
Physical interpretation of the baryon spectrum

Derek Leinweber

Key collaborators: Curtis Abell, Liam Hockley, Waseem Kamleh,
Zhan-Wei Liu, Finn Stokes, Tony Thomas, Jia-Jun Wu



Closely related presentations this week

• The study of N*(1535) and N*(1650) from the lattice data (14:50)
Presenter: Jia-jun Wu (University of Chinese Academy of Science)
Parallel Session: I B - Walmgate Suite (Monday 17 June 2024, 13:30 - 15:15)

• Three particle interactions on the lattice (10:00)
Presenter: Maxim Mai (University of Bonn / The George Washington University)
Plenary Session: V - (Wednesday 19 June 2024, 09:00 - 10:30)
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Prologue

• The idea of dressing quark-model states in a coupled-channel analysis to describe
scattering data has been around for decades.
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Prologue

• The idea of dressing quark-model states in a coupled-channel analysis to describe
scattering data has been around for decades.

• What’s new are formalisms able to bring these descriptions to the finite-volume of
lattice QCD.

• Lattice QCD calculations of the excitation spectrum provide new constraints.

• It’s time to reconsider our early notions about the quark-model and its excitation
spectrum.
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Accessing the Radial Excitations of the Nucleon - CSSM Techniques

• Circa 2010.

• Local 3-quark interpolating fields.

• Quark-level source smearing techniques.
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Accessing the Radial Excitations of the Nucleon - CSSM Techniques

• Circa 2010.

• Local 3-quark interpolating fields.

• Quark-level source smearing techniques.

• Correlation matrix techniques
◦ Identify linear combinations of sources

to isolate states.
◦ Opposite sign superpositions create

wave function nodes.
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∆ Baryon Interpolating Field Shapes
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∆-baryon spectrum from lattice QCD – 1s and 2s excitations
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CSSM: L. Hockley, et al., J. Phys. G 51 (2024) no.6, 065106 [arXiv:2312.11574 [hep-lat]].

Kahn et al.: T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) 034503 [arXiv:2010.03052 [hep-lat]].

HSC: J. Bulava, et al., Phys. Rev. D 82 (2010) 014507 [arXiv:1004.5072 [hep-lat]].

PACS-CS: S. Aoki et al. [PACS-CS], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].
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Where’s the ∆(1600) – the Roper-like resonance?
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• Roper-like: 1st even-parity excitation sits below the 1st odd-parity, ∆(1700).
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Positive Parity Nucleon Spectrum Circa 2017
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• CSSM: Z. W. Liu, et al. [CSSM], Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]

• JLab: R. G. Edwards, et al. [HSC] Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].

• Cyprus: C. Alexandrou, et al. (AMIAS), Phys. Rev. D 91, 014506 (2015) arXiv:1411.6765 [hep-lat]
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Landau-Gauge Wave functions from the Lattice

• Measure the overlap of the annihilation operator with the state
as a function of the quark positions.
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d-quark probability density in ground state proton [CSSM]
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d-quark probability density in the 1st excited state of proton [CSSM]
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d-quark probability density in the 2nd excited state of proton [CSSM]
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Comparison with the Simple Quark Model [CSSM]
D. S. Roberts, W. Kamleh and D. B. Leinweber, Phys. Lett. B 725, 164 (2013) [arXiv:1304.0325 [hep-lat]].
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First positive-parity excitation: Magnetic moments

F. M. Stokes, W. Kamleh, DBL, Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

14 of 124



The spectrum of a simple quark model: N and Λ baryons

15 of 124



The challenge of experiment
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The spectrum of quark-model-like states is relatively simple
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Outline

• Hamiltonian Effective Field Theory (HEFT)
◦ Coupled-channel analysis technique aimed at resonance physics.
◦ Incorporates the Lüscher formalism.
◦ Connects scattering observables to the finite-volume spectrum of lattice QCD.
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• New analysis of ∆3
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+
resonances aimed at describing the ∆(1600) and ∆(1920).

◦ Discuss the composition of excited states.
◦ Confront state-of-the-art lattice QCD calculations of the scattering-state spectrum.

• New analysis of Λ1
2

−
resonances aimed at describing the Λ(1405) and Λ(1670).

◦ Draws on recent advances in experiment.
◦ Confront new lattice QCD spectra from the Baryon Scattering (BaSc) Collaboration.

• Roper N 1
2

+
(1440) resonance.

• A new resolution of the missing baryon resonances problem.
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Section 2

Hamiltonian Effective Field Theory (HEFT)



Hamiltonian Effective Field Theory (HEFT)
J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]

C. D. Abell, DBL, A. W. Thomas, J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

• An extension of chiral effective field theory incorporating the Lüscher formalism
◦ Linking the energy levels observed in finite volume to scattering observables.
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• An extension of chiral effective field theory incorporating the Lüscher formalism
◦ Linking the energy levels observed in finite volume to scattering observables.

• In the light quark-mass regime, in the perturbative limit,
◦ HEFT reproduces the finite-volume expansion of chiral perturbation theory.

• Fitting resonance phase-shift data and inelasticities,
◦ Predictions of the finite-volume spectrum are made.

• The eigenvectors of the Hamiltonian provide insight into the composition of the
energy eigenstates.

◦ Insight is similar to that provided by correlation-matrix eigenvectors in Lattice QCD.
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Infinite Volume Model

• The rest-frame Hamiltonian has the form H = H0 + HI , with

H0 =
∑

B0

♣B0⟩ mB0 ⟨B0♣ +
∑

α

∫

d3k ♣α(k)⟩ ωα(k) ⟨α(k)♣ ,
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H0 =
∑

B0

♣B0⟩ mB0 ⟨B0♣ +
∑

α

∫

d3k ♣α(k)⟩ ωα(k) ⟨α(k)♣ ,

• ♣B0⟩ denotes a quark-model-like basis state with bare mass mB0 .

• ♣α(k)⟩ designates a two-particle non-interacting basis-state channel with energy

ωα(k) = ωαM
(k) + ωαB

(k) =
√

k2 + m2
αM

+
√

k2 + m2
αB

,

for M = Meson, B = Baryon.
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Infinite Volume Model

• The interaction Hamiltonian includes two parts, HI = g + v.

• 1 → 2 particle vertex

g =
∑

α, B0

∫

d3k
{

♣α(k)⟩ G†
α,B0

(k) ⟨B0♣ + h.c.
}

,
∆(0) π(−k)

N(k)
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• 1 → 2 particle vertex

g =
∑

α, B0

∫

d3k
{

♣α(k)⟩ G†
α,B0

(k) ⟨B0♣ + h.c.
}

,
∆(0) π(−k)

N(k)

• 2 → 2 particle vertex

v =
∑

α,β

∫

d3k d3k′ ♣α(k)⟩ V S
α,β(k, k′) ⟨β(k′)♣ .

π(−k)

N(k)

π(−k
′)

∆(k′)
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S-wave vertex interactions

• S-wave one to two-particle interactions take the form

Gα,B0(k) = gB0α

√
3

2 π fπ

√

ωαM
(k) u(k, Λ) ,

B0
αM (−k)

αB(k)

with dipole regulator

u(k, Λ) =
1

( 1 + k2/Λ2 )2 .
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P -wave and higher vertex interactions

• P -wave and higher vertex interactions take the form

Gα,B0(k) = gB0α
1

4π2



k

fπ

lα u(k, Λ)
√

ωαM
(k)

,
B0

αM (−k)

αB(k)

where lα is the orbital angular momentum in channel α.
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Two-to-two particle interactions

• For S-wave scattering

V S
α,β ( k, k′ ) = vα,β

3

4π2 f2
π

u(k, Λ) u(k′, Λ)

π(−k)

N(k)

π(−k
′)

N(k′)

with dipole regulator

u(k, Λ) =
1

( 1 + k2/Λ2 )2 .
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Two-to-two particle interactions

• For P -wave scattering in the N∗ and ∆ channels

V S
α,β ( k, k′ ) = vα,β

1

4π2 f2
π

k

ωαM
(k)

k′

ωβM
(k′)

u(k, Λ) u(k′, Λ) .

π(−k)

N(k)

π(−k
′)

∆(k′)
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• For P -wave scattering in the N∗ and ∆ channels

V S
α,β ( k, k′ ) = vα,β

1

4π2 f2
π

k

ωαM
(k)

k′

ωβM
(k′)

u(k, Λ) u(k′, Λ) .

π(−k)

N(k)

π(−k
′)

∆(k′)

• For the Λ∗(1405), the Weinberg-Tomozawa form is considered

V S
α,β ( k, k′ ) = vΛ∗

α,β

[ ωαM
(k) + ωβM

(k′) ] u(k, Λ) u(k′, Λ)

16 π2 f2
π

√

ωαM
(k) ωβM

(k′)
,
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Infinite-Volume scattering amplitude

• The T -matrices for two particle scattering are obtained by solving the
coupled-channel integral equations

Tα,β(k, k′; E) = Ṽα,β(k, k′; E) +
∑

γ

∫

q2dq
Ṽα,γ(k, q; E) Tγ,β(q, k′; E)

E − ωγ(q) + iϵ
.
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• The T -matrices for two particle scattering are obtained by solving the
coupled-channel integral equations

Tα,β(k, k′; E) = Ṽα,β(k, k′; E) +
∑

γ

∫

q2dq
Ṽα,γ(k, q; E) Tγ,β(q, k′; E)

E − ωγ(q) + iϵ
.

• The coupled-channel potential is readily calculated from the interaction Hamiltonian

Ṽα,β(k, k′) =
∑

B0

G†
α,B0

(k) Gβ,B0(k′)

E − mB0

+ V S
α,β(k, k′) ,

π(−k)

N(k)

∆(0) π(−k
′)

∆(k′)

+

π(−k)

N(k)

π(−k
′)

∆(k′)
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Infinite-Volume scattering matrix

• The S-matrix is related to the T -matrix by

Sα,β(E) = 1 − 2i
√

ρα(E) ρβ(E) Tα,β(kα cm, kβ cm; E) ,

with

ρα(E) = π
ωαM

(kα cm) ωαB
(kα cm)

E
kα cm ,

and kα cm satisfies the on-shell condition

ωαM
(kα cm) + ωαB

(kα cm) = E .
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Sα,β(E) = 1 − 2i
√

ρα(E) ρβ(E) Tα,β(kα cm, kβ cm; E) ,

with

ρα(E) = π
ωαM

(kα cm) ωαB
(kα cm)

E
kα cm ,

and kα cm satisfies the on-shell condition

ωαM
(kα cm) + ωαB

(kα cm) = E .

• The cross section σα ,β for the process α → β is

σα ,β =
4π3 kα cm ωαM

(kα cm) ωαB
(kα cm) ωβM

(kα cm) ωβB
(kα cm)

E2 kβ cm
♣Tα,β(kα cm, kβ cm; E)♣2 .
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πN phase shift and inelasticity

• The S-matrix is related to the T -matrix by

SπN,πN (E) = 1 − 2iπ
ωπ(kcm) ωN (kcm)

E
kcm TπN,πN (kcm, kcm; E) ,

= η(E) e2i δ(E) .

• In solving the integral equations. . .

π(−k)

N(k)

π(−k
′)

N(k′)
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Fit to Scattering Data in the ∆-Resonance Channel

• Consider:
◦ p-wave πN ,
◦ p-wave π∆, and
◦ f -wave π∆

channels, dressing
◦ two bare basis

states.

• Fit to SAID data.
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L. Hockley, C. Abell, DBL, and A. Thomas, [arXiv:2406.00981 [hep-ph]].
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Pole Positions for ∆(1232), ∆(1600), and ∆(1920)
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Finite Volume Analysis - Hamiltonian Matrix
• In a finite periodic volume, momentum is quantised to n (2π/L).
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y + n2
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• In a cubic volume of extent L on each side, define the momentum magnitudes

kn =
√

n2
x + n2

y + n2
z

2π

L
,

with ni = 0, ±1, ±2, . . . and integer n = n2
x + n2

y + n2
z.

• The degeneracy of each kn is described by C3(n), which counts the number of ways
the integers nx, ny, and nz, can be squared and summed to n.

• The non-interacting Hamiltonian takes the form

H0 = diag (m∆1 , m∆2 , ωπN (k1), ωπ∆(k1), . . . , ωπN (knmax), ωπ∆(knmax)) .
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Interaction Hamiltonian Terms

• 1 → 2 particle interaction terms sit in the first rows and columns.

HI =

























0 0 Ḡ
∆1

πN
(k1) Ḡ

∆1

π∆
(k1) Ḡ

∆1

πN
(k2) Ḡ

∆1

π∆
(k2) . . . Ḡ

∆1

πN
(knmax ) Ḡ

∆1

π∆
(knmax )

0 0 Ḡ
∆2

πN
(k1) Ḡ

∆2

π∆
(k1) Ḡ

∆2

πN
(k2) Ḡ

∆2

π∆
(k2) . . . Ḡ

∆2

πN
(knmax ) Ḡ

∆2

π∆
(knmax )

Ḡ
∆1

πN
(k1) Ḡ

∆2

πN
(k1)

Ḡ
∆1

π∆
(k1) Ḡ

∆2

π∆
(k1)

Ḡ
∆1

πN
(k2) Ḡ

∆2

πN
(k2)

Ḡ
∆1

π∆
(k2) Ḡ

∆2

π∆
(k2) V̄ S

.

.

.

.

.

.

Ḡ
∆1

πN
(knmax ) Ḡ

∆2

πN
(knmax )

Ḡ
∆1

π∆
(knmax ) Ḡ

∆2

π∆
(knmax )

























,
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,

• V̄ S describes the (nc × nmax)2, 2 → 2 particle interaction terms, filling out the rest
of the matrix.
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Relation to infinite-volume contributions

• The finite volume Hamiltonian interaction terms are related to the infinite-volume
contributions via

∫

k2dk =
1

4π

∫

d3k → 1

4π

∑

n∈Z3



2π

L

3

=
1

4π

∑

n∈Z

C3(n)



2π

L

3

.

such that

Ḡα,B0(kn) =

√

C3(n)

4π



2π

L


3
2

Gα,B0(kn) ,

V̄ S
αβ(kn, km) =

√

C3(n)

4π

√

C3(m)

4π



2π

L

3

V S
αβ(kn, km) .
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Finite Volume Eigenmode Solution

• Standard Lapack routines provide eigenmode solutions of

⟨ i ♣ H ♣ j ⟩ ⟨ j ♣ Eα ⟩ = Eα ⟨ i ♣ Eα ⟩ ,

◦ where ♣ i ⟩ and ♣ j ⟩ are the non-interacting basis states,

◦ Eα is the energy eigenvalue, and

◦ ⟨ i ♣ Eα ⟩ is the eigenvector of the

◦ Hamiltonian matrix ⟨ i ♣ H ♣ j ⟩.
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Mass dependence of HEFT energy eigenstates
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• Physical results extended via

m∆i
(m2

π) = m∆i
+α∆i

(

m2
π − mπ♣2phys

)

.

• Hadron masses acquire the lattice
simulation values.

L. Hockley, C. Abell, DBL, and A. Thomas, [arXiv:2406.00981 [hep-ph]].
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Finite Volume Eigenmode Solution

• Standard Lapack routines provide eigenmode solutions of

⟨ i ♣ H ♣ j ⟩ ⟨ j ♣ Eα ⟩ = Eα ⟨ i ♣ Eα ⟩ .

• Eigenvector ⟨ i ♣ Eα ⟩ describes the composition of the eigenstate ♣ Eα ⟩ in terms of
the basis states ♣ i ⟩ with

♣ i ⟩ = ♣ B0 ⟩, ♣ πN, k1 ⟩, ♣ πN, k2 ⟩, · · · ♣ π∆, k1 ⟩, ♣ π∆, k2 ⟩, · · · .
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♣ i ⟩ = ♣ B0 ⟩, ♣ πN, k1 ⟩, ♣ πN, k2 ⟩, · · · ♣ π∆, k1 ⟩, ♣ π∆, k2 ⟩, · · · .

• The overlap of the bare basis state ♣ B0 ⟩ with eigenstate ♣ Eα ⟩,

⟨ B0 ♣ Eα ⟩ ,

is of particular interest,
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Finite Volume Eigenmode Solution
• In Hamiltonian EFT, the only localised basis state is the bare basis state.
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Finite Volume Eigenmode Solution
• In Hamiltonian EFT, the only localised basis state is the bare basis state.

• Bär has highlighted how χPT provides an estimate of the direct coupling of
smeared nucleon interpolating fields to a non-interacting πN (basis) state,

3

16

1

(fπ L)2 Eπ L



EN − MN

EN



∼ 10−3 ,

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].
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Finite Volume Eigenmode Solution
• In Hamiltonian EFT, the only localised basis state is the bare basis state.

• Bär has highlighted how χPT provides an estimate of the direct coupling of
smeared nucleon interpolating fields to a non-interacting πN (basis) state,

3

16

1

(fπ L)2 Eπ L



EN − MN

EN



∼ 10−3 ,

relative to the ground state.
O. Bar, Phys. Rev. D 92 (2015) no.7, 074504 [arXiv:1503.03649 [hep-lat]].

• Conclude the smeared interpolating fields of lattice QCD are associated with the
bare basis states of HEFT

χ(0) ♣Ω⟩ ≃ ♣B0⟩ ,

• Eigenstates with large ⟨ B0 ♣ Eα ⟩ will be excited and observed in lattice QCD.
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∆ Finite Volume Spectrum at L = 3 fm
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25 Fit Parameters

Parameter Value Parameter Value

m∆1
/GeV 1.3894 m∆2

/GeV 2.3177

g∆1

πN 0.4974 g∆2

πN 0.2914

g∆1

π∆p
0.5300 g∆2

π∆p
0.2289

g∆1

π∆f
0.0004 g∆2

π∆f
0.0075

Λ∆1

πN /GeV 0.8246 Λ∆2

πN /GeV 1.3384

Λ∆1

π∆p
/GeV 0.8376 Λ∆2

π∆p
/GeV 0.5428

Λ∆1

π∆f
/GeV 0.5776 Λ∆2

π∆f
/GeV 1.0549

vπN,πN 0.0454 vπN,π∆f
−0.0030

vπN,π∆p
−1.5545 vπ∆p,π∆f

−0.0053
vπ∆p,π∆p

−0.9694 vπ∆f ,π∆f
−0.0001

Λv
πN /GeV 0.6032 Λv

π∆f
/GeV 1.3289

Λv
π∆p

/GeV 0.8058

Bare Slope (GeV−1) Value
α∆1

0.751
α∆2

0.203
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Section 3

∆3
2

+
State Composition



∆ Finite Volume Spectrum at L = 3 fm
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Eigenstate Composition: State 1 – ∆1 dominated
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Eigenstate Composition: State 2 – πN dominated
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Eigenstate Composition: State 3 – Mix of 3 two-particle channels
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Eigenstate Composition: State 4 – π∆f dominated
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Eigenstate Composition: State 5 – Mix of πN and π∆p
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Eigenstate Composition: State 6 – Mix of 3 channels and ∆2
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Eigenstate Composition: State 7 – πN dominated
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Eigenstate Composition: State 8 – π∆p dominated
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Eigenstate Composition: State 9 – Largest ∆2 component
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Comparison with other Lattice Collaborations
• CLS Consortium:

C. Morningstar, J. Bulava, A. D. Hanlon, B. Hörz, D. Mohler, A. Nicholson, S. Skinner and

A. Walker-Loud, PoS LATTICE2021 (2022), 170 [arXiv:2111.07755 [hep-lat]].
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CLS Consortium Spectrum at L = 4.16 fm from 2022
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Eigenstate Composition: State 1 – ∆1 dominated
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Eigenstate Composition: State 2 – πN dominated
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Eigenstate Composition: State 3 – Also πN dominated
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Cyprus Collaboration: mπ = 0.139 GeV and L = 5.1 fm from 2024
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HSC Spectrum at L = 1.96 fm from 2010
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Khan et al. Spectrum at L = 3.01 fm from 2021
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Section 4

Λ1
2

−
Analysis



New analysis of low-lying odd-parity Λ resonances

J. J. Liu, Z. W. Liu, K. Chen, D. Guo, DBL, X. Liu and A. W. Thomas,

Phys. Rev. D 109 (2024) 054025 [arXiv:2312.13072 [hep-ph]]
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baryons.

◦ 2022: DAΦNE: Near threshold cross section measurements.
◦ 2022: J-PARC: πΣ invariant mass spectra in K−p induced reactions.
◦ 2021: ALICE: K−p scattering length.

• BaSc Lattice QCD collaboration performed coupled-channel simulations with both
single baryon and meson-baryon interpolating operators at mπ = 204 MeV.

• Extend the analysis of the cross section data for K−p scattering to K− laboratory
momenta of 800 MeV/c to address the Λ(1670).
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• Consider πΣ, K̄N , ηΛ, KΞ channels, and one bare basis state, B0.
◦ The mass of Λ(1670) is only 130 MeV below the KΞ threshold.

• 16 two-to-two particle couplings are considered in isospin 0 and 1.

• Five parameters describe the bare to two-particle interactions

g0
B0,πΣ g0

B0,K̄N
g0

B0,ηΛ g0
B0,KΞ mB0

• No new parameters in going to the finite volume of the lattice.

◦ The bare mass slope is taken to be 2

3
of our previous N 1

2

−

(1535) analysis slope.
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Fits to experimental cross-section data σ/mb vs ♣p⃗lab♣/MeV
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experimental data

• Note the presence of two fits, one with and one without a single-particle basis state.
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Fits to experimental cross-section data σ/mb vs ♣p⃗lab♣/MeV
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experimental data

• The peak of Λ(1670) can be clearly seen in the K−p → ηΛ channel.
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Fits to experimental cross-section data σ/mb vs ♣p⃗lab♣/MeV
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experimental data

• The peaks around 400 MeV are associated with the D-wave Λ(1520) state.
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Fits to experimental cross-section data σ/mb vs ♣p⃗lab♣/MeV
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experimental data

• K̄∗N and πΣ∗ channels (not included) will contribute at large ♣p⃗lab♣ > 500 MeV.
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• The three poles generated by these fits are very similar.
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• Present experimental data are not able to distinguish between these fits.
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Finite Volume Λ Spectrum for L ≃ 3 fm
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Coupling No ♣B0⟩ With ♣B0⟩

Λ (GeV) 1.000 1.000

g0
K̄N,K̄N

−2.108 −2.180

g0
K̄N,πΣ

0.837 0.620

g0
K̄N,ηΛ

−0.461 −0.472

g0
πΣ,πΣ −1.728 −1.200

g0
πΣ,KΞ −0.001 −1.800

g0
ηΛ,KΞ 0.835 1.993

g0
KΞ,KΞ −3.393 −1.000

g1
K̄N,K̄N

−0.028 −0.001

g1
K̄N,πΣ

0.829 0.985

g1
K̄N,πΛ

0.001 0.990

g1
K̄N,ηΣ

1.557 1.500

g1
πΣ,πΣ −1.351 −0.001

g1
πΣ,KΞ −1.017 −1.341

g1
πΛ,KΞ 2.904 0.011

g1
ηΣ,KΞ 4.690 0.001

g1
KΞ,KΞ −0.447 −3.700

21 Fit Parameters

Coupling No ♣B0⟩ With ♣B0⟩

g0
B0,K̄N

− 0.091

g0
B0,πΣ − 0.049

g0
B0,ηΛ − −0.164

g0
B0,KΞ − −0.226

m0
B (MeV) − 1750

Pole 1 (MeV) 1336 − 87 i 1324 − 67 i

Pole 2 (MeV) 1430 − 26 i 1428 − 24 i

Pole 3 (MeV) 1676 − 17 i 1674 − 11 i
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Finite Volume Λ Spectrum for L ≃ 3 fm
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• A single-particle basis state is required to describe lattice results at large m2
π.
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• The spectra begin to differ at the 3rd and 4th eigenstate energy.
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Eigenstate Composition: ♣πΣ⟩ dominated → ♣B0⟩ dominated
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Eigenstate Composition: State 2 – ♣K̄N⟩ → ♣πΣ⟩ → ♣B0⟩
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Eigenstate Composition: State 3 – First significant ♣B0⟩
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Eigenstate Composition: State 4 – ♣K̄N⟩ and ♣πΣ⟩
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Eigenstate Composition: State 5 – ♣ηΛ⟩ and ♣B0⟩
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Eigenstate Composition: State 6 – ♣B0⟩ dominated at ∼ 1670 MeV
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• Recall the 3rd and 4th

HEFT energies are
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• Without a single-particle
basis state (right), 1σ
agreement is lost.

• Future precision results
will decide the role of
♣B0⟩ unambiguously.
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The 2s excitation of the nucleon sits at 1.9 GeV
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multiparticle states.

• Anticipate the 2s excitation is
associated with

◦ N1/2+(1880) observed in
photoproduction.

◦ N1/2+(1710) only 170 MeV away.

• What about the Roper resonance?
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Positive-parity Nucleon Spectrum: Bare Basis State with m0 = 1.7 GeV
J. j. Wu, DBL, Z. w. Liu and A. W. Thomas, Phys. Rev. D 97 (2018) no.9, 094509 [arXiv:1703.10715 [nucl-th]].

• Consider πN , π∆ and σN channels, dressing a bare basis state.
• Fit to phase shift and inelasticity. (dashed blue curve)
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• Fit yields two poles in the region of the PDG estimate 1365 ± 15 − i 95 ± 15 MeV.
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Positive-parity Nucleon Spectrum: Bare Basis State with m0 = 2.0 GeV
J. j. Wu, et al. [CSSM], arXiv:1703.10715 [nucl-th]

• Consider πN , π∆ and σN channels, dressing a bare basis state.
• Fit to phase shift and inelasticity. (red curve)
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• Fit yields a pole in the regime of the PDG estimate 1365 ± 15 − i 95 ± 15 MeV.
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2.0 GeV Bare Basis State: Hamiltonian Model N ′ Spectrum
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πN , π∆ and σN channels, dressing a bare state.
C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek, Phys. Rev. D 95, no. 1, 014510 (2017) [arXiv:1610.01422 [hep-lat]].
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Two different descriptions of the Roper resonance
m0 = 2.0 GeV m0 = 1.7 GeV
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(left) Resonance generated by strong rescattering in meson-baryon channels.
(right) Meson dressings of a quark-model like core.
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Section 6

Missing Baryon Resonances



Missing Baryon Resonances

• Many resonances predicted by the constituent quark model (CQM) below 2 GeV are
not seen.
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Missing Baryon Resonances

• Many resonances predicted by the constituent quark model (CQM) below 2 GeV are
not seen.

• Now know the CQM should have been tuned to a 2s resonance at ∼ 1900 MeV.
◦ Further excitations are at energies exceeding 2 GeV.

• Provides a new resolution of the missing baryon resonance problem.
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Nucleon and Delta Resonance Predictions from the Quark Model
S. Capstick and W. Roberts, Phys. Rev. D 47 (1993), 1994-2010.
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Section 7

Conclusions



Conclusions
• Hamiltonian Effective Field Theory (HEFT)

◦ Connects scattering observables to finite-volume Lattice QCD.
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◦ Connects scattering observables to finite-volume Lattice QCD.
◦ Connects results at different quark masses within a single formalism.
◦ Provides insight into the composition of energy eigenstates and lattice QCD.

• Simple harmonic-oscillator style spectrum structure is observed in lattice QCD.

• With lattice QCD constraints, HEFT provides new insight into resonance structure.
◦ The ∆(1600) is dynamically generated in πN and π∆ rescattering.
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◦ The N(1440) Roper is dynamically generated in πN , π∆, and σN rescattering.
◦ The N(1710) and N(1880) are associated with the 2s quark-model basis state.

• Λ1
2

−
resonances:

◦ The Λ(1405) has a two-pole structure generated by πΣ and K̄N rescattering.
◦ The Λ(1670) is associated with a quark-model-like single-particle basis state.

• These results provide a novel solution to the missing baryon resonances problem.
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Two different descriptions of the Roper resonance
m0 = 2.0 GeV m0 = 1.7 GeV
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(left) Resonance generated by strong rescattering in meson-baryon channels.
(right) Meson dressings of a quark-model like core.
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Score Card

Criteria m0 = 1.7 GeV m0 = 2.0 GeV

Describes experimental data well.
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2nd lattice scattering state created via πN interpol-
ator has dominant ⟨ πN ♣ E2 ⟩ in HEFT.

% "

L-QCD states excited with 3-quark ops. are associ-
ated with HEFT states with large ⟨ B0 ♣ Eα ⟩.

% "

HEFT predicts three-quark states that exist in
lattice QCD.
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π(−k)

N(k)

π(−k
′)

N(k′)

π(−k
′)

N(k′)

σ(−k
′′)

N(k′′)

σ(−k
′′)

N(k′′)

π(−k
′)

∆(k′)

π(−k
′′)

∆(k′′)

π(−k
′)

N(k′)

• The 2s excitation of the nucleon is dressed to lie at ∼ 1.9 GeV
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HEFT Extensions

• Formalism for partial-wave mixing in HEFT has been developed in
Y. Li, J. J. Wu, C. D. Abell, D. B. L. and A. W. Thomas. Phys. Rev. D 101,
no.11, 114501 (2020) [arXiv:1910.04973 [hep-lat]]

• And extended to moving and elongated finite-volumes in
Y. Li, J. J. Wu, D. B. L. and A. W. Thomas Phys. Rev. D 103 no.9, 094518
(2021) [arXiv:2103.12260 [hep-lat]].

99 of 124



Room for non-resonant three-body contributions in N1/2+
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Room for non-resonant three-body contributions in ∆3/2+
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∆ Finite Volume Spectrum at L = 3 fm
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∆ Finite Volume Spectrum at L = 3 fm with ππN states
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Evidence the 2s state is associated with the N1/2+(1710) and N1/2+(1880)

• The N1/2+(1880) was observed in photoproduction while missed in πN scattering.
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Evidence the 2s state is associated with the N1/2+(1710) and N1/2+(1880)

• The N1/2+(1880) was observed in photoproduction while missed in πN scattering.

• The N1/2+(1710) has a small width of 140 MeV and perhaps as small as 80 MeV.

• Both suggest the 2s excitation on the lattice may be insensitive to modifications of
the meson dressings.

• Consider a quenched QCD simulation with matched lattice spacing and quark
masses.

◦ Couplings to meson dressings are suppressed.

• Quark-model dominated states will be insensitive to quenching.

• Is there a state ∼ 1.9 GeV that is insensitive to quenching?
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Comparison of 2+1 flavour and quenched lattice simulation results
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Model (in)dependence in HEFT: Lüscher formalism

• HEFT incorporates the Lüscher formalism.
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Model (in)dependence in HEFT: Lüscher formalism

• HEFT incorporates the Lüscher formalism.

• It provides a rigorous relationship between the finite-volume energy spectrum and
the scattering amplitudes of experiment.

• In HEFT, this relationship is mediated by a Hamiltonian.

• Need to have a sufficient number of tunable parameters within the Hamiltonian.

• The Hamiltonian is only mediary.

• However, the Lüscher formalism provides no avenue for changing the quark mass.
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Model (in)dependence in HEFT - Quark mass variation

• Finite-volume HEFT reproduces finite-volume χPT in the perturbative limit by
construction.
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Model (in)dependence in HEFT - Quark mass variation

• Finite-volume HEFT reproduces finite-volume χPT in the perturbative limit by
construction.

• In the multi scattering-channel case, the Hamiltonian becomes tightly constrained.
◦ Experimental data is described accurately for only a limited range of parameters with

specific regulator shapes.

• The consideration of quark masses away from the physical point further constrains
the Hamiltonian.

• The Hamiltonian has become a tightly constrained model.
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Model (in)dependence in HEFT - Quark mass variation

• Draw on model-independent constraints to determine the Hamiltonian.
◦ Lattice QCD and experiment.
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Model (in)dependence in HEFT - Quark mass variation

• Draw on model-independent constraints to determine the Hamiltonian.
◦ Lattice QCD and experiment.

• One set of lattice QCD results is required to determine the quark mass dependence
of the bare basis state(s).

◦ A term linear in the quark mass is usually sufficient to describe lattice QCD results.

• Make predictions of the finite-volume spectrum considered by other lattice groups.
◦ Different volumes and different quark masses can be addressed.

• Model independence is governed by the distance from the physical point.
◦ For example, mπ = 204 MeV considered by the BaSc collaboration.
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Model dependence in HEFT
• The eigenvectors describe how the non-interacting basis states come together to

compose the eigenstates of the spectrum.
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Model dependence in HEFT
• The eigenvectors describe how the non-interacting basis states come together to

compose the eigenstates of the spectrum.

• They are model dependent.

• There is little freedom in the model parameters of the Hamiltonian such that the
predictions of the Hamiltonian are well defined.

• They are similar to the eigenvectors of lattice-QCD correlation matrices.
◦ They describe the linear combination of interpolating fields isolating energy eigenstates

on the lattice.

• These too are model dependent.

• However, the composition of the states drawn from the lattice correlation matrix is
similar to the description provided by HEFT.
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Model (in)dependence in HEFT - Summary
• There is a direct model-independent link between the scattering observables of

experiment and the finite-volume spectrum calculated in HEFT.
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Model (in)dependence in HEFT - Summary
• There is a direct model-independent link between the scattering observables of

experiment and the finite-volume spectrum calculated in HEFT.

• Variation of the quark masses away from the physical quark mass is constrained by
lattice QCD results.

• The Hamiltonian eigenvectors describing the basis-state composition of
finite-volume energy eigenstates are model dependent.

• They are analogous to the interpolator dependent eigenvectors of lattice QCD
correlation matrices describing the linear combination of interpolating fields
isolating energy eigenstates.

• The similarity displayed by these two different sets of eigenvectors suggests that
they do indeed provide insight into hadron structure.
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The Λ(1405) in Lattice QCD

• First observed in
B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. 108 (2012) 112001

[arXiv:1109.6716 [hep-lat]].
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The Λ(1405) in Lattice QCD

• First observed in
B. J. Menadue, W. Kamleh, DBL and M. S. Mahbub, Phys. Rev. Lett. 108 (2012) 112001

[arXiv:1109.6716 [hep-lat]].

• Excited by local three-quark operators.
◦ A mix of two flavour-octet interpolators and a flavour-singlet operator.
◦ A variety of quark distributions via smeared sources.

• Appeared to be a local three quark state.
◦ But a study of the strange magnetic form factor revealed an exotic structure.
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Strange Magnetic Form Factor of the Λ(1405)

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular KN bound state.
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Strange Magnetic Form Factor of the Λ(1405)

J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]

• Provides direct insight into the possible dominance of a molecular KN bound state.

• In forming such a molecular state, the Λ(u, d, s) valence quark configuration is
complemented by

◦ A u, u pair making a K−(s, u) - p(u, u, d) bound state, or
◦ A d, d pair making a K0(s, d) - n(d, d, u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon and has no
preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.

• Thus, the strange quark does not contribute to the magnetic form factor of the
Λ(1405) when it is dominated by a KN molecule.
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Strange Magnetic Form Factor of the Λ(1405)
J. M. M. Hall, et al. [CSSM], Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]
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Electric form factors of the Λ(1405) at Q2 ∼ 0.16 GeV2

B. J. Menadue, W. Kamleh, DBL, M. Selim Mahbub and B. J. Owen, PoS LATTICE2013 (2014), 280 [arXiv:1311.5026 [hep-lat]]
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Smeared Source Correlation Functions

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

 

so04

so09

so16

so25

so35

so50

so70

so100

so125

so200

so400

so800

so1600

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

20 25 30 35 40
0

1

2

3

4

t

M
e

ff
 (

G
e

V
)

117 of 124



Positive Parity Nucleon Spectrum CSSM

M. S. Mahbub et al. [CSSM Lattice Collaboration], Phys. Lett. B 707 (2012) 389 arXiv:1011.5724 [hep-lat].
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Positive Parity Nucleon Spectrum CSSM & JLab HSC

R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace, Phys. Rev. D 84 (2011) 074508 arXiv:1104.5152 [hep-ph].
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Negative Parity Nucleon Spectrum CSSM

M. S. Mahbub et al. [CSSM Lattice Collaboration], Phys. Lett. B 707 (2012) 389 arXiv:1011.5724 [hep-lat].
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Negative Parity Nucleon Spectrum CSSM & JLab HSC

R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace, Phys. Rev. D 84 (2011) 074508 arXiv:1104.5152 [hep-ph].
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Other Calculations of the Nucleon Spectrum
• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]].

In agreement but with large uncertainties.
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Other Calculations of the Nucleon Spectrum
• Berlin-Graz-Regensburg (BGR) collaboration

G. P. Engel et al. [BGR], Phys. Rev. D 87 (2013) no.7, 074504 [arXiv:1301.4318 [hep-lat]].

In agreement but with large uncertainties.

• χQCD Collaboration results
K. F. Liu, et al., “The Roper Puzzle,” PoS LATTICE2013 (2014), 507 [arXiv:1403.6847 [hep-ph]].

Analysed the HSC correlators with their Sequential Empirical Bayesian analysis.
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◦ Argument already excluded by the CSSM results.

• Further discussion in
D. Leinweber, et al. JPS Conf. Proc. 10 (2016), 010011 [arXiv:1511.09146 [hep-lat]].
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Other Calculations of the Nucleon Spectrum

• Cyprus Twisted Mass and Clover Fermion results
C. Alexandrou, et al., Phys. Rev. D 89 (2014) no.3, 034502 [arXiv:1302.4410 [hep-lat]].
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Other Calculations of the Nucleon Spectrum

• Cyprus Twisted Mass and Clover Fermion results
C. Alexandrou, et al., Phys. Rev. D 89 (2014) no.3, 034502 [arXiv:1302.4410 [hep-lat]].

• Correlation functions subsequently analysed in the Athens Model Independent
Analysis Scheme (AMIAS).

C. Alexandrou, et al., Phys. Rev. D 91 (2015) no.1, 014506 [arXiv:1411.6765 [hep-lat]].
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Search for low-lying lattice QCD eigenstates in the Roper regime
A. L. Kiratidis, et al., [CSSM] Phys. Rev. D 95, no. 7, 074507 (2017) [arXiv:1608.03051 [hep-lat]].
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1 → χ1 + χ2

2 → χ1 + χ2 + χa0N

3 → χ1 + χ2 + χa0N + χ′

a0N

4 → χπN + χ′

πN + χa0N

5 → χπN + χ′

πN + χa0N + χ′

a0N

6 → χπN + χ′

πN + χσN + χ′

σN

7 → χσN + χ′

σN + χa0N + χ′

a0N
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