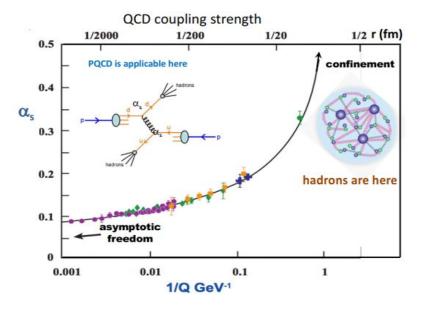
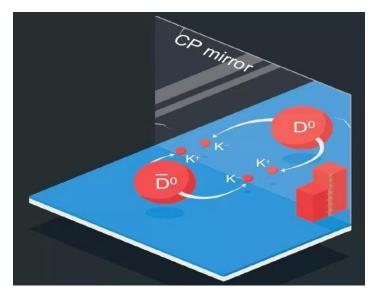
Experimental program for Super Tau-Charm Facility

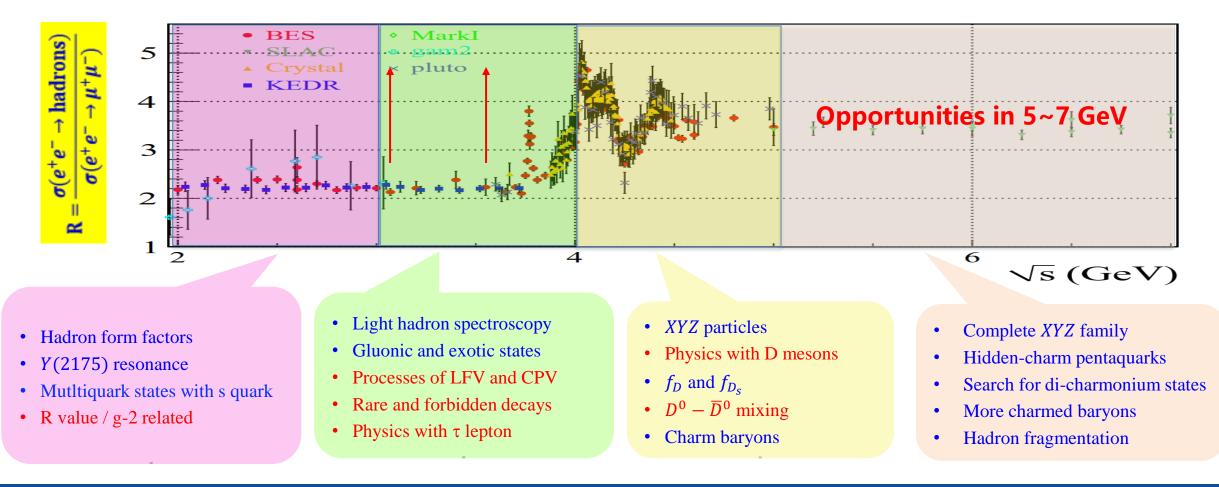

Xiaorong Zhou (On behalf of STCF working group) University of Science and Technology of China

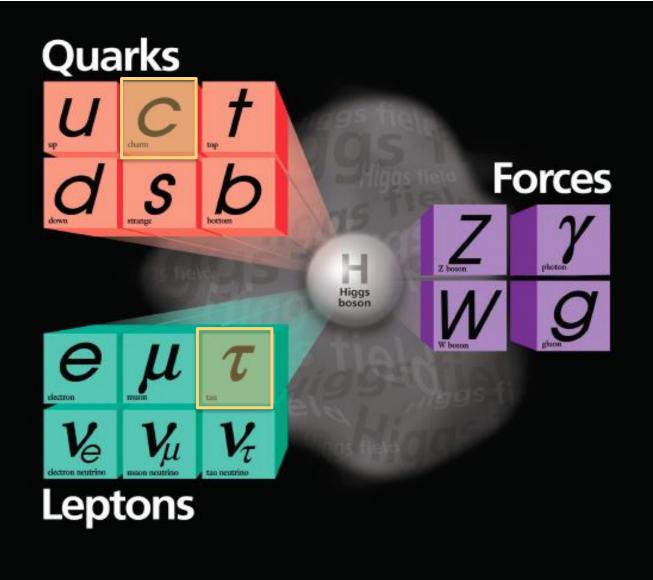

NSTAR2024 17/6/2024-21/6/2024, York

Challenges of the SM model

The SM of particle physics is a well-tested theoretical framework However, the SM has a number of unresolved questions that require further investigations:

- Confinement: formation of colorless bound states —— "hadrons"
- Matter-antimatter asymmetry of the Universe; dark matter, numbers of flavors, etc.

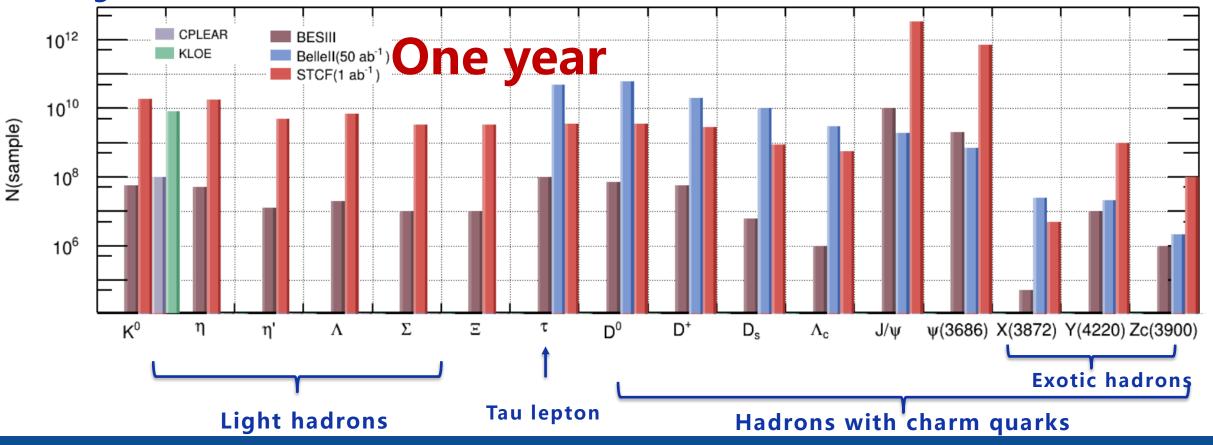



Masses			Couplings				
Parameter Value Metho		Method	Parameter	Value	Method		
m _u	1.9 MeV	Lattice	α	0.0073	non-collider + collider		
m _d	4.4 MeV 87 MeV	Lattice Lattice	G _F	1.17x10 ⁻⁵	Non-collider		
m _c	1.3 MeV	Collider	α _s	0.12	Lattice + collider	r	
m _b	4.24 MeV	Collider	Flavouranc	l CP viola	tion		
m _t	173 GeV	Collider	Parameter	Value	Method		
m _e	511 keV	Non-collider	θ_{12} (CKM)	13.1°	Collider		
m_{μ}	106 MeV	Non-collider	θ_{23} (CKM)	2.4°	Collider		
m _τ	1.78 GeV	Collider	θ13 (CKM)	0.2°	Collider		
mz	91.2 GeV	Collider	δ(CKM-CPV)		Collider		
m _H	125 GeV	Collider	θ (strong CP)	~0	Non-collider		

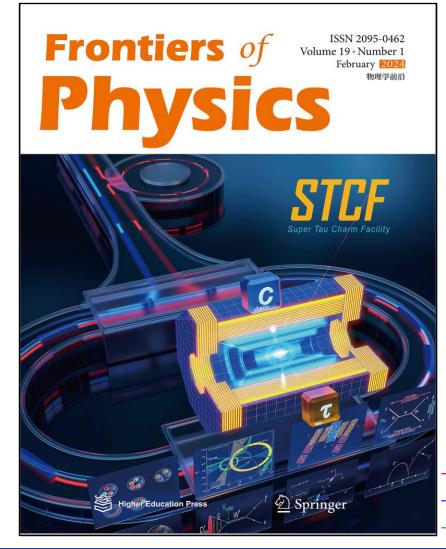
Rich Physics in the Tau-Charm Energy Region

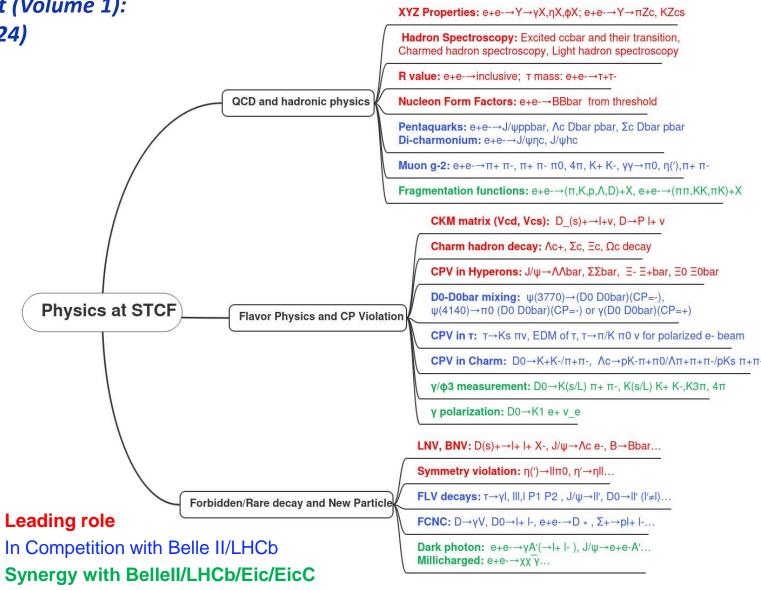
 The tau-charm energy region covers a unique transition region between perturbative and non-perturbative QCD, with unique and rich physics programs

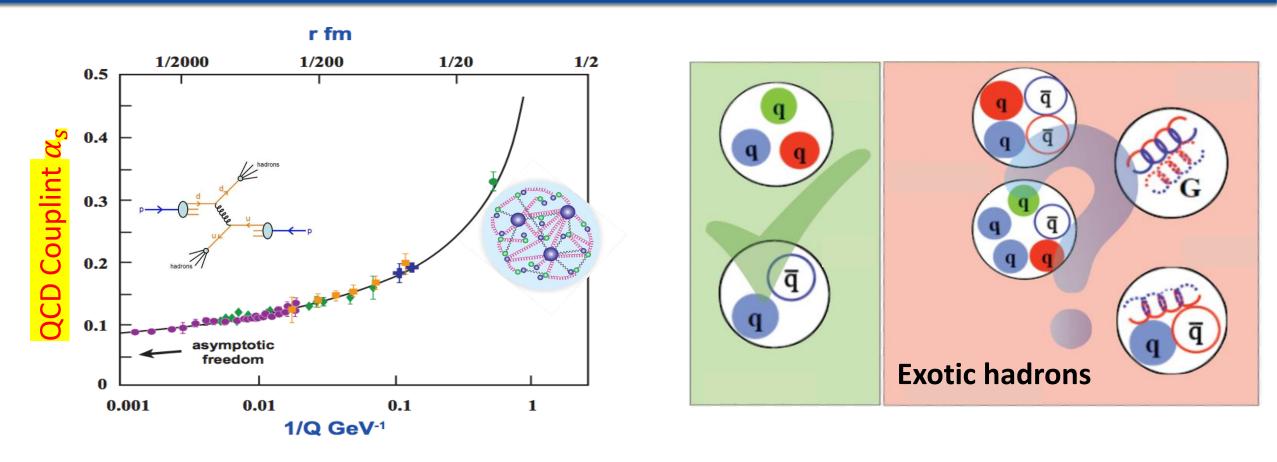
The Super Tau Charm Facility



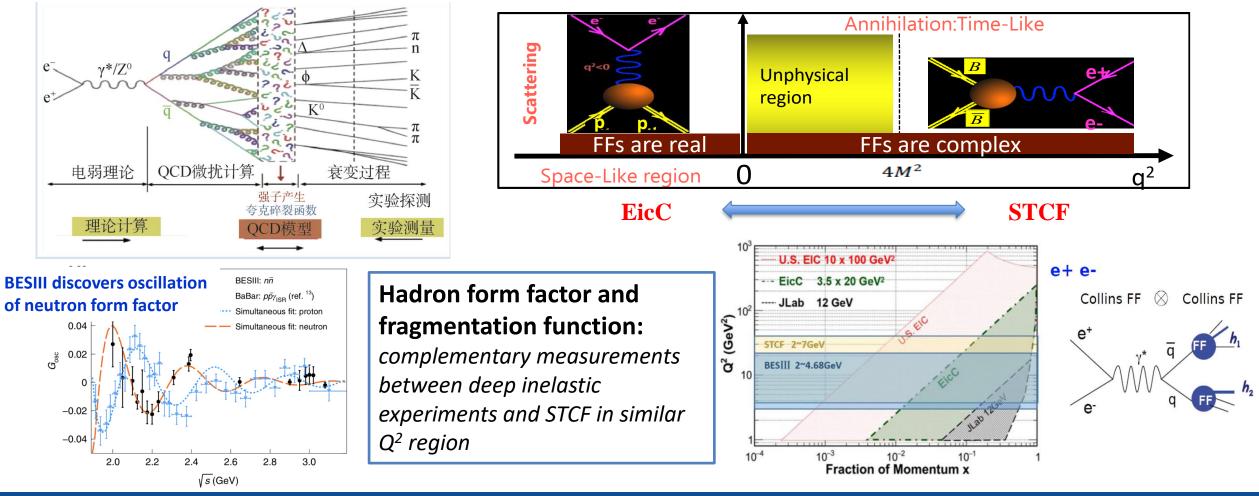
Energy range E_{cm} = 2-7 GeV Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV Potential to increase luminosity & realize beam polarization Total cost: 4.5B RMB 1 ab⁻¹ data expected per year

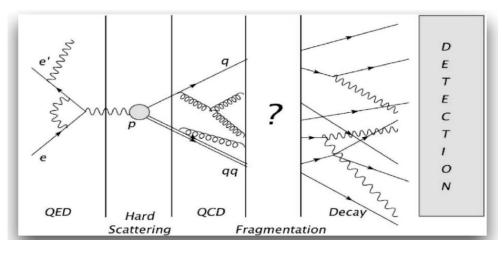

A Super Particle Factory


- Rich resonances, large production cross-sections of charmonium, threshold production of hadron and tau pairs
- Huge numbers of exotic hadrons, including multi-quarks & states with gluonic excitations


Physics Program at STCF

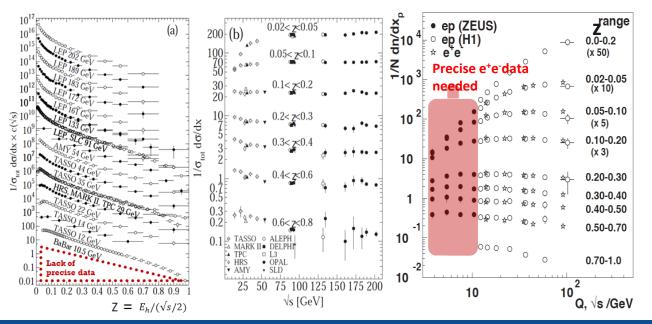
M. Achasov, et al., STCF conceptual design report (Volume 1): Physics & detector, Front. Phys. 19(1), 14701 (2024)


Key Question: Inner structure of hadrons

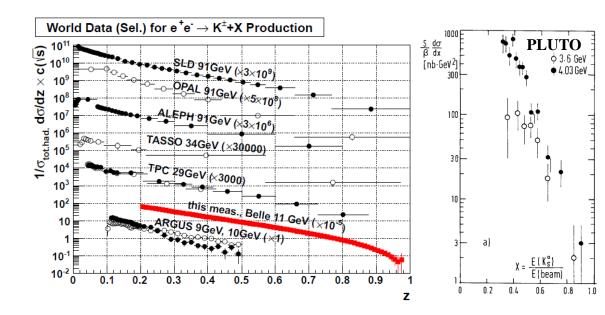

Hadron structure/spectroscopy is a crucial way to explore the QCD theory and confinement

QCD and hadron structure

- Remaining big challenge in SM: non-perturbative effect in QCD theory
- The largest uncertainty is from the low-energy non-perturbative energy region
- STCF fine (ISR) scan from 0.6–7 GeV to study production of hadrons inclusively and exclusively

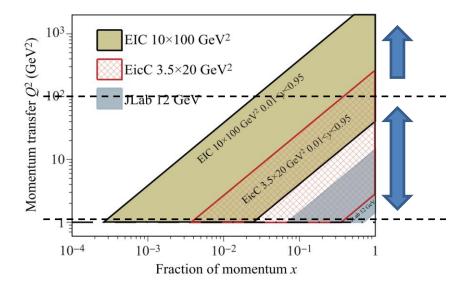


Fragmentation functions

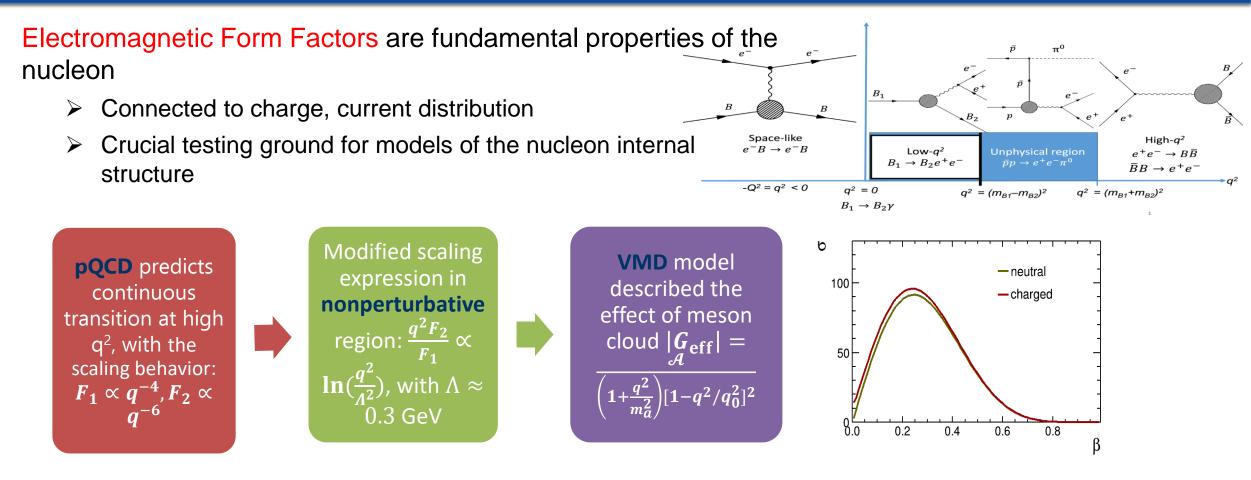


Fragmentation function $D_q^h(z)$: probability that hadron *h* is found in the debris of a hadron carrying a fraction $z=2E_h/\sqrt{s}$ of parton's momentum.

World data: Pion

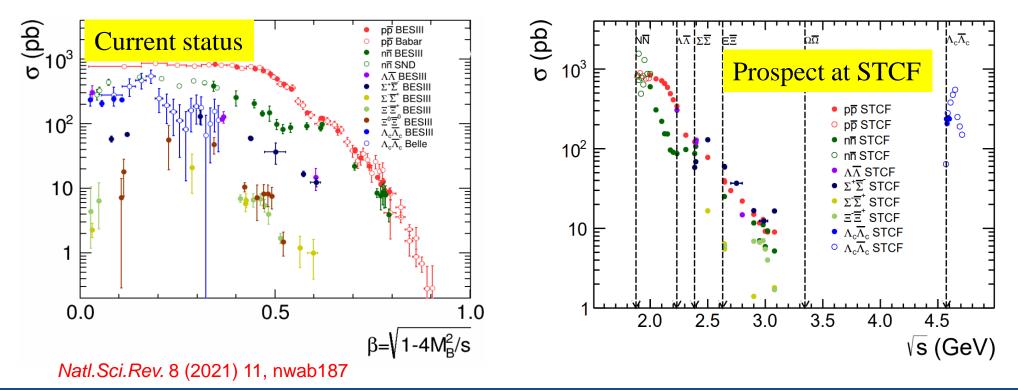


World data: Kaon

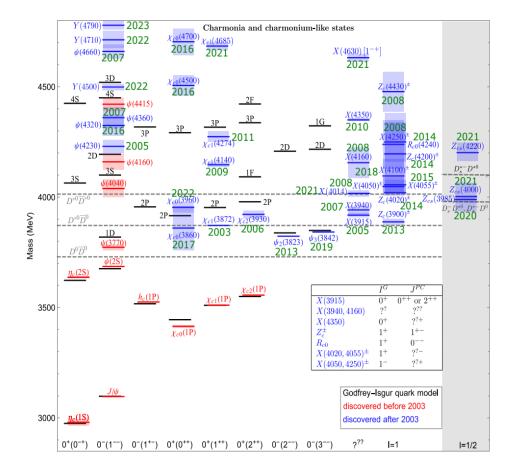

Fragmentation functions at STCF

- e⁺e⁻ collider experiment provides the cleanest input for fragmentation functions (FFs) fitting. To accurately extract Parton Distribution Functions (PDFs), more precise FFs are required.
- Two types of FFs can be studied at an unpolarized e^+e^- collider: *D* and H_1^{\perp} . Multi-dimensional binning of the measurements can be provided.
- With polarized electron beam, more FFs can be studied. There is a task-force group working on it.

\mathbf{L}	ead	ding Quark TMI	DFFs \longrightarrow Hadro	on Spin 🔶 Quark Spin									
		Quark Polarization											
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)									
Unpolarized	Hadrons	$D_1 = \bigcirc$ Unpolarized		$H_1^{\perp} = \underbrace{\uparrow}_{\text{Collins}} - \underbrace{\downarrow}_{\text{Collins}}$									
adrons	L		$G_1 = \underbrace{\bullet }_{\text{Helicity}} - \underbrace{\bullet }_{\text{Helicity}}$	$H_{1L}^{\perp} = {} - {} +$									
Polarized Hadrons	т	$D_{1T}^{\perp} = \underbrace{\bullet}^{\dagger} - \underbrace{\bullet}_{\bullet}$ Polarizing FF	$G_{1T}^{\perp} = \stackrel{\dagger}{\underbrace{\bullet}} - \stackrel{\dagger}{\underbrace{\bullet}}$	$H_{1} = \underbrace{\stackrel{\dagger}{\blacktriangleright} - \stackrel{\dagger}{\uparrow}}_{\text{Transversity}} H_{1T}^{\perp} = \underbrace{\stackrel{\dagger}{\blacktriangleright} - \stackrel{\dagger}{\checkmark}}_{\text{Transversity}}$									


Electromagnetic form factors (EMFFs)

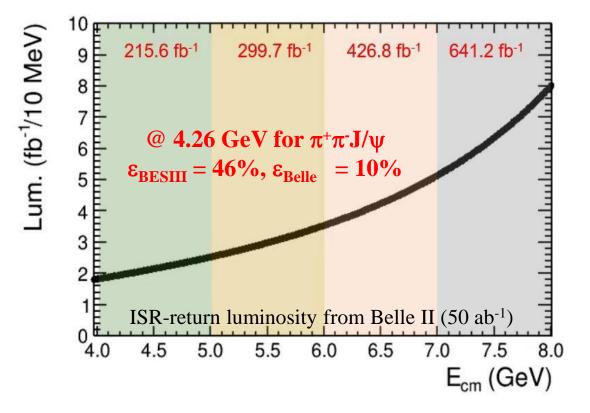
- Various theoretical models describe TLFF in non-perturbative region: ChEFT, VMD, relativistic CQM, parton model, pQCD etc.
- Dispersion theoretical analysis, provide a coherent framework for the joint interpretation of SL and TL EMFFs over the entire physical range of q².


Prospect of TL-EMFF at STCF

- Remaining questions of TL-EMFFs:
 - Step-like behavior of production cross section, indication of near-threshold singularity.
 - Damped oscillation distribution after subtracting modified dipole in effective FF.
 - Damped oscillation distribution of $|G_E/G_M|$ ratio.
 - Evolution of the phase between G_E and G_M.
 - The asymptotic behavior of TL-EMFFs

Charmonium (like) States

• The overpopulated charmonium spectrum is a unique territory to study exotic hadrons



Existing XYZ puzzles:

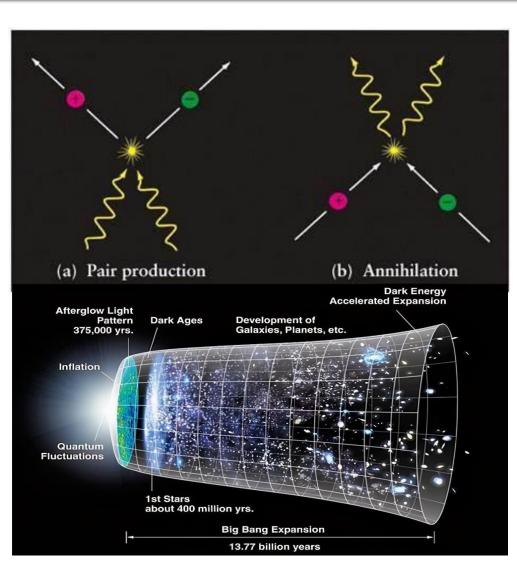
- Masses away from quark model predictions, e.g. X(3872), Y(4230) and Y(4260)
- Many seen in final states of charmonium, instead of open-cham channels (Not all)
- Charged structures like Z_{c(s)} must contain at least four quarks. Their connections to Y and X are of interest
- An overall classification is still lacking

Charmonium(like) States at STCF

- STCF provides unique fine scan of the exotic hadron states
- 1 ab⁻¹/year luminosity at STCF can produce: 1B Y(4230), 100M Z_c(3900) and 5M X(3872)

More opportunities at STCF:

- Energy dependent structures of Z_{c(s)}
- Structures in more channels, with larger production rates above 5 GeV
- Charged hadron final states of the whole energy range
- Hybrid candidates
- Missing charmonium states and their transitions


Light Hadron Opportunity at STCF

High Statistical Data : 1 ab⁻¹/year

CME (GeV)	Lumi (ab ⁻¹)	Samples	Remarks							
3.097	1	J/ψ	3400	3.4×10^{12}						
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}						
		ψ(3686)	640	6.4×10^{11}						
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}						
		$\psi(3676) - \tau^+ \tau^-$	012	2.0×10^{9}						
		JIN	3.0	3.6×10^{9}						
2 770		$\psi(3686)$	~10 ¹	$1 2.8 \times 10^9$	0					
3.770	1	T $D^{+}\bar{D}^{-}$		7.9×10^{8}	Single tag					
		22	2.0	5.5×10^{8}	Single tag					
		$\tau^+\tau^-$	2.9	2.9×10^9	CD					
		$D^{*0}\bar{D}^0 + c.c$	4.0	1.4×10^9	$CP_{D^0\bar{D}^0} = +$					
4.009	1	$D^{*0}\overline{D}^0 + c.c$	4.0	2.6×10^9	$CP_{D^0\bar{D}^0} = -$					
		$D_s^+ D_s^-$	0.20	2.0×10^{8}						
		$\tau^+\tau^-$	3.5	3.5×10^{9}						
		$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$	0.90	9.0×10^{8}						
4.180	1	$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$		1.3×10^{8}	Single tag					
		$\tau^+\tau^-$	3.6	3.6×10^{9}						
		$J/\psi \pi^+\pi^-$	0.085	8.5×10^{7}						
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}						
		$\gamma X(3872)$								
4.360	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}						
4.500	1	$\tau^+\tau^-$	3.5	3.5×10^{9}						
4.420	1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}						
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}						
4.630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}						
4.050	1	$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}						
	1	$\Lambda_c ar{\Lambda}_c$		6.4×10^{7}	Single tag					
		$\tau^+ \tau^-$	3.4	3.4×10^{9}						
4.0-7.0	3	300-point scan with 10 MeV steps, 1 fb ⁻¹ /point								
> 5	2–7	Several ab ⁻¹ of hig	gh-energy da	ta, details depende	nt on scan results					

- Large number of J/ψ and $\psi(3686)$ events for exploring light hadron physics
- Traces of glueballs and hybrid states may be found in more ways
- Search for more production and decay modes of hybrid candidates and glueball candidates
- Electromagnetic couplings to glueball candidates:
 - radiative transition rates
 - > transition form factors in the time-like region
 - \succ couplings to $\gamma\gamma$

Key Question: matter-antimatter asymmetry

The very fact that we exist in a matter-

dominated universe. Sakharov Condition (1967)

- 1. Baryon number *B* violation
- 2. *C* and *CP* symmetry violation
- 3. Interactions out of thermal equilibrium

Andrei Sakharov (1921-1989)

Huge numbers of K, τ , hyperons, D will be produced at STCF. With unprecedented high statistics, studies of the particles and their decays can reveal new information

Polarization of A Hyperons and CP Test

- Updated results based on 10B J/ψ events: ~0.42M signals
- **Decay asymmetries with best precisions ever**

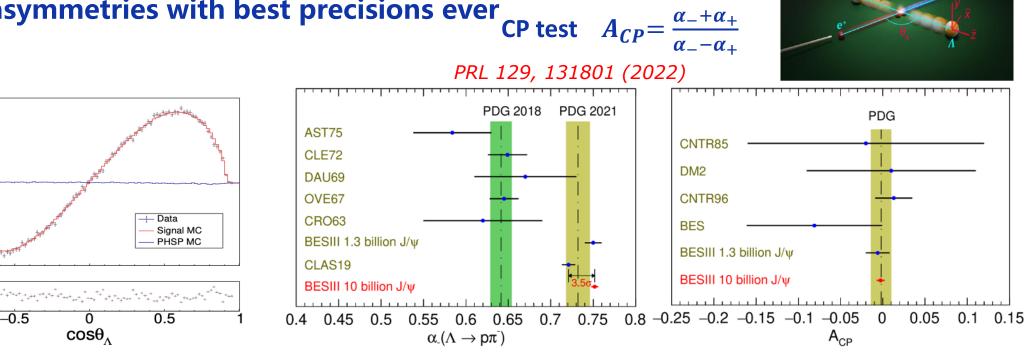
0.2

0.15⊨

0.1E

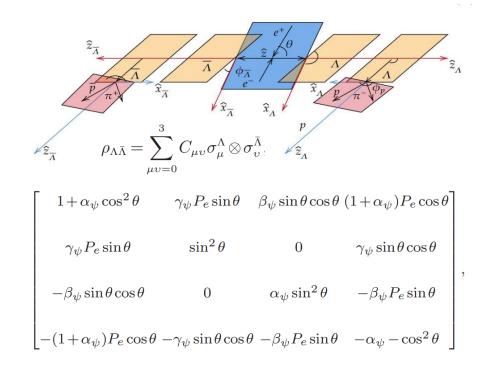
0.05

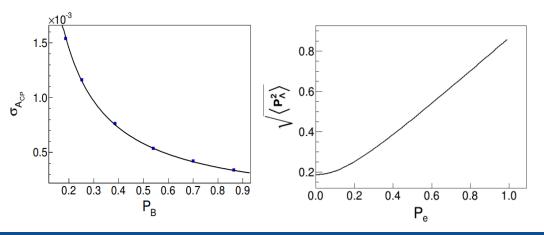
-0.05

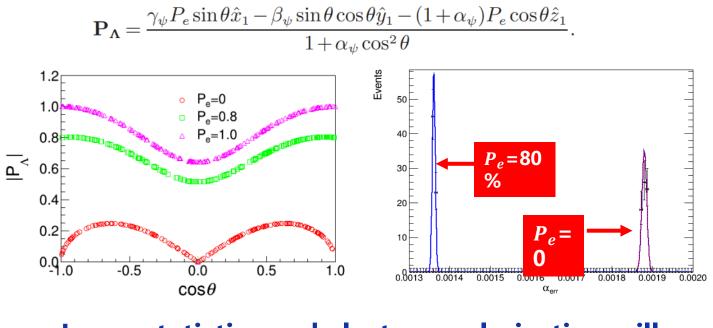

-0.1

-0.15⊨

-5


 $\mu(\cos\theta_{\Lambda})$


×



~7 σ upward shift from all	PDG 2018 ***	Previous results **	This Work*	Par.
•	0.469 ± 0.027	$0.461 \pm 0.006 \pm 0.007$	$0.4748 \pm 0.0022 \pm 0.0024$	$\alpha_{J/\psi}$
previous measurements	-	$0.740 \pm 0.010 \pm 0.009$	$0.7521 \pm 0.0042 \pm 0.0080$	$\Delta \Phi$
	0.642 ± 0.013	$0.750 \pm 0.009 \pm 0.004$	$0.7519 \pm 0.0036 \pm 0.0019$	lpha
0.5% level sensitivity for CPV tes	-0.71 ± 0.08	$-0.758 \pm 0.010 \pm 0.007$	$-0.7559 \pm 0.0036 \pm 0.0029$	$lpha_+$
	-	$0.006 \pm 0.012 \pm 0.007$	$-0.0025 \pm 0.0046 \pm 0.0011$	A_{CP}
SM prediction:10 ⁻⁴ ~10 ⁻⁵	-	$0.754 \pm 0.003 \pm 0.002$	$0.7542 \pm 0.0010 \pm 0.0020$	$\alpha_{\pm,avg.}$

CP Test in *A* Decay with Polarized Electron Beam

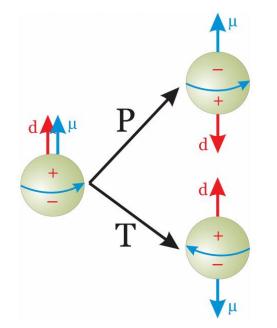
- Large statistics and electron polarization will improve the sensitivity of CPV significantly
- The sensitivity of CPV follows :

=

$$\sigma_{A_{CP}} \approx \sqrt{\frac{3}{2}} \frac{1}{\alpha_1 \sqrt{N_{sig}} \sqrt{\langle P_B^2 \rangle}}$$

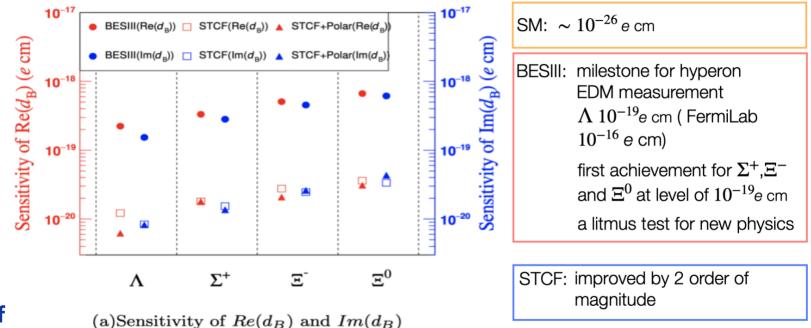
$$\xrightarrow{1\times10^9} \Lambda \overline{\Lambda}, \quad \langle P_B^2 \rangle = 0.1$$

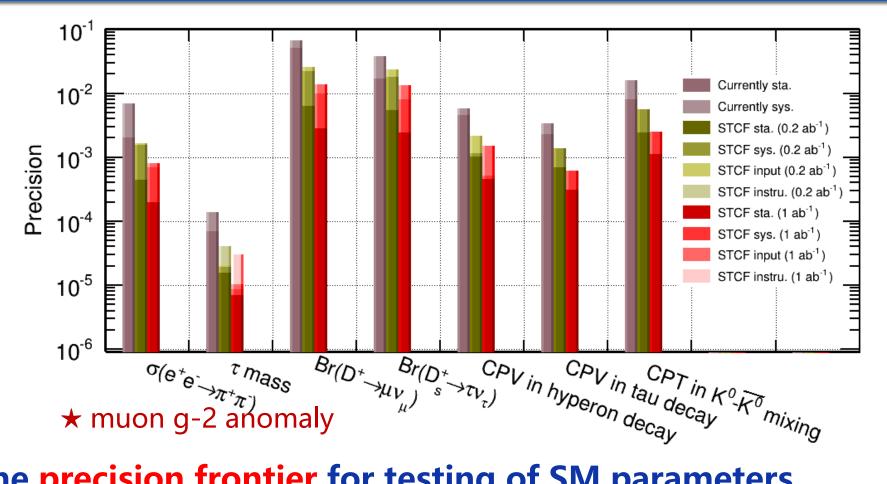
$$\longrightarrow \sigma_{A_{CP}} \sim 1.4 \times 10^{-4}$$


$$\xrightarrow{1\times10^9 \Lambda \overline{\Lambda}, \langle P_B^2 \rangle = 0.8} \sigma_{A_{CP}} \sim 0.5 \times 10^{-5}$$

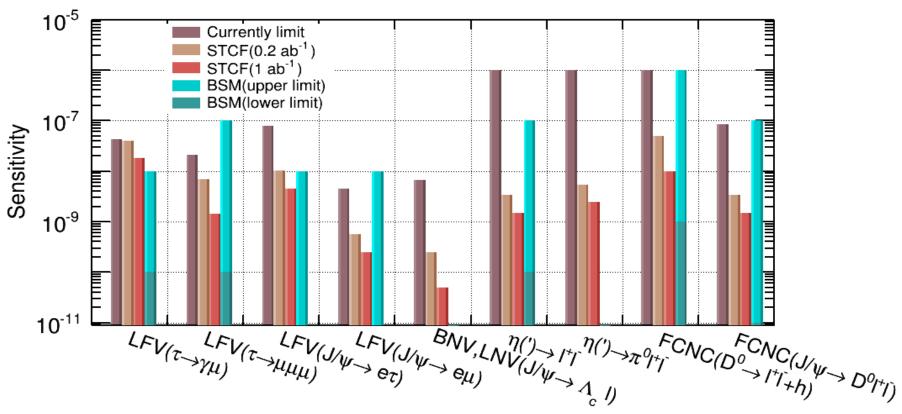
Searching for Hyperon EDM

Detailed dynamics in J/ψ decay to hyperon pair have been studied:


µ: magnetic dipole momentd: electric dipole moment


Non-zero EDM will violate P and Tsymmetry: T violation $\leftrightarrow CP$ violation, if CPT holds.

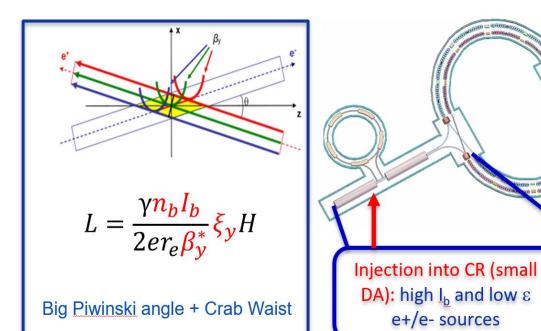
Systematic measurement of the EDMs of the hyperon family!


X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

Sensitivity of Precision Measurements

- The precision frontier for testing of SM parameters
- > Uncertainties from reducible (selection-based), and irreducible sources (theoretical input, instrument effect)

Sensitivity of Rare or Forbidden Decays

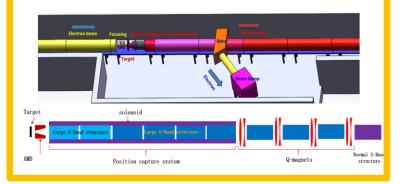

- Sensitivity of various rare/forbidden decays measurements at STCF are compared with various BSM models
- The excellent precision at STCF can be used to distinguish between various BSM models

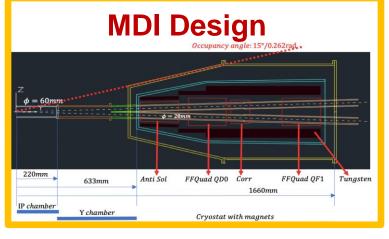
Challenges of STCF Accelerator

Goal: ultra-high luminosity in tau charm energy region (2-7 GeV), high-quality beam, stable operation Characteristics: extremely small bunch size, high current intensity, strong nonlinearity and collective effect

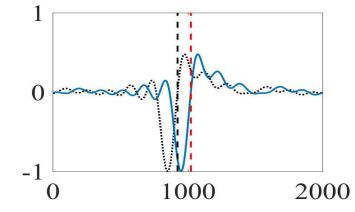
Preliminary machine parameters

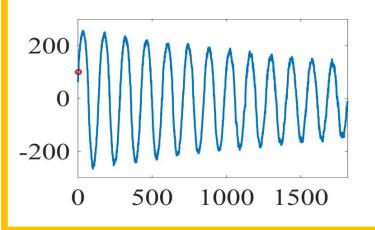
	Parameters	Units	STCF (April. 2024)			
	Optimal beam energy, <i>E</i>	GeV	2			
	Circumference, C	m	848.4			
	Crossing angle, 2q	mrad	60			
	Horizontal emittance, e x	nm	6.919			
٦	Coupling, k		0.50%			
	Vertical emittance, e y	pm	34.595			
	Ver. beta function at IP, β_y	mm	0.6			
	Ver. beam size at IP, s y	mm	0.144			
	Beam current, <i>I</i>	А	2			
1	Single-bunch charge	nC	8.04			
J	SR power per beam, P sr	MW	0.572			
	Bunch length, s z	mm	8.43			
	Ver. beam-beam parameter, ξ γ		0.094			
J	Luminosity, L	10 ³⁵ cm ⁻² s ⁻¹	1.19			


Collider Ring and IR AP design: IP beam size (Y) nm scale, Crab-Waist, nonlinear compensation extremely difficult

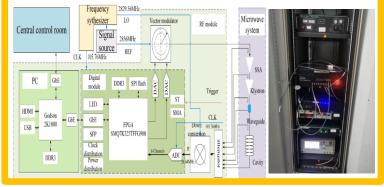

> IR Technologies: SC magnets, MDI

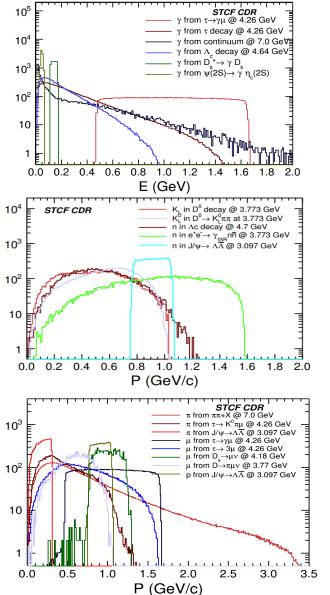
Other key technologies: Ring RF, beam <u>instrum</u>. and control, beam injection...

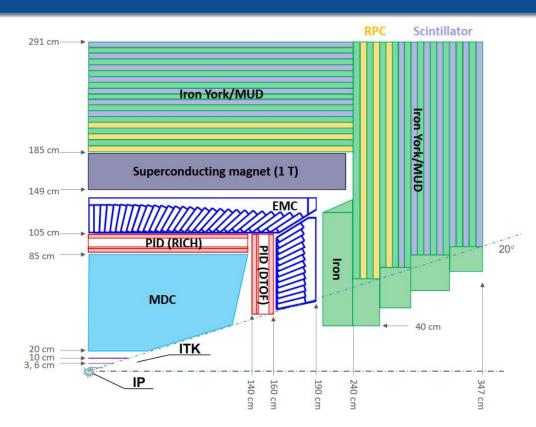

STCF Accelerator R&D


Positron Source Design

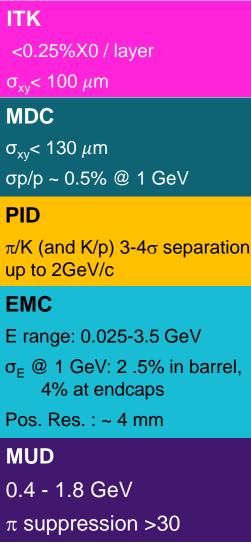
Bunch-by-Bunch 3D position measurement

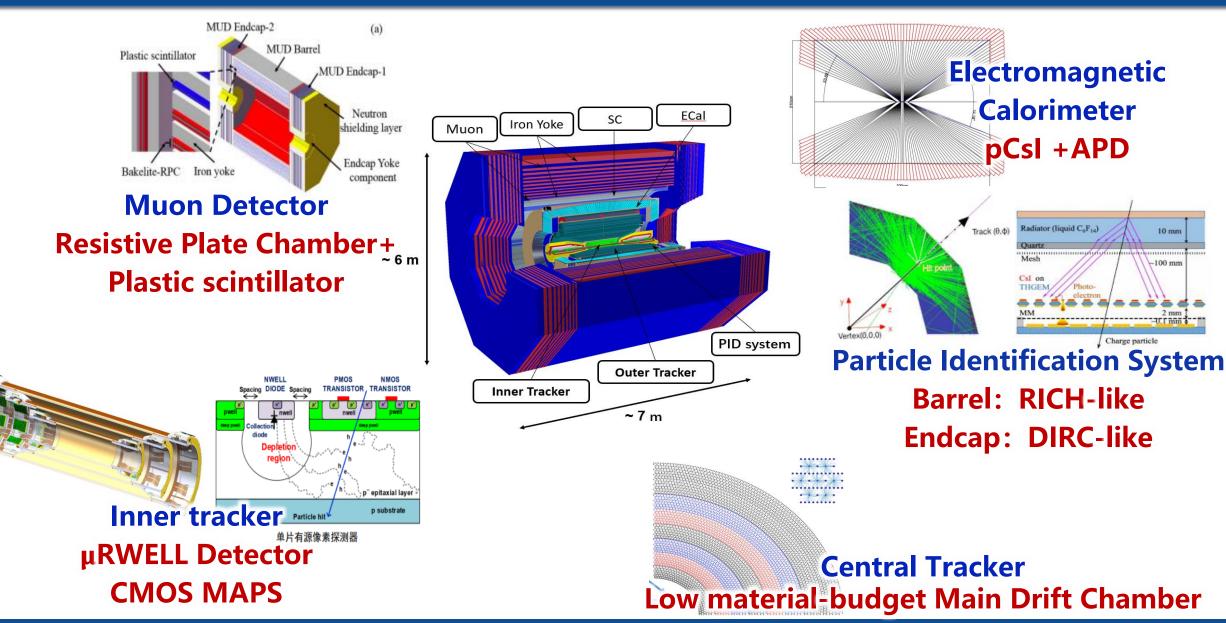



Photocathode RF gun

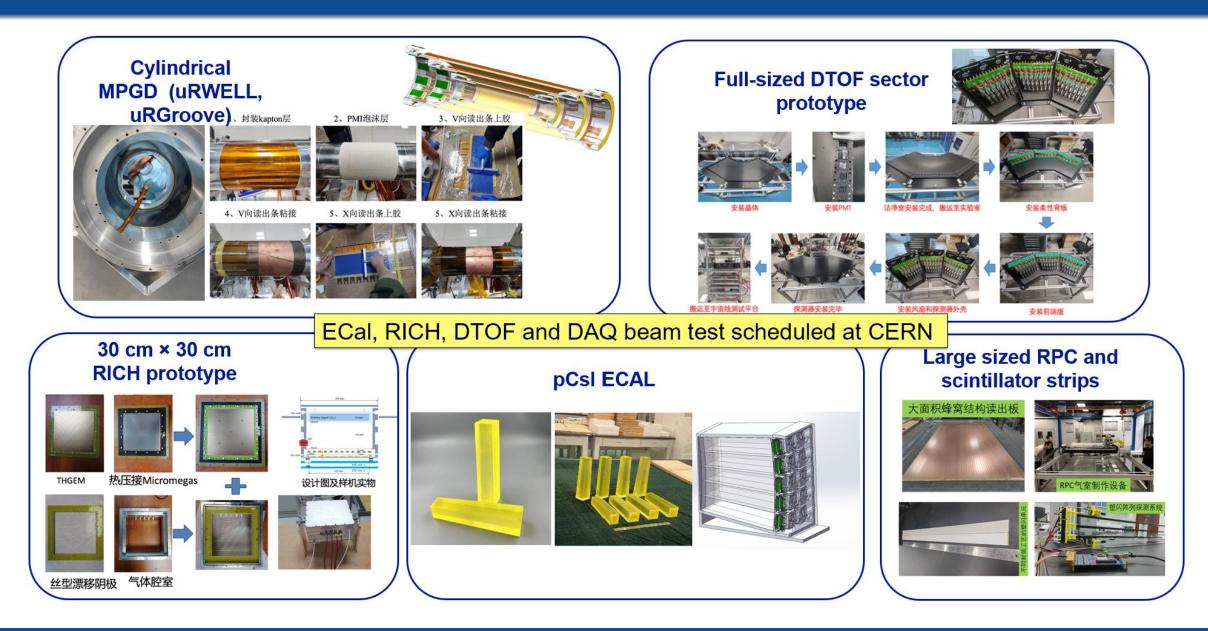


Low level RF system


STCF detector

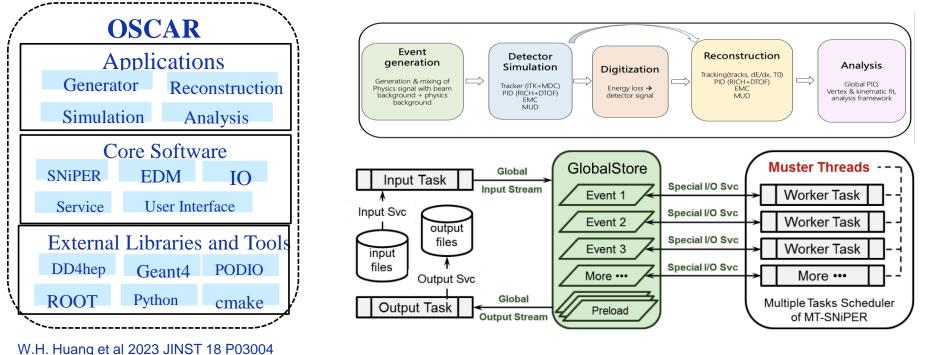


Requirement:


- High detection efficiency and good resolution
- Superior PID ability
 - Tolerance to high rate/background environment

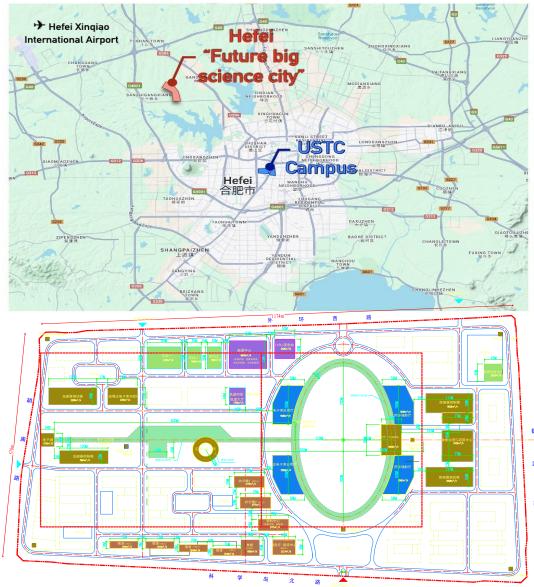
STCF Detector Conceptual Design

STCF Detector R&D — **Detector Prototypes**



Offline Software

□ Offline Software System of Super Tau-Charm Facility (OSCAR)


- External Interface+ Framework +Offline
- **SNiPER framework** provides common functionalities for whole data processing

□ Offline including Generator, Simulation, Calibration, Reconstruction and Analysis

□ Full simulation under OSCAR is undergoing: $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, $\Lambda \overline{\Lambda}$, $\pi \pi/K\pi/KK + X$, $D^0\overline{D}^0$...

Site of STCF : Hefei

- Funded R&D: 0.4 Billion CNY funded by the Anhui government
- Construction budget: 4.5 Billion CNY

Tentative Project Schedule for STCF

	2018 2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032-2047
CDR														
Key Technology R&D & TDR														
Construction														
Operation														15 years

Summary

- STCF covers a unique transition region between perturbative and nonperturbative QCD, providing precision measurements aimed at answering key questions in QCD and search for new physics BSM
- STCF will utilized and challenge key technologies accelerator, particle detection and data processing, computing and networking
- Anhui province and USTC have committed support, aiming for applying construction approval during the 15th five-year plan (2026-2030)
- International collaboration is crucial, with ongoing efforts to expand collaborations both domestically and internationally

FTCF2024-Guangzhou

The 6th International Workshop on Future Tau-Charm Facilities (**FTCF2024-Guangzhou**) will be hosted by Sun Yat-sen University (SYSU) in Guangzhou, China, **Nov. 17-21, 2024**.

https://indico.pnp.ustc.edu.cn/event/1948/

Thanks for your listening!