
Stefan Leupold Dispersion theory for TFFs

Dispersion theory

for the transition form factors of the nucleon
Application to Delta(1232) and N*(1520)

Stefan Leupold

Uppsala University

NSTAR 2024, York, June 2024

1



Stefan Leupold Dispersion theory for TFFs

History

in 2017, I was at a
conference in Columbia,
South Carolina

think its name was
NoSTAR 2017

talk by Volker Burkert
about electromagnetic
transition form factors

can one understand the part called “MB contributions” in a
model-independent way?

got funding from Swedish Research Council

2



Stefan Leupold Dispersion theory for TFFs

History

in 2017, I was at a
conference in Columbia,
South Carolina

think its name was
NoSTAR 2017

talk by Volker Burkert
about electromagnetic
transition form factors

can one understand the part called “MB contributions” in a
model-independent way?

got funding from Swedish Research Council

2



Stefan Leupold Dispersion theory for TFFs

History

in 2017, I was at a
conference in Columbia,
South Carolina

think its name was
NoSTAR 2017

talk by Volker Burkert
about electromagnetic
transition form factors

can one understand the part called “MB contributions” in a
model-independent way?

got funding from Swedish Research Council

2



Stefan Leupold Dispersion theory for TFFs

History

in 2017, I was at a
conference in Columbia,
South Carolina

think its name was
NoSTAR 2017

talk by Volker Burkert
about electromagnetic
transition form factors

can one understand the part called “MB contributions” in a
model-independent way?

got funding from Swedish Research Council
2



Stefan Leupold Dispersion theory for TFFs

Understanding the strong interaction

model-independent methods to explore QCD (and in general QFT):

perturbative QCD

works at high energies where strong interaction is weak

lattice QCD

works best around ΛQCD, ms (hadronic scale ≈ 1GeV)
light pion sees itself around the torus if volume is too small
heavy quark falls through grid
if grid distance larger than Compton wave length
but advantage: quark masses can be varied

(chiral) effective field theory ⇝ works at very low energies

dispersion theory ⇝ works at low energies (only a few channels)

experiment!⇝ but quark masses fixed
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Unitarity and analyticity
constraints from local quantum field theory:
partial-wave amplitudes for reactions/decays must be

unitary:

S S† = 1 , S = 1 + iT ⇒ 2 ImT = T T †

↪→ note that this is a matrix equation:
ImTA→B =

∑
X TA→X T †

X→B
analytic (dispersion relations):

T (s) =
1

π

∞∫
−∞

ds ′
ImT (s ′)

s ′ − s − iϵ

⇝ can be used to calculate whole amplitude from imaginary part

practical limitation: too many states X at high energies

↪→ in practice dispersion theory is a low-energy method (≲ 1GeV)
or use resonance saturation
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Form factors (FFs)

scatter a lepton (electron or neutrino) on a hadron

and look at final state with a single(!) hadron

ℓ1 + h1 → ℓ2 + h2

at high energies one sees the minimal number of quarks
that is needed to build h1,2 (“quark counting rules”)

at low energies one sees much more

↪→ the playground of relativistic many-body physics

this is opposite to deep inelastic scattering
where one sees more particles the higher the energy
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Electromagnetic form factors at low energies

how to obtain a form factor?

B1 B2

V

need to resolve at least the finite size ≲ 1 fm

but inverse size of a hadron is larger than pion mass

first one probes something universal (independent of B1,2):

the “pion cloud”:

B1 B2

V

ππ

now we are in the game with dispersion theory
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Deconstruct a form factor

B1 B2

V ⇝

B1 B2

V

ππ ⇝

pions interact
with each
other

B1 B2

V

ππ

ππ

̸=

what is not
contained is
hard (short-
distance)
physics

B1 B2

just a
number!

7



Stefan Leupold Dispersion theory for TFFs

Pion vector form factor and data
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Alvarado/An/Alvarez-Ruso/SL, Phys.Rev.D 108 (2023) 11, 114021
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Scattering processes (e.g. for baryons)

from data
plus

dispersion
theory:

π π

π π

part that is
not pion

rescattering:

B1 B2

π π ⇝

low-energy approximation:

B

B1 B2

π π

what is not covered is hard physics
(contact terms)

B1 B2

π π
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Known input

pion
scattering

π π

π π

pion charge

π π

low-energy approximation

B

B1 B2

π π

baryon-pion coupling constants from decay widths

↪→ sometimes only moduli known
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Unknown: some numbers

part without
two

intermediate
pions

B1 B2

intermediate
state with
more than
two pions

π π

intermediate
state that is
not one
baryon

B1 B2

π π

↪→ fit to data or calculate with quark-gluon based methods
(now) (future)

“future”: D. An, G. Eichmann, C. Fischer, SL, work in progress
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Results I: nucleon

quark-mass and momentum dependence of nucleon Dirac form factor
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Results II: ∆(1232)

transition form factors from nucleon to ∆

hA ≃ 2.7, HA ≃ 2.3

hA ≃ 2.9, HA ≃ 2.3

hA ≃ 2.4, HA ≃ 2.3

hA ≃ 2.7, HA ≃ 2.5

hA ≃ 2.7, HA ≃ 2.0
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M. M. Aung, S. Leupold, E. Perotti and Y. Yan, arXiv:2401.17756 [hep-ph]
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Results III: N∗(1520)

transition form factors from nucleon to N∗(1520) (one example)

do we understand the “MB contributions”?

yeah
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An Di/SL, in preparation Aznauryan/Burkert, Prog. Part. Nucl. Phys. 67, 1
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What can we learn here?

the long-distance part is universal

↪→ needs to be understood once, not always new for each process

↪→ a lot is fixed by (chiral) symmetries

the short-distance part is process dependent
and sensitive to the details (dynamics) of QCD

outlook:

hadron based effective field theories + dispersion theory
↪→ allow parametrization of short-distance physics

quark-based methods
↪→ should allow determination of parameter values

↪→ combine methods
An Di, G. Eichmann, C. Fischer, SL, work in progress
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Present and future applications
standard model prediction for magnetic moment of the muon
Hoferichter/Hoid/Kubis/SL/Schneider, Phys.Rev.Lett. 121 (2018) 11, 112002
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weak form factors for neutrino-matter scattering
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hadronic input for electromagnetic radiation
from hot/dense strongly interacting matter

figure bottom right: Friman, Pirner, Nucl.Phys.A 617 (1997) 496
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Spare slides
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Form factors in Σ∗0(1385) → Λ e+e− (not measured yet)

our method: dispersion relation (unsubtracted in lack of data)
O. Junker, SL, E. Perotti, T. Vitos, Phys. Rev. C 101 (2020) 1, 015206

ρ meson is included via pion phase shift (model independent)

Σ∗

γ∗

Λ

V

ππ ∈

Σ∗

γ∗

Λ

ππ

ππ

“our” triangles with baryons are beyond vector-dominance model

Σ∗

γ∗

Λ

π π

Y
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How to get the pion vector form factor?

apply same
logic to pion
vector FF

π π

V

input:

pion
scattering

π π

π π

pion charge

π π

hard part of
pion vector

FF

π π

FV (s) = (1 + αV s) exp

s

∞∫
4m2

π

ds ′

π

δ(s ′)

s ′ (s ′ − s − iϵ)


with pion phase shift δ
and αV ≈ 0.12GeV−2 (from fit to FF data)
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