Recent Results in Pentaquark Studies at LHCb

Gary Robertson On Behalf of the LHCb Collaboration NSTAR 2024

19th June 2024

University of Glasgow gary.robertson@cern.ch

- Search for pentaquarks in wide range of charm hadron combinations (32 in total). - Accepted by PRD (arXiv:2404.07131).
- Observation of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ and $\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}$ Decays. - Published in EPJ C 84 (2024) 575.
- First observation of Λ⁰_b → Σ^{(*)++}_c D^{(*)-}K⁻ decays and measurement of their relative branching fractions. -Accepted by PRD Lett. (arXiv:2404.19510)
- Prospects in Run 3 and beyond.

G. Robertson

19th June 2024

1/31

Motivation

Motivation

- Exotic hadrons are ones which have quark content that is not qq or qqq.
- Proposed by Gell–Mann's (Phys. Lett.(8) 3 (1964)) and Zweig (CDS (1964)).
- First observation of a pentaquark was by LHCb in 2015 in J/ψp (ccuud) mass spectrum.

(PRL (115), 072001 (2015))

G. Robertson

PRL (122), 222001 (2019)

19th June 2024

2/31

Recent Results in Pentaquark Studies at LHCb

Motivation

 First pentaquark with strangeness in J/ψA mass spectrum (PRL (131) 031901).

G. Robertson

- ATLAS sees states consistent with LHCb pentaquarks (ATLAS-CONF-2019-048).
- Unable to rule out null hypothesis.

19th June 2024

Recent Results in Pentaquark Studies at LHCb

3/31

Pentaquark Structure

Motivation

What is the structure of the observed pentaquark states?

Recent Results in Pentaguark Studies at LHCb

Compact model:

- Fair understanding of existing spectrum.
- But doesn't explain proximity to threshold.

Molecular model:

19th June 2024

- Proximity to threshold is natural.
- States are mostly unrelated to each other.
- States would be an order of 10x larger than compact counterparts.

4/31

Possibly charmonium-like states?

G. Robertson

Are they even real states?

Glasgow

Motivation

G. Robertson

 Triangle singularities can also potentially explain apparent peaks.

19th June 2024

5/31

Recent Results in Pentaguark Studies at LHCb

Common Denominator?

Motivation

- The three analyses focused on are sensitive to pentaquark contributions to their open-charm hadron final states.
- Prompt and non-prompt production.
- Predicted by many theorists, but not yet observed.
- Important test of our theories on pentaquark production mechanisms.

G. Robertson

19th June 2024

6/31

Why LHCb?

Motivation

- Largest heavy–flavour dataset collected – 3 + 6 fb⁻¹ with Run 1+2.
- Large production cross-sections of *b* and *c* hadrons.
- Specialised trigger for hadronic decays.

G. Robertson

- Two Ring Imaging CHerenkov (RICH) detectors, calorimeters and muon stations allow excellent PID.
- VErtex LOcator (VELO) and tracking stations allow precise tracking of particles.

7/31

19th June 2024

Recent Results in Pentaquark Studies at LHCb

Search for Prompt Production of Pentaquarks in Open-Charm Hadron Final States

7/31

- Observed pentaquarks are close to mass threshold of some charm baryon-meson combinations.
 PRD (101), 074030 (2020)
- Structure is not clear could they be molecules (PRD (101), 054037 (2020)) or are they compact (EPJ A (56), 142 (2020)) states?
- Goal was to search for pentaquark decays into a range of combinations of open-charm Σ_c or Λ⁺_c baryons with D mesons.
- Since no signal was seen, upper limits (ULs) are instead set in each mode (relative to the Λ⁺_c → pK⁻π⁺ normalisation channel).

$$\mathsf{R} = \frac{\mathsf{N}_{\mathsf{P}}}{\mathsf{N}_{\Lambda_{c}^{+}}} \times \frac{\epsilon_{\Lambda_{c}^{+}}}{\epsilon_{\mathsf{P}}}$$

Recent Results in Pentaguark Studies at LHCb

19th June 2024

8/31

ULs set as a function of mass.

G. Robertson

Signal Modes

arXiv:2404.07131

Recent Results in Pentaguark Studies at LHCb

- Range of cc (Λ⁺_cD⁰, Σ_cD⁺...) cc̄ (Λ⁺_cD⁻, Σ_cD̄⁰) modes, as well as range of total charge.
- ULs are not set in all modes some statistical limitations.

G. Robertson

9/31

19th June 2024

Signal Modes

arXiv:2404.07131

- 10 modes are too statistically limited to set UL.
- Leaves 32.
- *N.B.* Excited doubly charmed baryons could also appear in these spectra.

• 2016 - 2018 data set (5.7 fb⁻¹).

G. Robertson

- Baryons/mesons are built in high level trigger selection, and optimised individually. Optimisation then applied in signal combination.
- Simulation samples used to optimise selection and train multivariate algorithms.

Recent Results in Pentaquark Studies at LHCb

19th June 2024 10/31

Fitting Procedure

19th June 2024 10/31

Fit Model

- Fit is done simultaneously to open-charm signal and sideband samples.
- Σ_c^(*)D and Λ⁺_c πD modes use threshold function for background.
- $\Lambda_c^+ D$ modes use Chebyshev polynomial summed with log normal distribution for background.

- Range of signal models Gaussian, 5, 10, 15 MeV/c²
 Voigtians.
- Gives some sensitivity to a state with broader width.

G. Robertson

Recent Results in Pentaquark Studies at LHCb

19th June 2024 11/31

Normalisation Channel

Recent Results in Pentaquark Studies at LHCb

19th June 2024 11/31

Normalisation Channel

- Λ⁺_c → pK⁻π⁺ decay is modelled using sum of Gaussian with Crystal Ball function.
- 1st order Chebyshev polynomial for combinatorial background.

Recent Results in Pentaguark Studies at LHCb

19th June 2024 12/31

• Yield of 789, $200 \pm 1, 300.$

G. Robertson

lasgow

Scanning Method

- In 4 MeV/ c^2 steps from threshold to +600 MeV/ c^2 above.
- Fit simultaneously to signal and sideband regions, split by trigger categories, find **local** *p*-value and UL of fit.
- UL smeared by systematic Gaussian.
- Local *p*-value is corrected for look elsewhere effect.

Results

arXiv:2404.07131

👱 of Glasgow

G. Robertson

Decov Mode	Width	Lowest	<i>p</i> –value	Signi	ficance (σ)	Q-value	Cignal Viold	UL (×	10 ⁻³)
Decay would	(MeV)	Local	Corrected	Local	Corrected	(MeV/c ²)	Signal field	90% CL	95% CL
	0	3.9×10 ⁻⁴	0.03	3.36	1.90	257	38.1 ± 12.4	4.28	4.56
$\Lambda_{\rm c}^+\pi^-{\rm D}^-$	5	5.71×10 ⁻⁵	3.33×10 ⁻³	3.86	2.71	253	62.1 ± 17.1	4.62	4.83
	10	1.45×10 ⁻⁵	6.92×10 ⁻⁴	4.18	3.20	249	83.7 ± 21.2	4.72	4.88
	15	4.59×10^{-6}	1.83×10^{-4}	4.44	3.56	249	103.5 ± 24.6	4.77	4.92
	0	4.4×10 ⁻³	0.31	2.62	0.48	197	12.0 ± 5.3	3.11	3.45
$ \begin{array}{c} {\rm Decay\ Mode} \\ {\Lambda_c^+\pi^-D^-} \\ {\Lambda_c^+\pi^-D^{*-}} \\ {\Sigma_c^{*++}\overline{D}^0} \\ \\ {\Sigma_c^{*++}D^-} \\ \\ {\Sigma_c^{*++}D^{*-}} \end{array} $	5	7.1×10 ⁻³	0.31	2.45	0.51	197	16.8 ± 7.3	4.08	4.53
	10	8.6×10 ⁻³	0.27	2.38	0.61	197	21.2 ± 9.1	4.69	5.15
	15	8.9×10 ⁻³	0.22	2.37	0.78	197	25.5 ± 10.8	5.11	5.56
-	0	1×10 ⁻²	0.75	2.32	0.00	37	$5.0\pm$ 2.8	0.96	1.09
$\nabla^{*++}\overline{D}0$	5	1.2×10 ⁻²	0.62	2.24	0.00	37	7.8 ± 4.0	1.32	1.49
$\Sigma_c^{*++}\overline{D}{}^0$	10	2.7×10 ⁻²	0.92	1.92	0.00	205	$\textbf{7.0} \pm \textbf{20.6}$	1.57	1.78
	15	2.7×10 ⁻²	0.73	1.92	0.00	485	12.5 ± 6.7	2.23	2.49
	0	1.2×10 ⁻³	0.11	3.03	1.21	537	6.5 ± 3.3	1.63	1.82
∇*++ D -	5	1.6×10 ⁻³	0.10	2.95	1.30	497	11.8 ± 5.0	2.52	2.79
Z _c D	10	2.5×10 ⁻³	0.11	2.81	1.24	497	13.0 ± 5.7	2.82	3.12
	15	4.3×10 ⁻³	0.14	2.63	1.07	497	13.9 ± 6.3	3.02	3.37
	0	2.3×10 ⁻²	1.40	2.00	0.00	193	2.5 ± 1.8	1.08	1.23
$\Sigma_{c}^{*++}D^{*-}$	5	3.5×10 ⁻²	1.44	1.81	0.00	449	2.9 ± 2.1	1.26	1.45
	10	3.5×10 ⁻²	1.08	1.81	0.00	453	$3.2\pm~2.3$	1.36	1.57
	15	4.1×10^{-2}	0.99	1.74	0.00	453	3.3 ± 2.4	1.45	1.66

Recent Results in Pentaquark Studies at LHCb

19th June 2024 14/31

arXiv:2404.07131

👱 of Glasgow

G. Robertson

Decov Mode	Width Lowest <i>p</i> -value Significance (σ) <i>Q</i> -value	Q-value	Signal Viold	UL (×10 ⁻³)					
Decay would	(MeV)	Local	Corrected	Local	Corrected	(MeV/c ²)	Signal field	90% CL	95% CL
	0	3.9×10 ⁻⁴	0.03	3.36	1.90	257	38.1 ± 12.4	4.28	4.56
$\Lambda_{c}^{+}\pi^{-}D^{-}$	5	5.71×10 ⁻⁵	3.33×10 ⁻³	3.86	2.71	253	62.1 ± 17.1	4.62	4.83
	10	1.45×10 ⁻⁵	6.92×10 ⁻⁴	4.18	3.20	249	$\textbf{83.7} \pm \textbf{21.2}$	4.72	4.88
(15	4.59×10 ⁻⁶	1.83×10 ⁻⁴	4.44	3.56	249	103.5 ± 24.6	4.77	4.92
$ \begin{array}{c} \hline {\bf Decay Mode} \\ \hline {\bf A}_c^+ \pi^- {\bf D}^- \\ \hline \\ \hline {\bf A}_c^+ \pi^- {\bf D}^{*-} \\ \hline \\ {\bf \Sigma}_c^{*++} {\bf D}^0 \\ \hline \\ {\bf \Sigma}_c^{*++} {\bf D}^- \\ \hline \\ {\bf \Sigma}_c^{*++} {\bf D}^{*-} \end{array} $	0	4.4×10 ⁻³	0.31	2.62	0.48	197	12.0 ± 5.3	3.11	3.45
	5	7.1×10 ⁻³	0.31	2.45	0.51	197	16.8 ± 7.3	4.08	4.53
	10	8.6×10 ⁻³	0.27	2.38	0.61	197	21.2 ± 9.1	4.69	5.15
	15	8.9×10 ⁻³	0.22	2.37	0.78	197	$\textbf{25.5} \pm \textbf{10.8}$	5.11	5.56
-	0	1×10 ⁻²	0.75	2.32	0.00	37	$5.0\pm$ 2.8	0.96	1.09
$\nabla^{*++}\overline{D}0$	5	1.2×10 ⁻²	0.62	2.24	0.00	37	7.8 ± 4.0	1.32	1.49
$\Sigma_c^{*++}\overline{D}{}^0$	10	2.7×10 ⁻²	0.92	1.92	0.00	205	$\textbf{7.0} \pm \textbf{20.6}$	1.57	1.78
	15	2.7×10 ⁻²	0.73	1.92	0.00	485	12.5 ± 6.7	2.23	2.49
	0	1.2×10 ⁻³	0.11	3.03	1.21	537	6.5 ± 3.3	1.63	1.82
∇*++ D -	5	1.6×10 ⁻³	0.10	2.95	1.30	497	11.8 ± 5.0	2.52	2.79
Z _c D	10	2.5×10 ⁻³	0.11	2.81	1.24	497	13.0 ± 5.7	2.82	3.12
	15	4.3×10 ⁻³	0.14	2.63	1.07	497	13.9 ± 6.3	3.02	3.37
	0	2.3×10 ⁻²	1.40	2.00	0.00	193	2.5 ± 1.8	1.08	1.23
$\Sigma_{c}^{*++}D^{*-}$	5	3.5×10 ⁻²	1.44	1.81	0.00	449	$2.9\pm~2.1$	1.26	1.45
	10	3.5×10 ⁻²	1.08	1.81	0.00	453	3.2 ± 2.3	1.36	1.57
	15	4.1×10^{-2}	0.99	1.74	0.00	453	3.3 ± 2.4	1.45	1.66

Recent Results in Pentaquark Studies at LHCb

19th June 2024 14/31

Hasgow

G. Robertson

• In five channels, corrected significances $> 3\sigma$ observed.

 Correction within modes is applied (see Slide 35), but nothing to account for across all modes.

Recent Results in Pentaquark Studies at LHCb

19th June 2024 15/31

- Using 1,000 background-only pseudo-datasets, the scan was repeated for every mode.
- Using Voigtian signal model with 15 MeV/ c^2 .
- Fluctuations above 3σ can be counted and averaged across all modes.

- Average number of fluctuations above 3σ : 6.97.
- Standard deviation: 4.99.

G. Robertson

• Thus, five significances reported in previous slide **are** consistent with background fluctuations.

Recent Results in Pentaquark Studies at LHCb

19th June 2024 16/31

• Where kinematically possible, the width and mass of the known pentaquarks can be fitted.

Decay Mode	Pentaquark
(Threshold)	Hypothesis
$\Lambda^+_0 \overline{D}^0$	$P_{c}(4312)^{+}$
(4151,29 MeV)	$P_{c}(4440)^{+}$
	$P_{c}(4457)^{+}$
$\Sigma_c^0 D^-$	$P_{c}(4440)^{+}$
(4323.41 MeV)	$P_{c}(4457)^{+}$
$\Lambda_{c}^{+}\pi^{+}D^{*-}$	$P_{c}(4440)^{+}$
(4436.32 MeV)	$P_{c}(4457)^{+}$

 $\begin{array}{l} P_c(4312)^+ & M = 4311.9 \, \text{MeV}, \Gamma = 10 \, \text{MeV} \\ P_c(4440)^+ & M = 4440 \, \text{MeV}, \Gamma = 21 \, \text{MeV} \\ P_c(4457)^+ & M = 4457.3 \, \text{MeV}, \Gamma = 6.4 \, \text{MeV} \end{array}$

- Only consider states with hidden charm content.
- Signal yield consistent with 0 in all cases.
- Full details in paper.

- Search carried out over many modes.
- No strong evidence of pentaquark signal.
- Significances seen are consistent with background data.
- No evidence for existing pentaquark states.

Observation of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ and $\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}$ Decays

19th June 2024 19/31

Comparable to Λ⁰_b → J/ψpK⁻ since P_c production is the same.

• BFs relative to $\Lambda_b^0 \rightarrow \Lambda_c^+ D_s^-$ found.

G. Robertson

19th June 2024 20/31

• 2016-18 Run 2 dataset (5.4 fb⁻¹).

G. Robertson

- Measure $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{(*)0} K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = \frac{N_{\Lambda_c^+ \bar{D}^{(*)0} K^-}}{N_{\Lambda_c^+ D_s^-}} \frac{\epsilon_{\Lambda_c^+ \bar{D}^{(*)0} K^-}}{\epsilon_{\Lambda_c^+ D_s^-}} \frac{\mathcal{B}(D_s^- \to K^- K^+ \pi^-)}{\mathcal{B}(\bar{D}^0 \to K^+ \pi^-)}$
- Reconstruction and trigger selection identical between Λ⁺_c D
 ^{(*)0} K⁻ and Λ⁺_c D⁻_s decay modes.
- Topological and particle identification requirements different between modes.
- BDT used to clean combinatorial background in $\Lambda_c^+ \rightarrow p K^- \pi^+$ spectrum.
- $\Lambda_c^+ \overline{D}^{*0} K^-$ selected with partially reconstructed $\overline{D}^{*0} \to \overline{D}^0 \pi^0 (\overline{D}^0 \gamma)$.
- 4 selection strategies, 3 background subtraction methods, 3 weighting methods - validate result.

Recent Results in Pentaguark Studies at LHCb

G. Robertson

19th June 2024 21/31

$$\begin{split} & \mathcal{N}^{A^0_b \to A^+_c \bar{D}^0 K^-} / \mathcal{N}^{A^0_b \to A^+_c D^-_s} = 0.1132^{+0.0021}_{-0.0020}(\textit{stat.})^{+0.0006}_{-0.0007}(\textit{syst.}) \\ & \mathcal{N}^{A^0_b \to A^+_c \bar{D}^{*0} K^-} / \mathcal{N}^{A^0_b \to A^+_c D^-_s} = 0.298^{+0.009}_{-0.008}(\textit{stat.})^{+0.008}_{-0.009}(\textit{syst.}) \end{split}$$

• Converting to BFs:

of Glasgow

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D^0 K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = 0.1908^{+0.0036}_{-0.0034}(\textit{stat.})^{+0.0016}_{-0.0018}(\textit{syst.}) \pm 0.0038(\mathcal{B})$$
$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = 0.589^{+0.018}_{-0.017}(\textit{stat.})^{+0.017}_{-0.018}(\textit{syst.}) \pm 0.012(\mathcal{B})$$

• Finally relative to $J/\psi pK^-$ (using PRL 122, 222001 (2019)): $\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi pK^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^0 K^-)} = 0.152^{+0.032}_{-0.028} \frac{\mathcal{B}(\Lambda_b^0 \to J/\psi pK^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-)} = 0.0492$

Reference	$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^{})}$
Z. Phys. C 59, 179	0.75
Phys. Rev. D 56, 2799	0.83
Mod. Phys. Lett. A 13, 23	1.54
Phys. Rev. D 58, 014016	1.46
Prog. Theor. Phys. 101, 959	1.84
Phys. Rev. D 99, 054020	0.85
Chin. Phys. C 42, 093101	1.49
Eur. Phys. J. C 78, 528	1.23
Phys. Rev. D 98, 074011	1.70
Eur. Phys. J. C 79, 540	1.51
Phys. Rev. D 100, 034025	1.47
Eur. Phys. J. C 80, 636	1.29
arXiv:2309.12050	2.25

G. Robertson

lasgow

- Also make a measurement of $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^{-})}.$
- Consistent with several theory predictions.

19th June 2024 23/31

$$\begin{split} & \mathcal{N}^{A_b^0 \to A_c^+ D_s^{*-}} / \mathcal{N}^{A_b^0 \to A_c^+ D_s^-} = 1.309 \pm 0.017^{+0.047}_{-0.043} \\ & \frac{\mathcal{B}(A_b^0 \to A_c^+ D_s^{*-})}{\mathcal{B}(A_b^0 \to A_c^+ D_s^-)} = 1.668 \pm 0.022(\textit{stat.})^{+0.061}_{-0.055}(\textit{syst.}) \end{split}$$

Recent Results in Pentaguark Studies at LHCb

- Results are consistent with theoretical predictions for $\frac{\mathcal{B}(A_b^0 \rightarrow A_c^+ D_s^{*-})}{\mathcal{B}(A_b^0 \rightarrow A_c^+ D_s^{-})}.$
- Branching fractions of Λ⁰_b → Λ⁺_c D
 ^{(*)0}K⁻ relative to Λ⁰_b → J/ψpK⁻ are measured - important ingredient for pentaquark studies.
- Future analysis to measure the pentaquark fit fractions will give last missing ingredient and allow models for branching fractions relative to $J/\psi p$ to be tested.

First observation of $\Lambda_b^0 \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^$ decays

• 2015 - 2018 dataset (6 fb⁻¹).

G. Robertson

- Use $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}{}^0 K^-$ decay as normalisation channel.
- Aim to measure $\frac{\Lambda_b^0 \rightarrow \Sigma_c^{++} D^{-K^-}}{\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^0 K^-}$, $\frac{\Lambda_b^0 \rightarrow \Sigma_c^{*++} D^{-K^-}}{\Lambda_b^0 \rightarrow \Sigma_c^{++} D^{-K^-}}$, $\frac{\Lambda_b^0 \rightarrow \Sigma_c^{*++} D^{*-K^-}}{\Lambda_b^0 \rightarrow \Sigma_c^{++} D^{-K^-}}$.
- Using Λ⁰_b → Σ⁺⁺_c D⁻K⁻ as normalisation cancels many systematics simplifies measurement.
- Non-Doubly-Charmed background (*e.g.* real Σ_c⁺⁺ combined with fake D⁰ etc.) must be accounted for.
- Backgrounds coming from misidentification are carefully vetoed, *e.g.* $D_s^+ \rightarrow \{K^+ \Rightarrow p\}K^-\pi^+$ in Λ_c^+ decay.

19th June 2024 25/31

arXiv:2404.19510

👱 of Glasgoŵ

G. Robertson

$$\begin{aligned} \frac{\Lambda_b^0 \to \Sigma_c^{++} D^- K^-}{\Lambda_b^0 \to \Lambda_c^+ \overline{D}^0 K^-} &= 0.282 \pm 0.016(\textit{stat.}) \pm 0.016(\textit{syst.}) \pm 0.005(\mathcal{B}) \\ \frac{\Lambda_b^0 \to \Sigma_c^{*++} D^- K^-}{\Lambda_b^0 \to \Sigma_c^{*++} D^- K^-} &= 0.460 \pm 0.052(\textit{stat.}) \pm 0.028(\textit{syst.}) \end{aligned}$$

Recent Results in Pentaquark Studies at LHCb

19th June 2024 26/31

👱 of Glasgoŵ

G. Robertson

arXiv:2404.19510

$$\frac{\Lambda_b^0 \to \Sigma_c^{++} D^{*-} K^-}{\Lambda_b^0 \to \Sigma_c^{++} D^- K^-} = 2.261 \pm 0.202(stat.) \pm 0.129(syst.) \pm 0.046(\mathcal{B})$$

$$\frac{\Lambda_b^0 \to \Sigma_c^{*++} D^{*-} K^-}{\Lambda_b^0 \to \Sigma_c^{++} D^- K^-} = 0.896 \pm 0.137(stat.) \pm 0.066(syst.) \pm 0.018(\mathcal{B})$$

Recent Results in Pentaquark Studies at LHCb

19th June 2024 27/31

• New decay channels found with high significance:

$$>10\sigma - \Lambda_b^0 \rightarrow \Sigma_c^{++} D^- K^- >10\sigma - \Lambda_b^0 \rightarrow \Sigma_c^{++} D^{*-} K^- >10\sigma - \Lambda_b^0 \rightarrow \Sigma_c^{*++} D^- K^- 9\sigma - \Lambda_b^0 \rightarrow \Sigma_c^{*++} D^{*-} K^-$$

- No pentaquark signal.
- BFs will provide important input into theoretical studies.
- Only O(100) candidates in dataset insufficient for amplitude analysis.
- Run 3 to the rescue!

G. Robertson

19th June 2024 28/31

Conclusions

- Search for pentaquarks in wide range of signal channels (arXiv:2404.07131).
 - No strong evidence of signal.
 - Five channels with $> 3\sigma$ corrected *p*-value.
 - Found to be consistent with background fluctuations.
 - No signal seen for decays from known pentaquark states.
- Observation of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ and $\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}$ Decays (EPJ C 84 (2024) 575).
 - $\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi pK^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^0 K^-)} = 0.152^{+0.032}_{-0.028}$

$$\frac{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{*0} K^-)} = 0.049^{+0.011}_{-0.009}$$

G. Robertson

• $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-})}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^{-})} = 1.668 \pm 0.022(stat.)^{+0.061}_{-0.055}(syst.)$ -

consistent with several theory predictions.

► First search for pentaquark signal in $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^{(*)0} K^-$ decay.

Recent Results in Pentaquark Studies at LHCb

19th June 2024 29/31

Conclusions

- First observation of $\Lambda_b^0 \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^-$ decays (arXiv:2404.19510).
 - No pentaquark signal seen.
 - BFs measured, important for future studies and predictions regarding pentaquarks.
 - Full amplitude analysis can be carried out with Run 3 data.

- First observation of $\Lambda_b^0 \rightarrow \Sigma_c^{(*)++} D^{(*)-} K^-$ decays (arXiv:2404.19510).
 - No pentaquark signal seen.
 - BFs measured, important for future studies and predictions regarding pentaquarks.
 - Full amplitude analysis can be carried out with Run 3 data.
- Three analyses discussed here.
 - All sensitive to pentaquark signals yet no significant signal seen.
- Why have pentaquarks not been observed decaying into these open-charm hadron final states?
 - Is there an underlying process suppressing the production in these channels?
 - Is it just a case of needing a larger dataset?

Conclusions

- More results still to come from LHCb Run 2 dataset.
 - Other pentaquark analyses nearing completion.
- LHCb Run 3 ongoing:

G. Robertson

- On track for \sim 7 fb⁻¹ by the end of the year.
- Improved trigger means higher efficiency for hadronic events.
- Statistically limited pentaquark searches will be possible.

Recent Results in Pentaguark Studies at LHCb

19th June 2024 31/31

Backup slides

Since Then?

Backup slides

19th June 2024 33/31

So far, ATLAS, CMS and LHCb have discovered 73 new hadronic states of which 20+ are exotic – majority discovered at LHCb (Plot Source).

G. Robertson

For Σ_cD, Σ_c*D and DΛ_c⁺π modes the fit model is a threshold function:

$$f(x) = x^{\gamma} \cdot \exp(-p_1 \cdot x) \tag{1}$$

19th June 2024 34/31

• $\Lambda_c^+ D$ modes use a Chebyshev polynomial summed with a log normal distribution:

$$f(x) = f \cdot \frac{1}{2\pi \cdot \ln k * x} \cdot \exp\left(\frac{-\ln^2(\frac{x}{m_0})}{2\ln^2 k}\right) + (1 - f) \cdot C(x, x_1)$$
(2)

Recent Results in Pentaquark Studies at LHCb

G. Robertson

• *p*-value is corrected to account for look elsewhere effect:

$$p_{corr} = p_{loc} + \langle N(c_0) \rangle \exp\left(-rac{c-c_0}{2}
ight)$$

- (N(c₀)): number of fluctuations in pseudo-data above reference level (c₀).
- $c: 2\Delta \ln \mathcal{L}.$
- Accounts for the fact we scan across a large mass range and accommodates the possibility of background fluctuations.