

### Hall B N\* Program Overview

#### The N\* program is one of the key physics foundations of Hall B



• CLAS & CLAS12 - designed to study exclusive reaction channels over a broad kinematic range:

πΝ, ωΝ, φΝ, ηΝ, η'Ν, ππΝ, <u>*KY*</u>, *K*\**Y*, *KY*\*

- Goal is to explore the *spectrum* of N\* states and their *structure* 
  - Probe their underlying degrees of freedom via studies of the  $Q^2\,$  evolution of the electroproduction amplitudes
    - these amplitudes do not depend on the decay channel but different final states have different hadronic decay parameters and backgrounds

N\*2024 - Jun. 17 - 21, 2024

Page 2

- provide insight into the strong interaction in the regime of large QCD running coupling from the electrocouplings of different N\* states
- search for hybrid baryons (qqqG) and other non-3q configurations

D.S. Carman, K. Joo, V.I. Mokeev, Few Body Systems 61, 29 (2020) V.I. Mokeev and D.S. Carman, Few Body Systems 63, 59 (2022) D.S. Carman, R.W. Gothe, V.I. Mokeev, C.D. Roberts, Particles 6, 416 (2023)

Recent review papers:

Jefferson Lab

Daniel S. Carman

# **CLAS12 N\* Program**

• Measure exclusive electroproduction of  $N\pi$ ,  $N\eta$ ,  $N\pi\pi$ , KY final states from unpolarized proton target with longitudinally polarized electron beam

 $\mathsf{E}_{\mathsf{b}} \texttt{= 6.6, 8.8, 11 GeV, Q^2 \texttt{= 0.05} \rightarrow \texttt{12 GeV^2, W} \rightarrow \texttt{3.0 GeV, cos} \ \theta_{\mathsf{m}}^{*} \texttt{= [-1:1]}$ 

| E12-09-003  | Nucleon Resonance Studies with CLAS12                  |
|-------------|--------------------------------------------------------|
| E12-06-108A | KY Electroproduction with CLAS12                       |
| E12-16-010A | N* Studies Via KY Electroproduction at 6.6 and 8.8 GeV |
| E12-16-010  | A Search for Hybrid Baryons in Hall B with CLAS12      |

#### 1. Study higher-lying N\* states:

- confirm signals of new baryon states observed in  $\gamma p \to KY$
- explore full regime of "missing" quark model states
- 2. Understand active degrees of freedom that account for N\* structure vs. distance scale:
  - explore dynamical structure of N\* states from low to high Q<sup>2</sup> - meson-baryon cloud to quark degrees of freedom
  - search for predicted qqqg hybrid baryons

- 3. Probe quark dressing effects and di-quark correlations in N\* structure:
  - important aspect of N\* structure and electrocoupling amplitudes

Spr. 18

126 mC

Fall 18

99 mC

Spr. 19

58 mC

Fall 18

28 mC

Spr24

173 mC

RG-A

RG-K

10.2 GeV.

10.6 GeV

50% of total

6.5 GeV.

7.5 GeV

6.4 GeV.

8.5 GeV

50% of total

- provide insight into emergence of hadron mass vs.  $\ensuremath{Q^2}$
- N\* states of different structure allow study of different qq correlations

Daniel S. Carman

Jefferson Lab

#### **Evidence for New N\* in KY Channels**

| State<br>N(mass)J <sup>p</sup> | PD <i>G</i><br>2010 | PD <i>G</i><br>2024 | πN   | KΛ | ΚΣ | γN   |
|--------------------------------|---------------------|---------------------|------|----|----|------|
| N(1710)1/2 <sup>+</sup>        | ***                 | ****                | **** | ** | *  | **** |
| N(1875)3/2-                    |                     | ***                 | **   | *  | *  | **   |
| N(1880)1/2+                    |                     | ***                 | *    | ** | ** | **   |
| N(1895)1/2-                    |                     | ****                | *    | ** | ** | **** |
| N(1900)3/2 <sup>+</sup>        | **                  | ****                | **   | ** | ** | **** |
| N(2000)5/2+                    | *                   | **                  | *    |    |    | **   |
| N(2060)5/2-                    |                     | ***                 | **   | *  | *  | ***  |
| N(2100)1/2+                    | *                   | ***                 | ***  | *  |    | **   |
| N(2120)3/2-                    |                     | ***                 | **   | ** | *  | ***  |
| ∆(1600)3/2⁺                    | ***                 | ****                | ***  |    |    | **** |
| ∆(1900)1/2-                    | **                  | ***                 | ***  |    | ** | ***  |
| ∆(2200)7/2-                    | *                   | ***                 | **   |    | ** | ***  |



U. Löring, B. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001)

LQCD predictions support CQM J. Dudek, R. Edwards, PRD 85, 054016 (2012)

Decisive impact from CLAS KY photoproduction data

- Extend studies to KY electroproduction and to higher masses



### **Excited Nucleon Structure**

 N\* structure is more complex than what can be described accounting for quark degrees of freedom only



- Studies of the  $\gamma_v p N^\star$  electrocouplings from low to high  $Q^2$  probe the detailed structure of the N^\star states
  - The momentum dependence of the underlying degrees of freedom shapes the structure of N\* states and the  $Q^2$  evolution of the electrocouplings
  - The electrocouplings are the only source of information on many facets of the non-perturbative strong interaction in the generation of different N\* states and their emergence from QCD

Jefferson Lab



# **N\* Electrocouplings from CLAS**



- Electrocouplings reveal different interplay between meson-baryon cloud and quark core:
  - Good agreement of the extracted N\* electrocouplings from N $\pi$  and N $\pi\pi$ :
    - Compelling evidence for the reliability of the results
    - Channels have very different mechanisms for the non-resonant background
- Data on the electrocouplings over broad range of Q<sup>2</sup> are needed in order to:
  - Map out the transition from meson-baryon to confined quark degrees of freedom
  - Gain fundamental insight into the strong QCD dynamics that underlies hadron mass generation Daniel S. Carman Jefferson Lab N\*2024 - Jun. 17 - 21, 2024 Page 6

# **Higher-Lying N\* States**

 $N\pi\pi$  channel gave first electrocoupling results on higher-lying states up to 1.8 GeV

Note: Most high-lying N\* states decay mainly to  $N\pi\pi$  with smaller strength to  $N\pi$  for some states



- to provide an independent extraction of the

electrocouplings for higher-lying N\* states

V.I. Mokeev, I. Aznauryan, IJMPC 26, 1460080 (2014)
V.I. Mokeev et al., PRC 93, 025206 (2016)
D.S. Carman, K. Joo, V.I. Mokeev, FBS 61, 29 (2020)
V.I. Mokeev et al., PRC 108, 025204 (2023)

N(1720)3/2+

**1** 

1.2 1.4

 $O^2 GeV^2$ 

1

1.61-1.71 GeV

1.66-1.76 GeV

1.71-1.81 GeV

0.2 0.4 0.6 0.8



20

10

0

-10

-20

-30

-40

-50

-60

-70

-80

 $A_{3/2}$ 

### **KY Reaction Models**



### **CLAS KY Electroproduction Dataset Overview**

| # | Run  | E <sub>b</sub> (GeV) | Trig. (M) |
|---|------|----------------------|-----------|
| 1 | e1c  | 2.567                | 900       |
| 2 |      | 4.056                | 370       |
| 3 |      | 4.247                | 620       |
| 4 |      | 4.462                | 420       |
| 5 | e1-6 | 5.754                | 4500      |
| 6 | e1f  | 5.499                | 5000      |

#### Publications (Polarization):

• K<sup>+</sup> $\Lambda$ , K<sup>+</sup> $\Sigma^0$  beam-recoil polarization transfer - W=1.6-2.15 GeV, Q<sup>2</sup>=0.3 - 1.5 GeV<sup>2</sup>

D.S. Carman et al. (CLAS), PRL 90, 131804 (2003)

- W=1.6-2.6 GeV, Q<sup>2</sup>=0.7-5.4 GeV<sup>2</sup>
   D.S. Carman et al. (CLAS), PRC 79, 065205 (2009)
- $K^{+}\Lambda$  recoil polarization
  - W=1.6-2.7 GeV, (Q<sup>2</sup>)=1.9 GeV<sup>2</sup>
     M. Gabrielyan et al. (CLAS), PRC 90, 035202 (2014)



Jefferson Lab

#### Publications (Cross Section):

- K<sup>+</sup> $\Lambda$ , K<sup>+</sup> $\Sigma^0$  cross sections & structure functions
  - $d\sigma/d\Omega$ ,  $\sigma_U$ ,  $\sigma_{LT}$ ,  $\sigma_{TT}$ ,  $\sigma_L$ ,  $\sigma_T$ - W=1.6-2.4 GeV, Q<sup>2</sup>=0.5-2.8 GeV<sup>2</sup>
    - P. Ambrozewicz et al. (CLAS), PRC 75, 045203 (2007)
  - dσ/dΩ, σ<sub>U</sub>, σ<sub>LT</sub>, σ<sub>TT</sub>, σ<sub>LT</sub>
     W=1.6-2.6 GeV, Q<sup>2</sup>=1.4-3.9 GeV<sup>2</sup>
     D.S. Carman et al. (CLAS), PRC 87, 025204 (2013)

#### • σ<sub>LT</sub>

- W=1.6-2.1 GeV, Q<sup>2</sup>=0.65, 1.0 GeV<sup>2</sup>
- R. Nasseripour et al. (CLAS), PRC 77, 065208 (2008)
  - $K^{+}\Lambda \sigma_L / \sigma_T$  ratio

N\*2024 - Jun. 17 - 21, 2024

- W=1.72-1.98 GeV, Q<sup>2</sup>~0.7 GeV<sup>2</sup>
- B.A. Raue & D.S. Carman, PRC 71, 065209 (2005)



Daniel S. Carman

#### **Pseudoscalar Meson Electroproduction Formalism**

$$\frac{d\sigma_{v}}{d\Omega_{K}^{c.m.}} = \mathcal{K}\sum_{\alpha,\beta} S_{\alpha}S_{\beta} \Big[ R_{T}^{\beta\alpha} + \epsilon R_{L}^{\beta\alpha} + c_{+}(^{c}R_{LT}^{\beta\alpha}\cos\Phi + ^{s}R_{LT}^{\beta\alpha}\sin\Phi) \\ + \epsilon(^{c}R_{TT}^{\beta\alpha}\cos2\Phi + ^{s}R_{TT}^{\beta\alpha}\sin2\Phi) + hc_{-}(^{c}R_{LT'}^{\beta\alpha}\cos\Phi + ^{s}R_{LT'}^{\beta\alpha}\sin\Phi) + hc_{0}R_{TT'}^{\beta\alpha} \Big]$$

| TAE<br>does n | BLE I. 1<br>ot vanish        | Polarizat<br>but is id     | ion observ<br>lentical to | ables in<br>another        | pseudosc<br>response                | alar me<br>functio | son electr<br>1 via a rel           | oproduct<br>ation in       | tion.<br>App. | A star<br>A. | deno       | otes a | resp   | onse fune                             | ction | which       |
|---------------|------------------------------|----------------------------|---------------------------|----------------------------|-------------------------------------|--------------------|-------------------------------------|----------------------------|---------------|--------------|------------|--------|--------|---------------------------------------|-------|-------------|
|               |                              |                            | Target                    |                            |                                     | Recoil             |                                     |                            |               | ſ            | Farget     | t + F  | Recoil |                                       |       |             |
| β             | _                            | _                          | _                         | _                          | x'                                  | $y^\prime$         | z'                                  | x'                         | x'            | x'           | $y^\prime$ | y'     | y'     | z'                                    | z'    | z'          |
| α             | _                            | x                          | y                         | z                          | _                                   | -                  | _                                   | x                          | y             | z            | x          | y      | z      | x                                     | y     | z           |
| T             | $R_T^{00}$                   | 0                          | $R_T^{0y}$                | 0                          | 0                                   | $R_T^{y'0}$        | 0                                   | $R_T^{x'x}$                | 0             | $R_T^{x'z}$  | 0          | *      | 0      | $R_T^{z'x}$                           | 0     | $R_T^{z'z}$ |
| L             | $R_L$                        | 0                          | $R_L^{0y}$                | 0                          | 0                                   | *                  | 0                                   | $R_L^{x'x}$                | 0             | $R_L^{x'z}$  | 0          | *      | 0      | *                                     | 0     | *           |
| $^{c}TL$      | $^{c}R_{TL}^{00}$            | 0                          | $^{c}R_{TL}^{0y}$         | 0                          | 0                                   | *                  | 0                                   | $^{c}R_{TL}^{x^{\prime}x}$ | 0             | *            | 0          | *      | 0      | $^{c}R_{TL}^{z^{\prime}x}$            | 0     | *           |
| $^{s}TL$      | 0                            | ${}^{s}R_{TL}^{0x}$        | 0                         | ${}^{s}R_{TL}^{0z}$        | $^{s}R_{TL}^{x^{\prime}0}$          | 0                  | ${}^{s}R_{TL}^{z^{\prime}0}$        | 0                          | *             | 0            | *          | 0      | *      | 0                                     | *     | 0           |
| $^{c}TT$      | $^{c}R_{TT}^{00}$            | 0                          | *                         | 0                          | 0                                   | *                  | 0                                   | *                          | 0             | *            | 0          | *      | 0      | *                                     | 0     | *           |
| $^{s}TT$      | 0                            | ${}^{s}R_{TT}^{0x}$        | 0                         | $^{s}R_{TT}^{0z}$          | $^{s}R_{TT}^{x^{\prime}0}$          | 0                  | $^{s}R_{TT}^{z^{\prime}0}$          | 0                          | *             | 0            | *          | 0      | *      | 0                                     | *     | 0           |
| $^{c}TL'$     | 0                            | $^{c}R^{0x}_{TL^{\prime}}$ | 0                         | $^{c}R_{TL^{\prime}}^{0z}$ | $^{c}R_{TL^{\prime}}^{x^{\prime}0}$ | 0                  | $^{c}R_{TL^{\prime}}^{z^{\prime}0}$ | 0                          | *             | 0            | *          | 0      | *      | 0                                     | *     | 0           |
| $^{s}TL'$     | ${}^{s}R^{00}_{TL^{\prime}}$ | 0                          | ${}^{s}R^{0y}_{TL'}$      | 0                          | 0                                   | *                  | 0                                   | ${}^{s}R_{TL'}^{x'x}$      | 0             | *            | 0          | *      | 0      | ${}^{s}R_{TL^{\prime}}^{z^{\prime}x}$ | 0     | *           |
| TT'           | 0                            | $R^{0x}_{TT^{\prime}}$     | 0                         | $R^{0z}_{TT^\prime}$       | $R_{TT'}^{x'0}$                     | 0                  | $R_{TT^{\prime}}^{z^{\prime}0}$     | 0                          | *             | 0            | *          | 0      | *      | 0                                     | *     | 0           |

G. Knöchlein, D. Drechsel, L. Tiator, Z. Phys. A 352, 327 (1995)

Response functions  $R(Q^2, W, \cos \theta_K^{c.m.})$ 

#### CLAS/CLAS12 KY Program

- Differential cross sections
  - $-\sigma_L, \sigma_T, \sigma_{LT}, \sigma_{TT}, \sigma_{LT}$
- KY recoil polarization
- KY transferred polarization



#### **CLAS K<sup>+</sup>** A Structure Functions



#### **CLAS K<sup>+</sup>\Sigma^0 Structure Functions**



## **KY Polarization Formalism**



### **CLAS12 Beam-Recoil** $\Lambda$ **Transferred Polarization**



| Model     | Year | Туре         | Fit Data     | N* States     |
|-----------|------|--------------|--------------|---------------|
| Kaon-MAID | 2000 | Isobar       | none         | 1/2, 3/2      |
| RPR       | 2011 | Isobar+Regge | CLAS yp      | 1/2, 3/2, 5/2 |
| BS3       | 2018 | Isobar       | CLAS γp & ep | 1/2, 3/2, 5/2 |

Daniel S. Carman

Jefferson Lab

D.S. Carman et al. (CLAS), PRC 105, 065201 (2022)

#### Development of reaction models in progress:

- T. Mart
- M. Döring, M. Mai
- P. Bydžovský, D. Skoupil

N\*2024 - Jun. 17 - 21, 2024

### **CLAS12 Beam-Recoil** $\Sigma^0$ **Transferred Polarization**



| Model                 | Year | Туре         | Fit Data | N* States     |
|-----------------------|------|--------------|----------|---------------|
| SL                    | 1996 | Isobar       | none     | 1/2, 3/2      |
| Kaon-MAID 2000 Isobar |      | Isobar       | none     | 1/2, 3/2      |
| RPR                   | 2007 | Isobar+Regge | CLAS yp  | 1/2, 3/2, 5/2 |

Jefferson Lab

D.S. Carman et al. (CLAS), PRC 105, 065201 (2022)

 $\begin{array}{l} {\sf K}^+\Sigma^0 \text{ final state has sensitivity to both N*} \\ {\sf and } \Delta^* \text{ resonances } \Rightarrow \text{ isospin filter compared} \\ {\sf to } {\sf K}^+\Lambda \text{ final state} \end{array}$ 

Page 15

#### **CLAS12 L/T from Transferred Polarization**



Daniel S. Carman



## **CLAS12 Recoil** $\Lambda$ **Polarization**



#### **CLAS12 KY Cross Sections**



## JLab Beyond the 12 GeV Era

#### JLab considering upgrade to 22 GeV

High Energy Workshop Series 2022 JLab Upgrade: Science at the <u>luminosity frontier</u>





arXiv: 2306.09360 (in press Eur. Phys. J. A)

Daniel S. Carman

Energy and luminosity increase are needed to explore N\* structure at Q2 > 10 GeV2

Goal to map out the dressed quark mass over the entire range of quark momenta where the dominant part of hadron mass is generated

The electroproduction measurements foreseen at JLab in Hall B after completion of the 12 GeV program:

- Beam energy 22 GeV
- Nearly  $4\pi$  coverage
- High luminosity
- Studies of exclusive reactions



### **Concluding Remarks**

- The study of N\* states is one of the key foundations of the CLAS physics program:
- CLAS has provided a huge amount of data up to  $Q^2 \sim 5 \text{ GeV}^2$  electrocouplings of most N\* states < 1.8 GeV have been extracted from these data for the first time
- With the development of a reaction model the KY channels should be an important ingredient to understand the spectrum and structure of N\* states
- The CLAS12 N\* program will extend these studies for  $0.05 < Q^2 < 12 \text{ GeV}^2$ :
- Analysis of the collected data is underway this talk has focused on the KY channels
- Consistent results from analyses of the electrocouplings determined from KY and  $\pi^+\pi^-p$  for different N\* states will validate fundamental insight into emergence of hadron mass (EHM)
  - complementary to studies of EHM of the structure of pions and kaons

Jefferson Lab

- These data will be important input to address the most challenging problems of the Standard Model on the nature of hadron mass, confinement, and the emergence of N\* states
- Considering a future for JLab beyond 12 GeV era JLab at 22 GeV @ the luminosity frontier



# **CLAS12 Spectrometer Model**



High Threshold Cherenkov Forward Tagger Drift Chambers Low Threshold Cherenkov Ring Imaging Cherenkov Forward Time of Flight EM Calorimeter

|                                | Forward              | Central                    |
|--------------------------------|----------------------|----------------------------|
| Angular<br>coverage            | 5º - 35º             | 35º - 135º                 |
| Momentum<br>resolution         | δ <b>p/p &lt; 1%</b> | δ <b>p/p &lt; 5%</b>       |
| $\theta$ resolution            | 1 mrad               | 5 - 10 mrad                |
| $\boldsymbol{\phi}$ resolution | 1 mrad/sin $\theta$  | $5 \text{ mrad/sin}\theta$ |

Page 22

### **CLAS N\* Program Measurement Overview**

| Reaction             | Observable                                                          | $Q^2(GeV^2)$  | W (GeV)     | Reference              |
|----------------------|---------------------------------------------------------------------|---------------|-------------|------------------------|
|                      |                                                                     | 0.4 - 1.0     | 1.3 - 1.825 | PRC 98, 025203 (2018)  |
|                      | da/dM                                                               | 2.0 - 5.0     | 1.4 - 2.0   | PRC 96, 025209 (2017)  |
| ep> $ep\pi^+\pi^-$   | da/cosa da/da                                                       | 0.25 - 0.60   | 1.34 - 1.56 | PRC 86, 035203 (2012)  |
|                      | uo/ coso, uo/ uu                                                    | 0.2 - 0.6     | 1.3 - 1.57  | PRC 79, 015204 (2009)  |
|                      |                                                                     | 0.5 - 1.5     | 1.4 - 2.1   | PRL 91, 022002 (2003)  |
|                      | dσ/dΩ                                                               | 0.4- 1.0      | 1.0 - 1.8   | PRL 101, 015208 (2020) |
|                      | A <sub>t</sub> , A <sub>et</sub>                                    | 1.0 - 6.0     | 1.1 - 3.0   | PRC 95, 035207 (2017)  |
|                      | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                  | 1.0 - 4.6     | 2.0 - 3.0   | PRC 90, 025205 (2014)  |
|                      | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                  | 2.0 - 4.5     | 1.08 - 1.16 | PRC 87, 045205 (2013)  |
| $e^{-1}$ $e^{-1}$    | d₀/dt                                                               | 1.0 - 4.6     |             | PRL 109, 112001 (2012) |
| eh> ehu              | dσ/dΩ                                                               | 3.0 - 6.0     | 1.1 - 1.4   | PRL 97, 112003 (2006)  |
|                      | A <sub>t</sub> , A <sub>et</sub>                                    | 0.187 - 0.77  | 1.1 - 1.7   | PRC 78, 045204 (2008)  |
|                      | σ <sub>LT'</sub>                                                    | 0.4 - 0.65    | 1.34 - 1.46 | PRC 72, 058202 (2005)  |
|                      | A <sub>t</sub> , A <sub>et</sub>                                    | 0.5 - 1.5     | 1.1 - 1.3   | PRC 68, 035202 (2003)  |
|                      | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                  | 0.4 - 1.8     | 1.1 - 1.4   | PRL 88, 122001 (2002)  |
|                      | A <sub>t</sub> , A <sub>et</sub>                                    | 1.0 - 6.0     | 1.1 - 3.0   | PRC 95, 035206 (2017)  |
|                      | A <sub>t</sub> , A <sub>et</sub>                                    | 0.05 - 5.0    | 1.1 - 2.6   | PRC 94, 05520 (2016)   |
|                      | A <sub>t</sub> , A <sub>et</sub>                                    | 0.0065 - 0.35 | 1.1 - 2.0   | PRC 94, 045207 (2016)  |
|                      | σ <sub>υ</sub> , σ <sub>ιτ</sub> , σ <sub>ττ</sub>                  | 1.8 - 4.5     | 1.6 - 2.0   | PRC 91, 045203 (2015)  |
|                      | dơ/dt                                                               | 1.6 - 4.5     | 2.0 - 3.0   | EPJA 49, 16 (2013)     |
| ep> enπ <sup>+</sup> | σ <sub>LT'</sub>                                                    | 0.4 - 0.65    | 1.1 - 1.3   | PRC 85, 035208 (2012)  |
|                      | σ <sub>υ</sub> , σ <sub>LT</sub> , σ <sub>TT,</sub> σ <sub>LT</sub> | 1.7 - 4.5     | 1.15 - 1.7  | PRC 77, 015208 (2008)  |
|                      | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                  | 0.25 - 0.65   | 1.1 - 1.6   | PRC 73, 025204 (2006)  |
|                      | σ <sub>LT'</sub>                                                    | 0.4 - 0.65    | 1.34 - 1.46 | PRC 72, 058202 (2005)  |
|                      | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                  | 2.12 - 4.16   | 1.11 - 1.15 | PRC 70, 042201 (2004)  |
|                      | A <sub>et</sub>                                                     | 0.35 - 1.5    | 1.12 - 1.72 | PRL 88, 082001 (2002)  |

Jefferson Lab

| Reaction            | Observable                                                           | $Q^2$ (GeV <sup>2</sup> ) | W (GeV)     | Reference             |
|---------------------|----------------------------------------------------------------------|---------------------------|-------------|-----------------------|
| en> epπ¯            | A <sub>t</sub> , A <sub>et</sub>                                     | 0.05 - 5.0                | 1.1 - 2.6   | PRC 94, 05520 (2016)  |
|                     | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                   | 1.6 - 4.6                 | 2.0 - 3.0   | PRC 95, 035202 (2017) |
| <b>ер&gt; ер</b> ղ  | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                   | 0.13 - 3.3                | 1.5 - 2.3   | PRC 76, 015204 (2007) |
|                     | dσ/dΩ                                                                | 0.25 -1.50                | 1.5 - 1.86  | PRL 86, 1702 (2001)   |
|                     | P <sup>0</sup>                                                       | 0.8 - 3.2                 | 1.6 - 2.7   | PRC 90, 035202 (2014) |
|                     | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub> , σ <sub>LT</sub> | 1.4 - 3.9                 | 1.6 - 2.6   | PRC 87, 025204 (2013) |
|                     | P' <sub>x</sub> , P' <sub>z</sub>                                    | 0.7 - 5.4                 | 1.6 - 2.6   | PRC 79, 065205 (2009) |
| ер> еК'У            | σ <sub>LT'</sub>                                                     | 0.65, 1.0                 | 1.6 - 2.05  | PRC 77, 065208 (2008) |
|                     | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT,</sub> σ <sub>LT'</sub> | 0.5 - 2.8                 | 1.6 - 2.4   | PRC 75, 045203 (2007) |
|                     | P' <sub>x</sub> , P' <sub>z</sub>                                    | 0.3 - 1.5                 | 1.6 - 2.15  | PRL 90, 131804 (2003) |
| <b>ep&gt; ep</b> ω  | σ <sub>U</sub> , σ <sub>LT</sub> , σ <sub>TT</sub>                   | 1.725 - 4.85              | 1.85 - 2.77 | EPJA 24, 445 (2005)   |
|                     | συ                                                                   | 1.6 - 5.6                 | 1.8 - 2.8   | EPJA 39, 5 (2009)     |
| <b>ep&gt; ep</b> ρ° | σ <sub>L</sub> /σ <sub>T</sub>                                       | 1.5 - 3.0                 | 1.85 - 2.2  | PLB 605, 256 (2005)   |
|                     | do/dt                                                                | 1.4 - 3.8                 | 2.0 - 3.0   | PRC 78, 025210 (2008) |
| ep> epø             | dơ/dt'                                                               | 0.7 - 2.2                 | 2.0 - 2.6   | PRC 63, 059901 (2001) |

CLAS: 1997 - 2012





## Hunting for Glue in Excited Baryons

#### Can glue be a structural component of excited baryon states?



The signatures for hybrid baryons include:

- Extra resonances with  $J^{\pi}=1/2^+$ ,  $3/2^+$  in mass range 2.0-2.5 GeV and decays into N $\pi\pi$  or KY final states
- Drop of  $A_{1/2}(Q^2)$  and  $A_{3/2}(Q^2)$  faster than for ordinary 3q states due to extra glue-component in valence structure
- Suppressed  $S_{1/2}(Q^2)$  relative to  $A_{1/2}(Q^2)$  transverse amplitude

Jefferson Lab



Quark model predictions on the  $Q^2$  evolution of the electrocouplings are necessary for hybrid identification

Z.P. Li, V. Burkert, Z.J Li, PRD 46, 70 (1992)

N\*2024 - Jun. 17 - 21, 2024

Page 24

#### **Data Results vs. Theory Expectations**



Description of pion, nucleon elastic FF and  $\Delta(1232)3/2^+$ , N(1440)1/2<sup>+,</sup>  $\Delta(1600)3/2^+$  electrocouplings achieved <u>with</u> <u>the same dressed quark mass function</u>



dressed guark mass and its role in describing emergence

N\*2024 - Jun. 17 - 21, 2024

of hadron mass

Daniel S. Carman

Jefferson Lab