1}) & \\ \bar{G}_{\pi N}^{\Delta_{1}}(k_{2}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{2}) & & \\ \bar{G}_{\pi \Lambda}^{\Delta_{1}}(k_{2}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{2}) & & \bar{V}^{S} \\ \vdots & \vdots & \vdots \\ \bar{G}_{\pi N}^{\Delta_{1}}(k_{n_{\max}}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{n_{\max}}) \\ \bar{G}_{\pi \Delta}^{\Delta_{1}}(k_{n_{\max}}) & \bar{G}_{\pi \Delta}^{\Delta_{2}}(k_{n_{\max}}) \end{pmatrix} \end{pmatrix}$$

Interaction Hamiltonian Terms

• $1 \rightarrow 2$ particle interaction terms sit in the first rows and columns.

$$H_{I} = \begin{pmatrix} 0 & 0 & \bar{G}_{\Delta 1}^{\Delta_{1}}(k_{1}) & \bar{G}_{\Delta 2}^{\Delta_{1}}(k_{1}) & \bar{G}_{\Delta 1}^{\Delta_{1}}(k_{2}) & \bar{G}_{\Delta 1}^{\Delta_{1}}(k_{2}) & \dots & \bar{G}_{\Delta 1}^{\Delta_{1}}(k_{n_{\max}}) & \bar{G}_{\Delta 2}^{\Delta_{1}}(k_{n_{\max}}) \\ 0 & 0 & \bar{G}_{\pi N}^{\Delta_{2}}(k_{1}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{1}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{2}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{2}) & \dots & \bar{G}_{\pi N}^{\Delta_{2}}(k_{n_{\max}}) \\ \bar{G}_{\pi M}^{\Delta_{1}}(k_{1}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{1}) & \\ \bar{G}_{\pi M}^{\Delta_{1}}(k_{2}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{2}) & & \\ \bar{G}_{\pi \Lambda 2}^{\Delta_{1}}(k_{2}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{2}) & & \\ \bar{G}_{\pi \Lambda 2}^{\Delta_{1}}(k_{2}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{2}) & & \bar{V}^{S} \\ \vdots & \vdots & \vdots & \\ \bar{G}_{\pi M}^{\Delta_{1}}(k_{n_{\max}}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{n_{\max}}) \\ \bar{G}_{\pi \Delta 1}^{\Delta_{1}}(k_{n_{\max}}) & \bar{G}_{\pi \Delta 2}^{\Delta_{2}}(k_{n_{\max}}) & \\ \end{array} \right)$$

• \bar{V}^S describes the $(n_c\times n_{\max})^2$, $2\to 2$ particle interaction terms, filling out the rest of the matrix.

Relation to infinite-volume contributions

• The finite volume Hamiltonian interaction terms are related to the infinite-volume contributions via

$$\int k^2 dk = \frac{1}{4\pi} \int d^3 k \to \frac{1}{4\pi} \sum_{n \in \mathbb{Z}^3} \left(\frac{2\pi}{L}\right)^3 = \frac{1}{4\pi} \sum_{n \in \mathbb{Z}} C_3(n) \left(\frac{2\pi}{L}\right)^3.$$

such that

$$\bar{G}_{\alpha,B_0}(k_n) = \sqrt{\frac{C_3(n)}{4\pi}} \left(\frac{2\pi}{L}\right)^{\frac{3}{2}} G_{\alpha,B_0}(k_n) ,$$
$$\bar{V}_{\alpha\beta}^S(k_n,k_m) = \sqrt{\frac{C_3(n)}{4\pi}} \sqrt{\frac{C_3(m)}{4\pi}} \left(\frac{2\pi}{L}\right)^3 V_{\alpha\beta}^S(k_n,k_m) .$$

• Standard Lapack routines provide eigenmode solutions of

$$\langle i | H | j \rangle \langle j | E_{\alpha} \rangle = E_{\alpha} \langle i | E_{\alpha} \rangle,$$

- $\,\circ\,$ where $|\,i\,\rangle$ and $|\,j\,\rangle$ are the non-interacting basis states,
- $\circ~E_{\alpha}$ is the energy eigenvalue, and
- $\circ \ \left< i \, | \, E_{\alpha} \, \right>$ is the eigenvector of the
- \circ Hamiltonian matrix $\langle i | H | j \rangle$.

Mass dependence of HEFT energy eigenstates

L. Hockley, C. Abell, DBL, and A. Thomas, [arXiv:2406.00981 [hep-ph]].

Mass dependence of HEFT energy eigenstates

L. Hockley, C. Abell, DBL, and A. Thomas, [arXiv:2406.00981 [hep-ph]].

• Standard Lapack routines provide eigenmode solutions of

 $\langle i | H | j \rangle \langle j | E_{\alpha} \rangle = E_{\alpha} \langle i | E_{\alpha} \rangle.$

• Eigenvector $\langle i | E_{\alpha} \rangle$ describes the composition of the eigenstate $| E_{\alpha} \rangle$ in terms of the basis states $| i \rangle$ with

 $|i\rangle = |B_0\rangle, |\pi N, k_1\rangle, |\pi N, k_2\rangle, \cdots |\pi \Delta, k_1\rangle, |\pi \Delta, k_2\rangle, \cdots.$

Standard Lapack routines provide eigenmode solutions of

 $\langle i | H | j \rangle \langle j | E_{\alpha} \rangle = E_{\alpha} \langle i | E_{\alpha} \rangle.$

• Eigenvector $\langle i | E_{\alpha} \rangle$ describes the composition of the eigenstate $| E_{\alpha} \rangle$ in terms of the basis states $| i \rangle$ with

 $|i\rangle = |B_0\rangle, \quad |\pi N, k_1\rangle, \quad |\pi N, k_2\rangle, \quad \cdots |\pi \Delta, k_1\rangle, \quad |\pi \Delta, k_2\rangle, \quad \cdots.$

• The overlap of the bare basis state $|B_0\rangle$ with eigenstate $|E_{\alpha}\rangle$,

 $\langle B_0 | E_\alpha \rangle$,

is of particular interest,

37 of 124

• In Hamiltonian EFT, the only localised basis state is the bare basis state.

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χPT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$\frac{3}{16} \, \frac{1}{(f_\pi \, L)^2 \, E_\pi \, L} \, \left(\frac{E_N - M_N}{E_N} \right) \sim 10^{-3} \, ,$$

relative to the ground state.

O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χPT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$\frac{3}{16} \, \frac{1}{(f_\pi \, L)^2 \, E_\pi \, L} \, \left(\frac{E_N - M_N}{E_N} \right) \sim 10^{-3} \, ,$$

relative to the ground state.

O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

• Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

 $\overline{\chi}(0) |\Omega\rangle \simeq |B_0\rangle ,$

- In Hamiltonian EFT, the only localised basis state is the bare basis state.
- Bär has highlighted how χPT provides an estimate of the direct coupling of smeared nucleon interpolating fields to a non-interacting πN (basis) state,

$$\frac{3}{16} \, \frac{1}{(f_\pi \, L)^2 \, E_\pi \, L} \, \left(\frac{E_N - M_N}{E_N} \right) \sim 10^{-3} \, ,$$

relative to the ground state.

O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

• Conclude the smeared interpolating fields of lattice QCD are associated with the bare basis states of HEFT

$$\overline{\chi}(0) |\Omega\rangle \simeq |B_0\rangle ,$$

• Eigenstates with large $\langle B_0 | E_{\alpha} \rangle$ will be excited and observed in lattice QCD.

38 of 124

\varDelta Finite Volume Spectrum at $L=3~{\rm fm}$

25 Fit Parameters

Parameter	Value	Parameter	Value
$m_{\varDelta_1}/{ m GeV}$	1.3894	$m_{\Delta_2}/{ m GeV}$	2.3177
$g^{{\it \Delta}_1}_{\pi N}$	0.4974	$g_{\pi N}^{\Delta_2}$	0.2914
$g^{\Delta_1}_{\pi\Delta_p}$	0.5300	$g^{\Delta_2}_{\pi\Delta_p}$	0.2289
$g^{\Delta_1}_{\pi\Delta_f}$	0.0004	$g_{\pi\Delta_f}^{\Delta_2}$	0.0075
$\Lambda^{\Delta_1}_{\pi N}/GeV$	0.8246	$\Lambda^{\Delta_2}_{\pi N}/GeV$	1.3384
$\Lambda^{\overline{\Delta}_1}_{\pi \overline{\Delta}_n}/GeV$	0.8376	$\Lambda^{\Delta_2}_{\pi\Delta_n}/{ m GeV}$	0.5428
$\Lambda^{{\Delta_1}_F}_{\pi{\Delta_f}}/{ m GeV}$	0.5776	$\Lambda^{\Delta_2}_{\pi\Delta_f}$ /GeV	1.0549
$v_{\pi N,\pi N}$	0.0454	$v_{\pi N,\pi \Delta_f}$	-0.0030
$v_{\pi N,\pi \Delta_p}$	-1.5545	$v_{\pi \Delta_p, \pi \Delta_f}$	-0.0053
$v_{\pi\Delta_p,\pi\Delta_p}$	-0.9694	$v_{\pi \Delta_f, \pi \Delta_f}$	-0.0001
$\Lambda^v_{\pi N}/{ m GeV}$	0.6032	$\Lambda^v_{\pi\Delta_f}/\text{GeV}$	1.3289
$arLambda_{\piarDelta_p}^v/{ m GeV}$	0.8058		

Bare Slope (GeV $^{-1}$)	Value
α_{Δ_1}	0.751
α_{Δ_2}	0.203

40 of 124

Section 3

\varDelta Finite Volume Spectrum at $L=3~{\rm fm}$

Eigenstate Composition: State 3 – Mix of 3 two-particle channels

Eigenstate Composition: State 6 – Mix of 3 channels and Δ_2

Eigenstate Composition: State 9 – Largest Δ_2 component

• CLS Consortium:

C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and

A. Walker-Loud, PoS LATTICE2021 (2022), 170 [arXiv:2111.07755 [hep-lat]].

• CLS Consortium:

C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and A. Walker-Loud, PoS **LATTICE2021** (2022), 170 [arXiv:2111.07755 [hep-lat]].

• Cyprus Collaboration:

C. Alexandrou, S. Bacchio, G. Koutsou, T. Leontiou, S. Paul, M. Petschlies and F. Pittler, Phys. Rev. D **109** (2024) no.3, 3 [arXiv:2307.12846 [hep-lat]].

• CLS Consortium:

C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and A. Walker-Loud, PoS **LATTICE2021** (2022), 170 [arXiv:2111.07755 [hep-lat]].

• Cyprus Collaboration:

C. Alexandrou, S. Bacchio, G. Koutsou, T. Leontiou, S. Paul, M. Petschlies and F. Pittler, Phys. Rev. D **109** (2024) no.3, 3 [arXiv:2307.12846 [hep-lat]].

• Hadron Spectrum Collaboration (HSC):

J. Bulava, R. G. Edwards, E. Engelson, B. Joo, H. W. Lin, C. Morningstar, D. G. Richards and S. J. Wallace, Phys. Rev. D 82 (2010), 014507 [arXiv:1004.5072 [hep-lat]].

- CLS Consortium:
 - C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and A. Walker-Loud, PoS **LATTICE2021** (2022), 170 [arXiv:2111.07755 [hep-lat]].

• Cyprus Collaboration:

C. Alexandrou, S. Bacchio, G. Koutsou, T. Leontiou, S. Paul, M. Petschlies and F. Pittler, Phys. Rev. D **109** (2024) no.3, 3 [arXiv:2307.12846 [hep-lat]].

- Hadron Spectrum Collaboration (HSC):
 J. Bulava, R. G. Edwards, E. Engelson, B. Joo, H. W. Lin, C. Morningstar, D. G. Richards and S. J. Wallace, Phys. Rev. D 82 (2010), 014507 [arXiv:1004.5072 [hep-lat]].
- Khan, et al.:

T. Khan, D. Richards and F. Winter, Phys. Rev. D **104** (2021) no.3, 034503 [arXiv:2010.03052 [hep-lat]].

CLS Consortium Spectrum at L = 4.16 fm from 2022

Eigenstate Composition: State $2 - \pi N$ dominated

SUBAT

Cyprus Collaboration: $m_{\pi} = 0.139$ GeV and L = 5.1 fm from 2024

H<u>SC Spe</u>ctrum at L = 1.96 fm from 2010

Khan *et al.* Spectrum at L = 3.01 fm from 2021

Section 4

 $A_{\overline{2}}^{1^{-}}$ Analysis

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, DBL, X. Liu and A. W. Thomas, Phys. Rev. D **109** (2024) 054025 [arXiv:2312.13072 [hep-ph]]

• Motivated by recent advances in both experiment and theory.

- Motivated by recent advances in both experiment and theory.
- Considerable progress in new K^-p scattering data associated with $\Lambda \frac{1}{2}^-$ baryons.
 - $\circ~$ 2022: DA ${\it \Phi}{\rm NE}{\rm :}$ Near threshold cross section measurements.
 - $\circ~$ 2022: J-PARC: $\pi\varSigma$ invariant mass spectra in K^-p induced reactions.
 - $\circ~$ 2021: ALICE: K^-p scattering length.

- Motivated by recent advances in both experiment and theory.
- Considerable progress in new K^-p scattering data associated with $\Lambda \frac{1}{2}^-$ baryons.
 - $\circ~$ 2022: DA ${\it \Phi}{\rm NE}{\rm :}$ Near threshold cross section measurements.
 - $\circ~$ 2022: J-PARC: $\pi\varSigma$ invariant mass spectra in K^-p induced reactions.
 - $\circ~$ 2021: ALICE: K^-p scattering length.
- BaSc Lattice QCD collaboration performed coupled-channel simulations with both single baryon and meson-baryon interpolating operators at $m_{\pi} = 204$ MeV.

- Motivated by recent advances in both experiment and theory.
- Considerable progress in new K^-p scattering data associated with $\Lambda \frac{1}{2}^-$ baryons.
 - \circ 2022: DA Φ NE: Near threshold cross section measurements.
 - $\circ~$ 2022: J-PARC: $\pi\varSigma$ invariant mass spectra in K^-p induced reactions.
 - $\circ~$ 2021: ALICE: K^-p scattering length.
- BaSc Lattice QCD collaboration performed coupled-channel simulations with both single baryon and meson-baryon interpolating operators at $m_{\pi} = 204$ MeV.
- Extend the analysis of the cross section data for K^-p scattering to K^- laboratory momenta of 800 MeV/c to address the $\Lambda(1670)$.

- Consider $\pi \Sigma$, $\bar{K}N$, $\eta \Lambda$, $K\Xi$ channels, and one bare basis state, B_0 .
 - $\,\circ\,$ The mass of $\Lambda(1670)$ is only 130 MeV below the $K\Xi$ threshold.

- Consider $\pi \Sigma$, $\bar{K}N$, ηA , $K\Xi$ channels, and one bare basis state, B_0 .
 - $\,\circ\,$ The mass of $\Lambda(1670)$ is only 130 MeV below the $K\Xi$ threshold.
- 16 two-to-two particle couplings are considered in isospin 0 and 1.

- Consider $\pi \Sigma$, $\bar{K}N$, $\eta \Lambda$, $K\Xi$ channels, and one bare basis state, B_0 .
 - $\,\circ\,$ The mass of $\Lambda(1670)$ is only 130 MeV below the $K\Xi$ threshold.
- 16 two-to-two particle couplings are considered in isospin 0 and 1.
- Five parameters describe the bare to two-particle interactions

$$g^0_{B_0,\pi \Sigma} \quad g^0_{B_0,\bar{K}N} \quad g^0_{B_0,\eta \Lambda} \quad g^0_{B_0,K\Xi} \quad m_{B_0}$$

- Consider $\pi \Sigma$, $\bar{K}N$, ηA , $K\Xi$ channels, and one bare basis state, B_0 .
 - $\circ~$ The mass of $\varLambda(1670)$ is only 130 MeV below the $K\Xi$ threshold.
- 16 two-to-two particle couplings are considered in isospin 0 and 1.
- Five parameters describe the bare to two-particle interactions

$$g^0_{B_0,\pi\Sigma}$$
 $g^0_{B_0,\bar{K}N}$ $g^0_{B_0,\eta\Lambda}$ $g^0_{B_0,K\Xi}$ m_{B_0}

- No new parameters in going to the finite volume of the lattice.
 - The bare mass slope is taken to be $\frac{2}{3}$ of our previous $N\frac{1}{2}^{-}(1535)$ analysis slope.

• Note the presence of two fits, one with and one without a single-particle basis state.

• The peak of $\Lambda(1670)$ can be clearly seen in the $K^-p \rightarrow \eta \Lambda$ channel.

• The peaks around 400 MeV are associated with the D-wave A(1520) state.

• \bar{K}^*N and $\pi\Sigma^*$ channels (not included) will contribute at large $|\vec{p}_{lab}| > 500$ MeV.

• The three poles generated by these fits are very similar.

• Present experimental data are not able to distinguish between these fits.

Finite Volume Λ Spectrum for $L\simeq 3~{\rm fm}$

Coupling	No $ B_0 angle$	With $ B_0 angle$
Λ (GeV)	1.000	1.000
$g^0_{\bar{K}N,\bar{K}N}$	-2.108	-2.180
$g^0_{ar{K}N,\piarDelta}$	0.837	0.620
$g^0_{ar{K}N,\eta\Lambda}$	-0.461	-0.472
$g^0_{\pi \varSigma,\pi \varSigma}$	-1.728	-1.200
$g^0_{\pi \Sigma,K\Xi}$	-0.001	-1.800
$g^0_{\eta A,K\Xi}$	0.835	1.993
$g^0_{K\Xi,K\Xi}$	-3.393	-1.000
$g^{1}_{ar{K}N,ar{K}N}$	-0.028	-0.001
$g^1_{ar{K}N,\piarDelta}$	0.829	0.985
$g^1_{\bar{K}N,\pi\Lambda}$	0.001	0.990
$g^1_{\bar{K}N,n\Sigma}$	1.557	1.500
$g^1_{\pi \Sigma, \pi \Sigma}$	-1.351	-0.001
$g^1_{\pi \Sigma, K\Xi}$	-1.017	-1.341
$g^1_{\pi\Lambda,K\Xi}$	2.904	0.011
$g^1_{\eta \Sigma, K\Xi}$	4.690	0.001
$g^1_{K\Xi,K\Xi}$	-0.447	-3.700

21 Fit Parameters

Coupling	No $ B_0 angle$	With $ B_0 angle$
$g^0_{B_0,\bar{K}N}$	_	0.091
$g^0_{B_0,\pi\Sigma}$	_	0.049
$g^0_{B_0,\eta\Lambda}$	_	-0.164
$g^{\bar{0}}_{B_0,K\Xi}$	_	-0.226
m_B^0 (MeV)	_	1750
Pole 1 (MeV)	1336 - 87 i	1324 - 67 i
Pole 2 (MeV)	1430 - 26 i	1428 - 24 i
Pole 3 (MeV)	1676 - 17i	1674-11i

Finite Volume \varLambda Spectrum for $L\simeq 3~{\rm fm}$

Without a bare Λ basis state.

With a bare Λ basis state.

• A single-particle basis state is required to describe lattice results at large m_{π}^2 .

Finite Volume \varLambda Spectrum for $L\simeq 3~{\rm fm}$

Without a bare Λ basis state.

With a bare \varLambda basis state.

• The spectra begin to differ at the 3^{rd} and 4^{th} eigenstate energy.

Eigenstate Composition: $|\pi\Sigma\rangle$ dominated $\rightarrow |B_0\rangle$ dominated

Eigenstate Composition: State 2 – $|\bar{K}N\rangle \rightarrow |\pi\Sigma\rangle \rightarrow |B_0\rangle$

Eigenstate Composition: State 4 – $|\bar{K}N\rangle$ and $|\pi\Sigma\rangle$

Eigenstate Composition: State 5 – $|\eta A\rangle$ and $|B_0\rangle$

Eigenstate Composition: State 6 – $|B_0 angle$ dominated at $\sim 1670~{ m MeV}$

J. Bulava *et al.* [Baryon Scattering (BaSc)], Phys. Rev. Lett. **132** (2024) 051901 [arXiv:2307.10413 [hep-lat]]
 J. Bulava *et al.* [Baryon Scattering (BaSc)], Phys. Rev. D **109** (2024) 014511 [arXiv:2307.13471 [hep-lat]]

73 of 124

- L = 4.05 fm lattice at $m_{\pi} = 204$ MeV.
- Lattice energies from the $G_{1u}(0)$ irreducible representation.

- L = 4.05 fm lattice at $m_{\pi} = 204$ MeV.
- Lattice energies from the $G_{1u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.

- L = 4.05 fm lattice at $m_{\pi} = 204$ MeV.
- Lattice energies from the $G_{1u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.
- Blue highlights illustrate the uncertainty allowed by expt.

- L = 4.05 fm lattice at $m_{\pi} = 204$ MeV.
- Lattice energies from the $G_{1u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.
- Blue highlights illustrate the uncertainty allowed by expt.
- Dashed lines indicate the non-interacting threshold energies for $\pi \Sigma$ and $\bar{K}N$.

- L = 4.05 fm lattice at $m_{\pi} = 204$ MeV.
- Lattice energies from the $G_{1u}(0)$ irreducible representation.
- Solid lines are HEFT predictions.
- Blue highlights illustrate the uncertainty allowed by expt.
- Dashed lines indicate the non-interacting threshold energies for $\pi \Sigma$ and $\bar{K}N$.
- All states are observed, and agree within 1σ .
- J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. Lett. 132 (2024) 051901 [arXiv:2307.10413 [hep-lat]]
 J. Bulava et al. [Baryon Scattering (BaSc)], Phys. Rev. D 109 (2024) 014511 [arXiv:2307.13471 [hep-lat]]

 Recall the 3rd and 4th HEFT energies are sensitive to |B₀⟩.

- Recall the 3rd and 4th HEFT energies are sensitive to $|B_0\rangle$.
- Without a single-particle basis state (right), 1σ agreement is lost.

- Recall the 3^{rd} and 4^{th} HEFT energies are sensitive to $|B_0\rangle$.
- Without a single-particle basis state (right), 1σ agreement is lost.
- Future precision results will decide the role of $|B_0\rangle$ unambiguously.

Section 5

 $N\frac{1}{2}^+$ Analysis

 Quark model states are basis states that mix with meson-baryon multiparticle states.

- Quark model states are basis states that mix with meson-baryon multiparticle states.
- Anticipate the 2s excitation is associated with
 - $\circ~N1/2^+(1880)$ observed in photoproduction.
 - $\circ N1/2^+(1710)$ only 170 MeV away.

- Quark model states are basis states that mix with meson-baryon multiparticle states.
- Anticipate the 2s excitation is associated with
 - $\circ~N1/2^+(1880)$ observed in photoproduction.
 - $\circ~N1/2^+(1710)$ only 170 MeV away.
- What about the Roper resonance?

Positive-parity Nucleon Spectrum: Bare Basis State with $m_0 = 1.7$ GeV

J. j. Wu, DBL, Z. w. Liu and A. W. Thomas, Phys. Rev. D 97 (2018) no.9, 094509 [arXiv:1703.10715 [nucl-th]].

SUBAT

• Consider πN , $\pi \Delta$ and σN channels, dressing a bare basis state.

Positive-parity Nucleon Spectrum: Bare Basis State with $m_0 = 2.0$ GeV

J. j. Wu, et al. [CSSM], arXiv:1703.10715 [nucl-th]

SUBAT

• Consider πN , $\pi \Delta$ and σN channels, dressing a bare basis state.

2.0 GeV Bare Basis State: Hamiltonian Model N' Spectrum

C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek, Phys. Rev. D 95, no. 1, 014510 (2017) [arXiv:1610.01422 [hep-lat]].

Two different descriptions of the Roper resonance

(left) Resonance generated by strong rescattering in meson-baryon channels. (right) Meson dressings of a quark-model like core.

Section 6

Missing Baryon Resonances

• Many resonances predicted by the constituent quark model (CQM) below 2 GeV are not seen.

- Many resonances predicted by the constituent quark model (CQM) below 2 GeV are not seen.
- Now know the CQM should have been tuned to a 2s resonance at ~ 1900 MeV.
 - $\,\circ\,$ Further excitations are at energies exceeding 2 GeV.

- Many resonances predicted by the constituent quark model (CQM) below 2 GeV are not seen.
- Now know the CQM should have been tuned to a 2s resonance at ~ 1900 MeV.
 - $\circ~$ Further excitations are at energies exceeding 2 GeV.
- Provides a new resolution of the missing baryon resonance problem.

Model state	$ A_{N\pi} $ (MeV ¹ / ₂)	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}} ({\rm BR})_{N\pi}$ (MeV ¹ / ₂)
	(1101 =)	abbiginnent		(110 -)
$[N\frac{1}{2}^+]_2(1540)$	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^{+}(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$	4.2 ± 0.1	$N\frac{1}{2}^{+}(1710)$	***	$4.7{\pm}1.2$
$[N\frac{1}{2}^+]_4(1880)$	$2.7^{+0.6}_{-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$	$2.0^{+0.2}_{-0.3}$			
$[\Delta \frac{3}{2}^+]_1(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	$10.7{\pm}0.3$
$[\Delta \frac{3}{2}^+]_2(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta \frac{3}{2}^+]_3(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta \frac{3}{2}^+]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D **47** (1993), 1994-2010.

Model state		$ A_{N\pi} $	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}$
		$(MeV^{\frac{1}{2}})$	assignment		$({ m MeV}^{rac{1}{2}})$
$[N\frac{1}{2}^+]_2(1540)$	1900	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^+(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$		4.2 ± 0.1	$N\frac{1}{2}^+(1710)$	***	$4.7{\pm}1.2$
$[N\frac{1}{2}^+]_4(1880)$		$2.7\substack{+0.6\\-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$		$2.0\substack{+0.2\\-0.3}$			
$[\Delta \frac{3}{2}^+]_1(1230)$		10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	$10.7{\pm}0.3$
$[\Delta \frac{3}{2}^+]_2(1795)$		8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta \frac{3}{2}^+]_3(1915)$		4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta \frac{3}{2}^+]_4(1985)$		$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D **47** (1993), 1994-2010.

Nucleon and Delta Resonance Predictions from the Quark Model

Model state	$ A_{N\pi} $	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}$
	$(MeV^{\frac{1}{2}})$	assignment		$(MeV^{\frac{1}{2}})$
$[N_{\frac{1}{2}}^{1^+}]_2(1540)$	900 20.3 ^{+0.8} _{-0.9}	$N\frac{1}{2}^+(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$	4.2 ± 0.1	$N\frac{1}{2}^{+}(1710)$	***	$4.7{\pm}1.2$
$[N\frac{1}{2}^+]_4(1880)$	$2.7^{+0.6}_{-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$	$2.0^{+0.2}_{-0.3}$			
$[\Delta \frac{3}{2}^+]_1(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	$10.7{\pm}0.3$
$[\Delta \frac{3}{2}^+]_2(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta \frac{3}{2}^+]_3(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta \frac{3}{2}^+]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Nucleon and Delta Resonance Predictions from the Quark Model

Model state	$ A_{N\pi} $	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}$
	$(MeV^{\frac{1}{2}})$	assignment		$({ m MeV}^{rac{1}{2}})$
$[N\frac{1}{2}^+]_2(1540)$ /90	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^{+}(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$ 26	4.2 ± 0.1	$N\frac{1}{2}^+(1710)$	***	$4.7{\pm}1.2$
$[N_{\frac{1}{2}}^{1^+}]_4(1880)$ 36	00 2.7 ^{+0.6} _{-0.9}			
$[N\frac{1}{2}^+]_5(1975)$	$2.0^{+0.2}_{-0.3}$			
$[\Delta \frac{3}{2}^+]_1(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	$10.7{\pm}0.3$
$[\Delta \frac{3}{2}^+]_2(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta \frac{3}{2}^+]_3(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta_2^{3^+}]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

87 of 124

Model state	$ A_{N\pi} $	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}$
	$(MeV^{\frac{1}{2}})$	assignment		$({ m MeV}^{rac{1}{2}})$
$[N_{\frac{1}{2}}^{++}]_2(1540)$ /900	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^+(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$ 2600	4.2 ± 0.1	$N\frac{1}{2}^+(1710)$	***	$4.7{\pm}1.2$
$[N_{\frac{1}{2}}^{1+}]_4(1980)$ 3600	$2.7\substack{+0.6\\-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$	$2.0\substack{+0.2\\-0.3}$			
$[\Delta \frac{3}{2}^+]_1(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	$10.7{\pm}0.3$
$[\Delta \frac{3}{2}^+]_2(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta \frac{3}{2}^+]_3(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta \frac{3}{2}^+]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Nucleon and Delta Resonance Predictions from the Quark Model

88 of 124

Model state	$ A_{N\pi} $	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}$
	(MeV^2)	assignment		(MeV 2)
$[N_{\frac{1}{2}}^{++}]_2(1540)$ /900	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^+(1440)$	***	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$ 2600	4.2 ± 0.1	$N\frac{1}{2}^+(1710)$	***	$4.7{\pm}1.2$
$[N_{\frac{1}{2}}^{\pm+}]_{4}(1,80)$ 3600	$2.7\substack{+0.6\\-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$	$2.0\substack{+0.2\\-0.3}$			
$[\Delta_{\frac{3}{2}}^{\frac{3}{2}^+}]_1(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	$10.7{\pm}0.3$
$[\Delta_2^{3^+}]_2(1795)$ 2140	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta \frac{3}{2}^+]_3(1915)$	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta_2^{3^+}]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Nucleon and Delta Resonance Predictions from the Quark Model

SUBAT

Nucleon and Delta Resonance Predictions from the Quark Model

Model state	$\frac{ A_{N\pi} }{(\text{MeV}^{\frac{1}{2}})}$	$N\pi$ state assignment	Rating	$\frac{\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}}{({\rm MeV}^{\frac{1}{2}})}$
$[N_{\frac{1}{2}}^{+}]_{2}(1540)$ /900	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^{+}(1440)$	****	19.9±3.0
$[N\frac{1}{2}^+]_3(1770)$ 2600	4.2 ± 0.1	$N\frac{1}{2}^+(1710)$	***	$4.7{\pm}1.2$
$[N_{\frac{1}{2}}^{1+}]_{4}(1880)$ 3600	$2.7\substack{+0.6\\-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$	$2.0\substack{+0.2\\-0.3}$			
$[\Delta \frac{3}{2}^+]_1(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^{+}(1232)$	****	$10.7{\pm}0.3$
$[\Delta_{\frac{3}{2}}^{\frac{3}{2}+}]_2(1795)$ 2140	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta_2^{3^+}]_3(1915)$ 3/00	4.2 ± 0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta \frac{3}{2}^+]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Nucleon and Delta Resonance Predictions from the Quark Model

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Model state	$ A_{N\pi} $	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({ m BR})_N$
	$(MeV^{\frac{1}{2}})$	assignment		$({ m MeV}^{rac{1}{2}})$
$[N\frac{1}{2}^+]_2(1540)$	900 20.3+0.8	$N\frac{1}{2}^+(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$	4.2 ± 0.1	$N\frac{1}{2}^+(1710)$	***	$4.7{\pm}1.2$
$[N\frac{1}{2}^+]_4(1980)$	3600 2.7 ^{+0.6} _{-0.9}			
$[N\frac{1}{2}^+]_5(1975)$	$2.0^{+0.2}_{-0.3}$			
$[\Delta_{\frac{3}{2}}^{\frac{3}{2}}]_{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}^+(1232)$	****	$10.7{\pm}0.3$
$[\Delta \frac{3}{2}^+]_2(1795)$	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta \frac{3}{2}^+]_3(1915)$	4.2±0.3	$\Delta \frac{3}{2}^{+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta \frac{3}{2}^+]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

91 of 124

		_		
Model state	$ A_{N\pi} _{1}$	$N\pi$ state	Rating	$\sqrt{\Gamma_{\rm tot}}({\rm BR})_{N\pi}$
	$(MeV^{\frac{1}{2}})$	assignment		$({ m MeV}^{ar{2}})$
$[N_{\frac{1}{2}}^{++}]_2(1540)$ /900	$20.3^{+0.8}_{-0.9}$	$N\frac{1}{2}^{+}(1440)$	****	$19.9{\pm}3.0$
$[N\frac{1}{2}^+]_3(1770)$ 2600	4.2 ± 0.1	$N\frac{1}{2}^+(1710)$	***	$4.7{\pm}1.2$
$[N_{\frac{1}{2}}^{1+}]_{4}(1,80)$ 3600	$2.7\substack{+0.6\\-0.9}$			
$[N\frac{1}{2}^+]_5(1975)$	$2.0^{+0.2}_{-0.3}$			
$[\Lambda^{3+}]_{*}(1220)$	10.4 ± 0.1	A 3 ⁺ (1020)	****	
$[\Delta_{\frac{1}{2}}]^{1}(1230)$	10.4 ± 0.1	$\Delta \frac{3}{2}$ (1232)	ጥ ጥ ጥ ጥ	10.7 ± 0.3
$[\Delta_2^{3^+}]_2(1795)$ 2140	8.7 ± 0.2	$\Delta \frac{3}{2}^{+}(1600)$	**	$7.6{\pm}2.3$
$[\Delta_{\frac{3}{2}}^{\frac{3}{2}+}]_{3}(1915)$ 3/00	4.2 ± 0.3	$\Delta_{\frac{3}{2}}^{3+}(1920)$	***	$7.7{\pm}2.3$
$[\Delta \frac{3}{2}^+]_4(1985)$	$3.3^{+0.8}_{-1.1}$			

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Nucleon and Delta Resonance Predictions from the Quark Model

92 of 124

S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.

Section 7

- Hamiltonian Effective Field Theory (HEFT)
 - Connects scattering observables to finite-volume Lattice QCD.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Connects scattering observables to finite-volume Lattice QCD.
 - $\circ\;$ Connects results at different quark masses within a single formalism.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Connects scattering observables to finite-volume Lattice QCD.
 - $\circ\;$ Connects results at different quark masses within a single formalism.
 - $\circ~$ Provides insight into the composition of energy eigenstates and lattice QCD.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects scattering observables to finite-volume Lattice QCD.
 - $\circ\;$ Connects results at different quark masses within a single formalism.
 - Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Connects scattering observables to finite-volume Lattice QCD.
 - · Connects results at different quark masses within a single formalism.
 - $\circ~$ Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
 - $\circ~$ The $\varDelta(1600)$ is dynamically generated in πN and $\pi \varDelta$ rescattering.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Connects scattering observables to finite-volume Lattice QCD.
 - · Connects results at different quark masses within a single formalism.
 - $\circ\,$ Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
 - $\circ~$ The $\varDelta(1600)$ is dynamically generated in πN and $\pi \varDelta$ rescattering.
 - $\circ~$ The $\varDelta(1920)$ is associated with the 2s quark-model single-particle basis state.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Connects scattering observables to finite-volume Lattice QCD.
 - $\circ\;$ Connects results at different quark masses within a single formalism.
 - $\circ~$ Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
 - $\circ~$ The $\varDelta(1600)$ is dynamically generated in πN and $\pi \varDelta$ rescattering.
 - $\circ~$ The $\varDelta(1920)$ is associated with the 2s quark-model single-particle basis state.
 - $\circ~$ The N(1440) Roper is dynamically generated in πN , $\pi \varDelta$, and σN rescattering.

- Hamiltonian Effective Field Theory (HEFT)
 - $\circ~$ Connects scattering observables to finite-volume Lattice QCD.
 - \circ Connects results at different quark masses within a single formalism.
 - $\circ~$ Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
 - $\circ~$ The $\varDelta(1600)$ is dynamically generated in πN and $\pi \varDelta$ rescattering.
 - $\circ~$ The $\varDelta(1920)$ is associated with the 2s quark-model single-particle basis state.
 - $\circ~$ The N(1440) Roper is dynamically generated in πN , $\pi \varDelta$, and σN rescattering.
 - $\circ~$ The N(1710) and N(1880) are associated with the 2s quark-model basis state.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects scattering observables to finite-volume Lattice QCD.
 - $\circ\;$ Connects results at different quark masses within a single formalism.
 - $\circ~$ Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
 - $\circ~$ The $\varDelta(1600)$ is dynamically generated in πN and $\pi \varDelta$ rescattering.
 - $\circ~$ The $\varDelta(1920)$ is associated with the 2s quark-model single-particle basis state.
 - $\circ~$ The N(1440) Roper is dynamically generated in πN , $\pi \varDelta$, and σN rescattering.
 - $\circ~$ The N(1710) and N(1880) are associated with the 2s quark-model basis state.
- Λ_{2}^{1-} resonances:
 - $^{\circ}$ The $\Lambda(1405)$ has a two-pole structure generated by $\pi \varSigma$ and $ar{K}N$ rescattering.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects scattering observables to finite-volume Lattice QCD.
 - · Connects results at different quark masses within a single formalism.
 - $\circ~$ Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
 - $\circ~$ The $\varDelta(1600)$ is dynamically generated in πN and $\pi \varDelta$ rescattering.
 - $\circ~$ The $\varDelta(1920)$ is associated with the 2s quark-model single-particle basis state.
 - $\circ~$ The N(1440) Roper is dynamically generated in πN , $\pi \varDelta$, and σN rescattering.
 - $\circ~$ The N(1710) and N(1880) are associated with the 2s quark-model basis state.
- $\Lambda_{\overline{2}}^{1-}$ resonances:
 - $\circ~$ The $\Lambda(1405)$ has a two-pole structure generated by $\pi \varSigma$ and $\bar{K}N$ rescattering.
 - $\circ~$ The $\Lambda(1670)$ is associated with a quark-model-like single-particle basis state.

- Hamiltonian Effective Field Theory (HEFT)
 - Connects scattering observables to finite-volume Lattice QCD.
 - · Connects results at different quark masses within a single formalism.
 - $\circ~$ Provides insight into the composition of energy eigenstates and lattice QCD.
- Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.
- With lattice QCD constraints, HEFT provides new insight into resonance structure.
 - $\circ~$ The $\varDelta(1600)$ is dynamically generated in πN and $\pi \varDelta$ rescattering.
 - $\circ~$ The $\varDelta(1920)$ is associated with the 2s quark-model single-particle basis state.
 - $\circ~$ The N(1440) Roper is dynamically generated in πN , $\pi \varDelta$, and σN rescattering.
 - $\circ~$ The N(1710) and N(1880) are associated with the 2s quark-model basis state.
- Λ_{2}^{1-} resonances:
 - $^\circ$ The $\Lambda(1405)$ has a two-pole structure generated by $\pi \varSigma$ and ar KN rescattering.
 - $\circ~$ The $\varLambda(1670)$ is associated with a quark-model-like single-particle basis state.
- These results provide a novel solution to the missing baryon resonances problem. 94 of 124

Section 8

Supplementary Information

Two different descriptions of the Roper resonance

(left) Resonance generated by strong rescattering in meson-baryon channels. (right) Meson dressings of a quark-model like core.

Criteria

$m_0 = 1.7 \text{ GeV}$ $m_0 = 2.0 \text{ GeV}$

Describes experimental data well.

Score Card		
Criteria	$m_0 = 1.7 \mathrm{GeV}$	$m_0 = 2.0 \mathrm{GeV}$
Describes experimental data well.	v	 Image: A start of the start of

Score Card		SUBAT
Criteria	$m_0 = 1.7 \mathrm{GeV}$	$m_0 = 2.0 \mathrm{GeV}$
Describes experimental data well.	 ✓ 	~
Produces poles in accord with PDG.		

Score Card			8973
Criteria	$m_0 = 1.7 \mathrm{GeV}$	$m_0 = 2.0 \mathrm{GeV}$	
Describes experimental data well.	 ✓ 	 ✓ 	
Produces poles in accord with PDG.	1	~	

SUBAT@MIC

SUBAT

Score Card

Criteria

 $m_0 = 1.7 \text{ GeV}$ $m_0 = 2.0 \text{ GeV}$

Describes experimental data well.

Produces poles in accord with PDG.

1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N | E_1 \rangle$ in HEFT.

SUBAT

Score Card

Criteria

Describes experimental data well.

Produces poles in accord with PDG.

1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N | E_1 \rangle$ in HEFT.

$$m_0 = 1.7 \text{ GeV}$$
 $m_0 = 2.0 \text{ GeV}$

Criteria

Describes experimental data well.

Produces poles in accord with PDG.

 $1^{\rm st}$ lattice scattering state created via σN interpolator has dominant $\langle\,\sigma N\,|\,E_1\,\rangle$ in HEFT.

 2^{nd} lattice scattering state created via πN interpolator has dominant $\langle \pi N | E_2 \rangle$ in HEFT.

$$m_0 = 1.7 \text{ GeV}$$
 $m_0 = 2.0 \text{ GeV}$

SUBAT

Score Card

Criteria

Describes experimental data well.

Produces poles in accord with PDG.

1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N | E_1 \rangle$ in HEFT. 2nd lattice scattering state created via πN interpol-

ator has dominant $\langle \pi N | E_2 \rangle$ in HEFT.

 $m_0 = 1.7 \text{ GeV}$ $m_0 = 2.0 \text{ GeV}$

Criteria

Describes experimental data well.

Produces poles in accord with PDG.

1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N | E_1 \rangle$ in HEFT.

 $2^{\rm nd}$ lattice scattering state created via πN interpolator has dominant $\langle \, \pi N \, | \, E_2 \, \rangle$ in HEFT.

L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 | E_{\alpha} \rangle$.

$$m_0 = 1.7 \text{ GeV}$$
 $m_0 = 2.0 \text{ GeV}$

Criteria

Describes experimental data well. Produces poles in accord with PDG. 1st lattice scattering state created via σN interpolator has dominant $\langle \sigma N | E_1 \rangle$ in HEFT. 2nd lattice scattering state created via πN interpolator has dominant $\langle \pi N | E_2 \rangle$ in HEFT. L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 | E_\alpha \rangle$.

$$m_0 = 1.7 \text{ GeV}$$
 $m_0 = 2.0 \text{ GeV}$

Criteria

Describes experimental data well. Produces poles in accord with PDG. $1^{\rm st}$ lattice scattering state created via σN interpolator has dominant $\langle \, \sigma N \, | \, E_1 \, \rangle$ in HEFT. $2^{\rm nd}$ lattice scattering state created via πN interpol-

ator has dominant $\langle \pi N | E_2 \rangle$ in HEFT.

L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 | E_{\alpha} \rangle$.

 HEFT predicts three-quark states that exist in lattice QCD.

$$m_0 = 1.7 \text{ GeV}$$
 $m_0 = 2.0 \text{ GeV}$

Criteria

Describes experimental data well. Produces poles in accord with PDG. 1^{st} lattice scattering state created via σN interpolator has dominant $\langle \sigma N | E_1 \rangle$ in HEFT. 2^{nd} lattice scattering state created via πN interpolator has dominant $\langle \pi N | E_2 \rangle$ in HEFT. L-QCD states excited with 3-quark ops. are associated with HEFT states with large $\langle B_0 | E_{\alpha} \rangle$. HEFT predicts three-quark states that exist in lattice QCD.

$$m_0 = 1.7 \text{ GeV}$$
 $m_0 = 2.0 \text{ GeV}$

• The Roper resonance is not associated with a low-lying three-quark core.

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

$$\begin{array}{c|c} \pi(-\boldsymbol{k}) & \pi(-\boldsymbol{k}') & \pi(-\boldsymbol{k}') \\ \hline & & & & \\ N(\boldsymbol{k}) & N(\boldsymbol{k}') & N(\boldsymbol{k}') \\ \hline & & & & \\ \end{array}$$
Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

$$\begin{array}{c} \pi(-\mathbf{k}) & \tilde{\pi}(-\mathbf{k}') & \pi(-\mathbf{k}') \\ \hline \\ N(\mathbf{k}) & N(\mathbf{k}') & N(\mathbf{k}') \\ \end{array} \\ \end{array}$$

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

Conclusion

- The Roper resonance is not associated with a low-lying three-quark core.
- The Roper resonance is generated by strong rescattering in meson-baryon channels.

$$\begin{array}{c} \pi(-\mathbf{k}) & \pi(-\mathbf{k}') & \pi(-\mathbf{k}') \\ \hline \\ N(\mathbf{k}) & N(\mathbf{k}') \\ \hline \\ N(\mathbf{k}') & N(\mathbf{k}') \\ \hline \end{array} \\ \end{array}$$

- The 2s excitation of the nucleon is dressed to lie at $\sim 1.9~{\rm GeV}$

SUBAT

HEFT Extensions

- Formalism for partial-wave mixing in HEFT has been developed in Y. Li, J. J. Wu, C. D. Abell, D. B. L. and A. W. Thomas. Phys. Rev. D 101, no.11, 114501 (2020) [arXiv:1910.04973 [hep-lat]]
- And extended to moving and elongated finite-volumes in
 Y. Li, J. J. Wu, D. B. L. and A. W. Thomas Phys. Rev. D 103 no.9, 094518 (2021) [arXiv:2103.12260 [hep-lat]].

Room for non-resonant three-body contributions in $N1/2^+$

100 of 124

Room for non-resonant three-body contributions in $N1/2^+$

Room for non-resonant three-body contributions in $\Delta 3/2^+$

\varDelta Finite Volume Spectrum at $L=3~{\rm fm}$

\varDelta Finite Volume Spectrum at L=3 fm with $\pi\pi N$ states

• The $N1/2^+(1880)$ was observed in photoproduction while missed in πN scattering.

- The $N1/2^+(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N1/2^+(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV.

- SUBAT
- The $N1/2^+(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N1/2^+(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV.
- Both suggest the 2s excitation on the lattice may be insensitive to modifications of the meson dressings.

- SUBAT
- The $N1/2^+(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N1/2^+(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV.
- Both suggest the 2s excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.

- SUBAT
- The $N1/2^+(1880)$ was observed in photoproduction while missed in πN scattering.
- The $N1/2^+(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV.
- Both suggest the 2s excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.
 - $\circ~$ Couplings to meson dressings are suppressed.

• The $N1/2^+(1880)$ was observed in photoproduction while missed in πN scattering.

SUBATION

- The $N1/2^+(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV.
- Both suggest the 2s excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.
 - $\circ~$ Couplings to meson dressings are suppressed.
- Quark-model dominated states will be insensitive to quenching.

• The $N1/2^+(1880)$ was observed in photoproduction while missed in πN scattering.

SUBATION

- The $N1/2^+(1710)$ has a small width of 140 MeV and perhaps as small as 80 MeV.
- Both suggest the 2s excitation on the lattice may be insensitive to modifications of the meson dressings.
- Consider a quenched QCD simulation with matched lattice spacing and quark masses.
 - $\circ~$ Couplings to meson dressings are suppressed.
- Quark-model dominated states will be insensitive to quenching.
- Is there a state $\sim 1.9~{\rm GeV}$ that is insensitive to quenching?

Comparison of 2+1 flavour and quenched lattice simulation results

107 of 124

• HEFT incorporates the Lüscher formalism.

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.
- Need to have a sufficient number of tunable parameters within the Hamiltonian.

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.
- Need to have a sufficient number of tunable parameters within the Hamiltonian.
- The Hamiltonian is only mediary.

- HEFT incorporates the Lüscher formalism.
- It provides a rigorous relationship between the finite-volume energy spectrum and the scattering amplitudes of experiment.
- In HEFT, this relationship is mediated by a Hamiltonian.
- Need to have a sufficient number of tunable parameters within the Hamiltonian.
- The Hamiltonian is only mediary.
- However, the Lüscher formalism provides no avenue for changing the quark mass.

• Finite-volume HEFT reproduces finite-volume $\chi {\rm PT}$ in the perturbative limit by construction.

- Finite-volume HEFT reproduces finite-volume χ PT in the perturbative limit by construction.
- In the multi scattering-channel case, the Hamiltonian becomes tightly constrained.
 - Experimental data is described accurately for only a limited range of parameters with specific regulator shapes.

- Finite-volume HEFT reproduces finite-volume χ PT in the perturbative limit by construction.
- In the multi scattering-channel case, the Hamiltonian becomes tightly constrained.
 - Experimental data is described accurately for only a limited range of parameters with specific regulator shapes.
- The consideration of quark masses away from the physical point further constrains the Hamiltonian.

- Finite-volume HEFT reproduces finite-volume χ PT in the perturbative limit by construction.
- In the multi scattering-channel case, the Hamiltonian becomes tightly constrained.
 - Experimental data is described accurately for only a limited range of parameters with specific regulator shapes.
- The consideration of quark masses away from the physical point further constrains the Hamiltonian.
- The Hamiltonian has become a tightly constrained model.

- Draw on model-independent constraints to determine the Hamiltonian.
 - Lattice QCD and experiment.

- Draw on model-independent constraints to determine the Hamiltonian.
 - Lattice QCD and experiment.
- One set of lattice QCD results is required to determine the quark mass dependence of the bare basis state(s).
 - $\circ\,$ A term linear in the quark mass is usually sufficient to describe lattice QCD results.

- Draw on model-independent constraints to determine the Hamiltonian.
 - $\circ~$ Lattice QCD and experiment.
- One set of lattice QCD results is required to determine the quark mass dependence of the bare basis state(s).
 - $\circ\,$ A term linear in the quark mass is usually sufficient to describe lattice QCD results.
- Make predictions of the finite-volume spectrum considered by other lattice groups.
 - Different volumes and different quark masses can be addressed.

- Draw on model-independent constraints to determine the Hamiltonian.
 - $\circ~$ Lattice QCD and experiment.
- One set of lattice QCD results is required to determine the quark mass dependence of the bare basis state(s).
 - $\circ\,$ A term linear in the quark mass is usually sufficient to describe lattice QCD results.
- Make predictions of the finite-volume spectrum considered by other lattice groups.
 Different volumes and different quark masses can be addressed.
- Model independence is governed by the distance from the physical point.
 - $\circ~$ For example, $m_{\pi}=204~{\rm MeV}$ considered by the BaSc collaboration.

• The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.
- They are similar to the eigenvectors of lattice-QCD correlation matrices.
 - $\circ~$ They describe the linear combination of interpolating fields isolating energy eigenstates on the lattice.
Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.
- They are similar to the eigenvectors of lattice-QCD correlation matrices.
 - They describe the linear combination of interpolating fields isolating energy eigenstates on the lattice.
- These too are model dependent.

Model dependence in HEFT

- The eigenvectors describe how the non-interacting basis states come together to compose the eigenstates of the spectrum.
- They are model dependent.
- There is little freedom in the model parameters of the Hamiltonian such that the predictions of the Hamiltonian are well defined.
- They are similar to the eigenvectors of lattice-QCD correlation matrices.
 - They describe the linear combination of interpolating fields isolating energy eigenstates on the lattice.
- These too are model dependent.
- However, the composition of the states drawn from the lattice correlation matrix is similar to the description provided by HEFT.

Model (in)dependence in HEFT - Summary

• There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.
- The Hamiltonian eigenvectors describing the basis-state composition of finite-volume energy eigenstates are model dependent.

SUBAT

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.
- The Hamiltonian eigenvectors describing the basis-state composition of finite-volume energy eigenstates are model dependent.
- They are analogous to the interpolator dependent eigenvectors of lattice QCD correlation matrices describing the linear combination of interpolating fields isolating energy eigenstates.

- There is a direct model-independent link between the scattering observables of experiment and the finite-volume spectrum calculated in HEFT.
- Variation of the quark masses away from the physical quark mass is constrained by lattice QCD results.
- The Hamiltonian eigenvectors describing the basis-state composition of finite-volume energy eigenstates are model dependent.
- They are analogous to the interpolator dependent eigenvectors of lattice QCD correlation matrices describing the linear combination of interpolating fields isolating energy eigenstates.
- The similarity displayed by these two different sets of eigenvectors suggests that they do indeed provide insight into hadron structure.

The $\Lambda(1405)$ in Lattice QCD

• First observed in

B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. **108** (2012) 112001 [arXiv:1109.6716 [hep-lat]].

The $\Lambda(1405)$ in Lattice QCD

• First observed in

B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. **108** (2012) 112001 [arXiv:1109.6716 [hep-lat]].

- Excited by local three-quark operators.
 - A mix of two flavour-octet interpolators and a flavour-singlet operator.
 - A variety of quark distributions via smeared sources.

The $\Lambda(1405)$ in Lattice QCD

• First observed in

B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. **108** (2012) 112001 [arXiv:1109.6716 [hep-lat]].

- Excited by local three-quark operators.
 - A mix of two flavour-octet interpolators and a flavour-singlet operator.
 - A variety of quark distributions via smeared sources.
- Appeared to be a local three quark state.
 - $\circ~$ But a study of the strange magnetic form factor revealed an exotic structure.

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u,d,s)$ valence quark configuration is complemented by
 - $\,\circ\,$ A u,\overline{u} pair making a $K^-_{-}(s,\overline{u})$ p(u,u,d) bound state, or
 - A d, \overline{d} pair making a $\overline{K^0}(s, \overline{d})$ n(d, d, u) bound state.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u,d,s)$ valence quark configuration is complemented by
 - $\,\circ\,$ A u,\overline{u} pair making a $K^-_{-}(s,\overline{u})$ p(u,u,d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ n(d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u,d,s)$ valence quark configuration is complemented by
 - $\,\circ\,$ A u,\overline{u} pair making a $K^-_{-}(s,\overline{u})$ p(u,u,d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ n(d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u,d,s)$ valence quark configuration is complemented by
 - $\,\circ\,$ A $\,u,\overline{u}\,$ pair making a $K^-_{-}(s,\overline{u})$ p(u,u,d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ n(d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the A(1405) when it is dominated by a $\overline{K}N$ molecule.

Electric form factors of the $\Lambda(1405)$ at $Q^2 \sim 0.16 \text{ GeV}^2$

B. J. Menadue, W. Kamleh, DBL, M. Selim Mahbub and B. J. Owen, PoS LATTICE2013 (2014), 280 [arXiv:1311.5026 [hep-lat]]

Smeared Source Correlation Functions

SUBAT

Positive Parity Nucleon Spectrum CSSM

Positive Parity Nucleon Spectrum CSSM & JLab HSC

Negative Parity Nucleon Spectrum CSSM

Negative Parity Nucleon Spectrum CSSM & JLab HSC

• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel *et al.* [BGR], Phys. Rev. D **87** (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel *et al.* [BGR], Phys. Rev. D **87** (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

• χ QCD Collaboration results

• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel *et al.* [BGR], Phys. Rev. D **87** (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

• χ QCD Collaboration results

K. F. Liu, *et al.*, "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.

 $\circ~$ One correlator versus $28\times28=784$ correlators analysed by the HSC.

• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel *et al.* [BGR], Phys. Rev. D **87** (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

• χ QCD Collaboration results

- $\circ~$ One correlator versus $28\times28=784$ correlators analysed by the HSC.
- $\circ~$ Obtained a result 300 MeV below that of the HSC.

• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel *et al.* [BGR], Phys. Rev. D **87** (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

• χ QCD Collaboration results

- $\circ~$ One correlator versus $28\times28=784$ correlators analysed by the HSC.
- $\circ~$ Obtained a result 300 MeV below that of the HSC.
- $\circ~$ Conjectured the HSC results are wrong.
 - Their source smearing is too small to see the wave function node.

• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel *et al.* [BGR], Phys. Rev. D **87** (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

• χ QCD Collaboration results

- $\circ~$ One correlator versus $28\times28=784$ correlators analysed by the HSC.
- $\,\circ\,$ Obtained a result 300 MeV below that of the HSC.
- $\circ~$ Conjectured the HSC results are wrong.
 - Their source smearing is too small to see the wave function node.
- $\circ~$ Argument already excluded by the CSSM results.

• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel *et al.* [BGR], Phys. Rev. D **87** (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]]. In agreement but with large uncertainties.

• χ QCD Collaboration results

K. F. Liu, *et al.*, "The Roper Puzzle," PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]]. Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.

- $\circ~$ One correlator versus $28\times28=784$ correlators analysed by the HSC.
- $\circ~$ Obtained a result 300 MeV below that of the HSC.
- Conjectured the HSC results are wrong.
 - Their source smearing is too small to see the wave function node.
- $\circ~$ Argument already excluded by the CSSM results.
- Further discussion in

D. Leinweber, et al. JPS Conf. Proc. 10 (2016), 010011 [arXiv:1511.09146 [hep-lat]].

• Cyprus Twisted Mass and Clover Fermion results

C. Alexandrou, et al., Phys. Rev. D 89 (2014) no.3, 034502 [arXiv:1302.4410 [hep-lat]].

• Cyprus Twisted Mass and Clover Fermion results

C. Alexandrou, et al., Phys. Rev. D 89 (2014) no.3, 034502 [arXiv:1302.4410 [hep-lat]].

• Correlation functions subsequently analysed in the Athens Model Independent Analysis Scheme (AMIAS).

C. Alexandrou, et al., Phys. Rev. D 91 (2015) no.1, 014506 [arXiv:1411.6765 [hep-lat]].

Search for low-lying lattice QCD eigenstates in the Roper regime

A. L. Kiratidis, et al., [CSSM] Phys. Rev. D 95, no. 7, 074507 (2017) [arXiv:1608.03051 [hep-lat]].

