Lattice Insights into Baryon-Baryon Dynamics

M. Padmanath

IMSc Chennai & HBNI Mumbai, India

NSTAR 2024 20^{th} June, 2024

Heavy dibaryons Funding agencies/computational resources

with D. Chakraborty, N. S. Dhindsa, P. Junnarkar and N. Mathur,

Deuteron: the longest known dibaryon

✿ Nucleus of Deuterium discovered in 1932.

Urey, Brickwedde & Murphy

- ☆ A very fine-tuned binding energy $\Delta E = M_D M_p M_n = 2.2$ MeV.
- Big bang Nucleosynthesis (BBN) has a deuteron bottleneck: Determines the abundances of light nuclei.
- How will the binding energy vary with quark masses?Could there be dineutrons or diprotons with heavier light quark masses.

Di-baryons using lattice QCD

M. Padmanath

The scalar dihyperon

NAGARA event: Takahashi PRL 87, 212502 (2001)

☆ Bound *uuddss* flavor-singlet dihyperon with $J^P = 0^+$: Perhaps a stable Dihyperon

Jaffe PRL 38 195 (1977)

☆ NAGARA event: Strongest constraint on binding energy. $B_H < B_{\Lambda\Lambda}^{Nagara} = 6.91 \pm 0.16 \text{ MeV}$ Takahashi *et al.*, PRL 87, 212502 (2001)

 \clubsuit ALICE @ LHC: constraints on $\Lambda\Lambda$ interactions from femtoscopic measurements

ALICE 1905.07209 PLB

Di-baryons using lattice QCD

M. Padmanath

d^* resonance

- ✿ Prediction for an isoscalar $\Delta\Delta$ configuration with $J^P = 3^+$. Assumed SU(6) symmetry.
 Dyson and Xuong PRL 13 815 (1964)
- [★] Resonance feature at 2.38 GeV with Γ ~ 70 MeV and $I(J^P) = 0(3^+)$. Pole in the coupled ${}^3D_3 - {}^3G_3$ partial waves. Adlarson *et al.*, 1402.6844 PRL
- ***** Whether isosymmetric partner of d^* with maximal isospin exists? Other possible nonstrange dibaryon candidates, if any.

Di-baryons using lattice QCD

M. Padmanath

Baryon-baryon interactions: Other prospects

 $\ensuremath{\mathfrak{s}}$ Hyperon formation \Leftarrow Large nuclear densities in astrophysical objects

 $\label{eq:Bazavov et al, 1404.6511 PRL, 1404.4043 PLB} \\ Chatterjee and Vidaña 1510.06306 EPJA, Vidaña et al 1706.09701 PLB \\ \end{array}$

☆ A handful of experimental efforts using large nuclei reactions. Inputs on LECs to EFTs \Rightarrow nuclear many body calculations.

Epelbaum 2005, INT-NFPNP 2022, $0\nu\beta\beta$ PSWR 2022

* Heavy dibaryons: Relatively free of the light quark chiral dynamics.

the Heavy dibaryons: no near three or four particle thresholds. Simple model studies ($\Omega\Omega$ scattering): widely different inferences.

Richard et al 2005.06894 PRL, Liu et al 2107.04957 CPL, Huang et al 2011.00513 EPJC

Di-baryons using lattice QCD

M. Padmanath

Lattice QCD: Basic idea

LQCD : A non-perturbative, gauge invariant regulator for the QCD path integrals.

- ☆ Quark fields $\psi_{\alpha}(x)$ on lattice sites
- ☆ Gauge fields as parallel transporters U_{μ} Lives in the links. $U_{\mu}(x) = e^{igaA_{\mu}(x)}$
- $\bar{\psi}^i_{\alpha}(x)[U_{\mu}(x)]_{ij}\psi^j_{\alpha}(x+a\hat{\mu})$ is gauge invariant.
- ✿ Lattice spacing : UV cut off
- 🕏 Lattice size : IR cut off

Employ MCMC importance sampling methods on a Euclidean metric for numerical studies.

Di-baryons using lattice QCD

M. Padmanath

QCD spectrum from Lattice QCD

Aim : to extract the physical states of QCD.

2 Euclidean two point current-current correlation functions

$$C_{ji}(t_f - t_i) = \langle 0 | \mathcal{O}_j(t_f) \overline{\mathcal{O}}_i(t_i) | 0 \rangle = \sum_n \frac{Z_i^{n*} Z_j^n}{2m_n} e^{-m_n(t_f - t_i)}$$
where $\mathcal{O}_j(t_f)$ and $\overline{\mathcal{O}}_i(t_i)$ are
the desired interpolating operators
and $Z_j^n = \langle 0 | \mathcal{O}_j | n \rangle$.
Effective mass defined as $\log[\frac{C(t)}{C(t+1)}]$

***** The ground state : from the exponential fall off at large times. Non-linear fitting techniques.

Di-baryons using lattice QCD

Effective

•

M. Padmanath

IMSc Chennai (7 of 27)

t/at

Complexity in Hadron spectroscopy using lattice

Talks by Leinweber Mon 1000, Mai Wed 1000

Di-baryons using lattice QCD

M. Padmanath

Baryon-baryon interactions from lattice QCD

- ☆ A handful of lattice QCD efforts on baryon-baryon scattering typically at $m_{\pi} > m_{\pi}^{phys}$. see works by NPLQCD, HALQCD*, Mainz, CalLat, and others in the past decade.
- Focus on light and strange six quark systems: Deuteron, dineutron, H-dibaryon, ... Discretization effects could be crucial.

Talk by Green @ Santa Fe Workshop 2023, Briceño et al Chapter 16 of 2202.01105 FBS

Di-baryons using lattice QCD

M. Padmanath

Baryon-baryon interactions from lattice QCD

Discretization effects could be crucial.

Talk by Green @ Santa Fe Workshop 2023 Green @ Liverpool Lattice 2024

Results at SU(3) point:

HALQCD @ $m_{\pi} \sim 840$ MeV and other points @ $m_{\pi} \sim 420$ MeV.

- Deutron and dineutron potentially a virtual bound pole at $m_{\pi} \sim 420$ MeV. H-dibaryon is a shallow bound state.
- \clubsuit @ the largest lattice spacing Deuteron is nearly a bound state.

Di-baryons using lattice QCD

M. Padmanath

$\Delta\Delta$ scattering and $d^*(2380)$ from lattice

 $\clubsuit \ \Delta \Delta$ scattering on the lattice.

Gongyo et al, 2008.00856 PLB

- ☆ Results at SU(3) point: HALQCD @ $m_{\pi} \sim 680, 840$ and 1018 MeV. Stable Δ baryons.
- ✿ Lattice spacing $a \sim 0.121$ fm and lattice size $L \sim 3.87$ fm. d* as a quasi-bound state.
- ✿ Coarse lattice spacing used.

Di-baryons using lattice QCD

M. Padmanath

Scattering on the lattice: Different procedures

- *Bound states and binding energies directly from energy splittings.
- $\ensuremath{\mathfrak{s}}$ Lüscher's formalism: finite volume level shifts \Leftrightarrow infinite volume phase shifts

Lüscher 1991 NPB, Briceño 1401.3312 PRD

Solving QM potentials derived from NBS wave functions

Di-baryons using lattice QCD

M. Padmanath

Deuteron-like Heavy dibaryons

Elastic thresholds in red text

Junnarkar and Mathur 1906.06054 PRL

Di-baryons using lattice QCD

M. Padmanath

Triply flavored heavy dibaryons

Elastic thresholds in red text

Junnarkar and Mathur 2206.02942 PRD

Di-baryons using lattice QCD

M. Padmanath

Single flavored heavy dibaryons (\mathcal{D}_{6q})

Heavy spin 0 single flavored partner of $d^*(2380)$?? Dyson and Xuong PRL 13 815 (1964) Leading m_l dependence could arise from pair produced 2π exchanges. Calculations at m_Q : Relatively cheap calculations with clean signals.

Mathur, MP and Chakraborty 2205.02862 PRL

Di-baryons using lattice QCD

M. Padmanath

Heavy dibaryons results summary

 $\Delta E = E - M_{H_1} - M_{H_2}$

Junnarkar and Mathur 1906.06054 PRL $(\mathcal{D}_{bc}, \mathcal{D}_{bs}, \mathcal{D}_{cs}, \mathcal{D}_{bu}, \mathcal{D}_{cu}),$ Mathur, MP, Chakraborty 2205.02862 PRL $(\mathcal{D}_{6b}),$

Junnarkar and Mathur 2206.02942 PRD (\mathcal{H}_{bcs})

Di-baryons using lattice QCD

M. Padmanath

Light quark mass dependence

Junnarkar and Mathur 1906.06054 PRL,

Junnarkar and Mathur 2206.02942 PRD

Heavier the quark masses, stronger the binding. Different pattern of binding compared to T_{QQ}

MP, Prelovsek 2202.10110 PRL, Collins, MP, et al., 2402.14715 PRD

Di-baryons using lattice QCD

M. Padmanath

m_q dependence of the T_{QQ} pole [ERE]

 $\begin{array}{c} \clubsuit & m_q \text{ dependence: Purely attractive} \\ & \text{Increasing } m_c \text{ increasing attraction} \\ & \text{Decreasing } m_q \text{ increasing attraction} \end{array}$

Francis Thu 1100

✿ ERE: Questionable [OPE interactions and lhc]

M. Padmanath

Baryon-baryon interactions in heavy sector

Mathur, MP, Chakraborty 2205.02862 PRL

Not limited to just a finite volume spectrum extraction. Involved scattering analysis with a zero-range approximation.

Di-baryons using lattice QCD

M. Padmanath

Amplitude analysis and binding energy estimate

- ★ Fits with "-1/a₀^[0] a/a₀^[1]" is found to be the best with $\chi^2/d.o.f. = 0.7/2$ $a_0^{[0]} = 0.18(^{+0.02}_{-0.02}) \text{ fm},$ $a_0^{[1]} = -0.18(^{+0.18}_{-0.11}) \text{ fm}^2$
- Constraint $k.cot\delta(k) = -\sqrt{-k^2}$ gives us a bound state pole with $\Delta E_{\mathcal{D}_{6b}}^{cont} = -81(^{+14}_{-16})(14)$ MeV.

Using $M_{\Omega_{bbb}}^{lphys} = 14366(7)(9)$ MeV, we compute the mass of this bound state as

$$M_{\mathcal{D}_{6b}}^{phys} = 2M_{\Omega_{bbb}}^{lphys} + \Delta E_{\mathcal{D}_{6b}}^{cont} = 28651(^{+16}_{-17})(15) \text{ MeV}$$

Di-baryons using lattice QCD

M. Padmanath

Other systematic uncertainties

- ☆ Lattice QCD configurations: 2+1+1 HISQ, improved to $\mathcal{O}(\alpha_s a^2)$ b quarks: NRQCD Hamiltonian with pert. imp. coefficients up to $\mathcal{O}(\alpha_s v^4)$ 1S bottomonium hyperfine splitting with an uncertainty < 6 MeV.
- Energy splittings are used as inputs to FV analysis.
 Significantly reduced correlated uncertainties.
- Multiple fitting procedures to identify the correct plateau.
 Statistical and fit-window uncertainties added in quadrature.
- ✿ Convolved through Lüscher's analysis + continuum extrapolation: $\binom{+14}{-16}$ MeV.
- \clubsuit Possible excited state effects using different smearing programs: < 8 MeV.
- ☆ Continuum extrapolation fit forms, scale setting, quark mass tuning and EM corrections: < 12 MeV.

$$\Delta E_{\mathcal{D}_{6b}}^{cont} = -81(^{+14}_{-16})(14) \text{ MeV}$$

Di-baryons using lattice QCD

M. Padmanath

Other existing calculations $[\mathcal{D}_{6s}]$

- Early calculations of S-wave ΩΩ scattering using Lüscher's formalism. $m_{\pi} \sim 390 \text{MeV}, L \sim 2.5 \text{ and } 3.9 \text{ fm}.$
- Weakly repulsive interaction observed in the total spin 0. No deeply bound state possible.
- \clubsuit Clear positive energy shifts in the total spin 2 case.

Buchoff, Luu, Wasem 1201.3596 PRD

Di-baryons using lattice QCD

M. Padmanath

Other existing calculations $[\mathcal{D}_{6s}]$ contd ...

- S-wave ΩΩ scattering using HALQCD procedure. $m_{\pi} \sim 146 \text{MeV}, L \sim 8.1 \text{ fm}$
- \clubsuit Weakly attractive interaction observed in the total spin 0.
- HALQCD 1709.00654 PRL
- \$\$ Similar interactions at $m_{\pi} \sim 700 \text{MeV}$ from a $L \sim 2.9$ fm study

HALQCD 1503.03189 PRD

Di-baryons using lattice QCD

M. Padmanath

Other existing calculations $[\mathcal{D}_{6c}]$

-

 S-wave ΩΩ scattering using HALQCD procedure.
 $m_{\pi} \sim 146 \text{MeV}, L \sim 8.1 \text{ fm}$
- System close to the point where scattering length diverges.

HALQCD 2102.00181 PRL

Di-baryons using lattice QCD

M. Padmanath

Follow-up with our setup $[\mathcal{D}_{6q}]$

- S-wave ΩΩ scattering in the charm sector. Work also in the strange sector in progress.
- Spin 0 ground states below or consistent with the threshold.
 Spin 2 ground states suggest positive shifts and repulsive interactions.
 No bound states possible.
 Dhindsa, Mathur, MP, work under progress

Di-baryons using lattice QCD

M. Padmanath

Summary

 Baryon-baryon interactions in the light and strange sector: Results for Deuteron, dineutron, H-dibaryon.

✿ Baryon-baryon interactions in the charm and heavy sector: Results for \mathcal{D}_{6Q} , \mathcal{D}_{Qq} , $\mathcal{H}_{Q_1Q_2q}$

 More upcoming lattice studies of dibaryon systems: Light, strange as well as in the heavy sector.

Di-baryons using lattice QCD

M. Padmanath

Thank you

Di-baryons using lattice QCD

M. Padmanath

$\overline{1S}\ \overline{b}b$ hyperfine splitting

Di-baryons using lattice QCD

M. Padmanath

Lattice QCD ensembles

☆ Ensembles : $N_f = 2+1+1$ HISQ (MILC): 24³.64, 32³.96, 48³.144, & 40³.64 a = 0.1207(11), 0.0888(8), 0.0582(5), and 0.1189(7) fm.

MILC Collaboration, arXiv:1212.4768

Three lattice spacings and two volumes (~ 2.85fm and 4.76 fm).
 Possible continuum extrapolation and finite-volume scattering analysis.

Di-baryons using lattice QCD

M. Padmanath

Lattice results for energy splitting

☆ Table presents the energy splitting $\Delta E_{\mathcal{D}_{6b}} = M_{\mathcal{D}_{6b}}^L - 2M_{\Omega_{bbb}}$

- * Clear energy gap between the noninteracting and interacting cases.
- Similar energy splittings across all four ensembles.
- * Negative energy splittings indicating attractive interaction.

Di-baryons using lattice QCD

M. Padmanath

Finite volume spectrum and infinite volume physics

- On a finite volume Euclidean lattice : Discrete energy spectrum Cannot constrain infinite volume scattering amplitude away from threshold. Maiani-Testa 1990
- $\ensuremath{\mathfrak{s}}$ Non-interacting two-hadron levels are given by

$$E(L) = \sqrt{m_1^2 + \vec{k}_1^2} + \sqrt{m_2^2 + \vec{k}_2^2} \text{ where } \vec{k}_{1,2} = \frac{2\pi}{L}(n_x, n_y, n_z).$$

- **\$** Switching on the interaction: $\vec{k}_{1,2} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$. e.g. in 1D $\vec{k}_{1,2} = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$.
- ✿ Lüscher's formula relates finite volume level shifts ⇔ infinite volume phase shifts.
 Lüscher 1991

✿ Generalizations of Lüscher's formalism: c.f. Briceño 2014

Di-baryons using lattice QCD

M. Padmanath

Scattering amplitude parametrization

\$ Scattering amplitude: $S = 1 + i \frac{4k}{E_{cm}t}$

☆ For the $\Omega_{bbb}\Omega_{bbb}$ system [total spin equals 0], and assuming only S-wave,

$$t^{-1} = \frac{2\tilde{K}^{-1}}{E_{cm}} - i\frac{2k}{E_{cm}}, \text{ with } \tilde{K}^{-1} = k.cot\delta(k)$$

Bound state constraint: $k.cot\delta(k) = -\sqrt{-k^2}$

‡ Lüscher's prescription: $k.cot\delta(k) = \mathcal{F}(k)$, where $\mathcal{F}(k^2)$ is a known mathematical function.

 k^2 is determined from each extracted energy splitting as $k^2 = \frac{\Delta E_{D_{6b}}^L}{4} (\Delta E_{D_{6b}}^L + 4M_{\Omega_{bbb}}^{phys})$

☆ We parametrize $k.cot\delta(k)$ with a constant (inverse scattering length " $-1/a_0$ "). The remnant lattice spacing "a" dependence: " $-1/a_0^{[0]} - a/a_0^{[1]}$ ". Fits performed with and without "a" dependence.

Di-baryons using lattice QCD

M. Padmanath

Possible Coulombic repulsion

- ☆ A heavy object such as $\mathcal{D}_{6b}^{--} \Rightarrow$ compact. Coulombic repulsion could be significant.
- ☆ V_s : multi-Gaussian attractive potential such that $\Delta E_{\mathcal{D}_{6b}}^{cont} = -81(^{+14}_{-16})(14)$ MeV. HALQCD 2021
- Assuming an electric charge distribution as determined in *Can et al 2015*, we determine V_{em} for \mathcal{D}_{6b}^{--} .
- ✿ Compare the radial probability of the ground state wavefunction for V_s and $V_s + V_{em}$.
- * Coulombic potential hardly influences where the probabilities peak. Maximum associated change in $\Delta E_{\mathcal{D}_{6h}}^{cont}$ found to be 10 MeV.

Di-baryons using lattice QCD

M. Padmanath

Motivation from finite temperature studies

Ebert et al., PRD, 84, 014025, 2011

Charm hadron pressure (HRG) :

$$P(\hat{\mu}_C, \hat{\mu}_B) = P_M cosh(\hat{\mu}_C) + P_{B,C=1} cosh(\hat{\mu}_C + \hat{\mu}_B)$$
$$\chi_{kl}^{BC} = \frac{\partial^{(k+l)} [P(\hat{\mu}_C, \hat{\mu}_B)/T^4]}{\partial \hat{\mu}_B^k \partial \hat{\mu}_C^l}$$

Bazavov et al., PLB, 737, 210, 2014

⇒ Existence of additional charm-light baryons in QGP formed in HIC. Di-baryons using lattice QCD M. Padmanath IMSc Chennai (27 of 27)