Dispersion theory for the transition form factors of the nucleon Application to Delta(1232) and N*(1520)

Stefan Leupold

Uppsala University

NSTAR 2024, York, June 2024

• in 2017, I was at a conference in Columbia, South Carolina

- in 2017, I was at a conference in Columbia, South Carolina
- think its name was N_oSTAR 2017

- in 2017, I was at a conference in Columbia, South Carolina
- think its name was N_oSTAR 2017
- talk by Volker Burkert about electromagnetic transition form factors

- in 2017, I was at a conference in Columbia, South Carolina
- think its name was N_oSTAR 2017
- talk by Volker Burkert about electromagnetic transition form factors

- can one understand the part called "MB contributions" in a model-independent way?
- got funding from Swedish Research Council

Understanding the strong interaction

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - heavy quark falls through grid if grid distance larger than Compton wave length
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at very low energies
- dispersion theory ~→ works at low energies (only a few channels)

Understanding the strong interaction

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - heavy quark falls through grid if grid distance larger than Compton wave length
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at very low energies
- dispersion theory ~→ works at low energies (only a few channels)
- experiment!

Understanding the strong interaction

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - heavy quark falls through grid if grid distance larger than Compton wave length
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at very low energies
- dispersion theory ~→ works at low energies (only a few channels)
- experiment!~→ but quark masses fixed

Unitarity and analyticity

- constraints from local quantum field theory: partial-wave amplitudes for reactions/decays must be
 - unitary:

 $SS^{\dagger} = 1$, $S = 1 + iT \Rightarrow 2 \operatorname{Im} T = TT^{\dagger}$

→ note that this is a matrix equation: $Im T_{A \to B} = \sum_{X} T_{A \to X} T^{\dagger}_{X \to B}$ • analytic (dispersion relations):

$$T(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} ds' \, \frac{\operatorname{Im} T(s')}{s' - s - i\epsilon}$$

- \rightsquigarrow can be used to calculate whole amplitude from imaginary part
 - practical limitation: too many states X at high energies
- \hookrightarrow in practice dispersion theory is a low-energy method ($\lesssim 1\,{\rm GeV})$ or use resonance saturation

Form factors (FFs)

- scatter a lepton (electron or neutrino) on a hadron
- and look at final state with a single(!) hadron

$$\ell_1 + h_1 \to \ell_2 + h_2$$

- at high energies one sees the minimal number of quarks that is needed to build $h_{1,2}$ ("quark counting rules")
- at low energies one sees much more
- \hookrightarrow the playground of relativistic many-body physics
 - this is opposite to deep inelastic scattering where one sees more particles the higher the energy

Electromagnetic form factors at low energies

• how to obtain a form factor?

- $\bullet\,$ need to resolve at least the finite size $\lesssim 1\,{\rm fm}$
- but inverse size of a hadron is larger than pion mass
- first one probes something universal (independent of $B_{1,2}$):

the "pion cloud": π

• now we are in the game with dispersion theory

Deconstruct a form factor

Pion vector form factor and data

Alvarado/An/Alvarez-Ruso/SL, Phys.Rev.D 108 (2023) 11, 114021

Deconstruct a form factor

Scattering processes (e.g. for baryons)

Known input

• baryon-pion coupling constants from decay widths

 \hookrightarrow sometimes only moduli known

Unknown: some numbers

"future": D. An, G. Eichmann, C. Fischer, SL, work in progress

Results I: nucleon

quark-mass and momentum dependence of nucleon Dirac form factor

Alvarado/An/Alvarez-Ruso/SL, Phys.Rev.D 108 (2023) 11, 114021

Dispersion theory for TFFs

1.0

Results I: nucleon

Results II: $\Delta(1232)$

transition form factors from nucleon to Δ

M. M. Aung, S. Leupold, E. Perotti and Y. Yan, arXiv:2401.17756 [hep-ph]

Results III: $N^*(1520)$

• transition form factors from nucleon to $N^*(1520)$ (one example)

Results III: N*(1520)

- transition form factors from nucleon to $N^*(1520)$ (one example)
- do we understand the "MB contributions"?

Results III: N*(1520)

- transition form factors from nucleon to $N^*(1520)$ (one example)
- do we understand the "MB contributions"?
- yeah

An Di/SL, in preparation

Aznauryan/Burkert, Prog. Part. Nucl. Phys. 67, 1

What can we learn here?

- the long-distance part is universal
- \hookrightarrow needs to be understood once, not always new for each process
- \hookrightarrow a lot is fixed by (chiral) symmetries
 - the short-distance part is process dependent and sensitive to the details (dynamics) of QCD

What can we learn here?

- the long-distance part is universal
- \hookrightarrow needs to be understood once, not always new for each process
- \hookrightarrow a lot is fixed by (chiral) symmetries
 - the short-distance part is process dependent and sensitive to the details (dynamics) of QCD
 - outlook:
 - $\bullet\,$ hadron based effective field theories + dispersion theory
 - $\,\hookrightarrow\,$ allow parametrization of short-distance physics
 - quark-based methods
 - \hookrightarrow should allow determination of parameter values
- \hookrightarrow combine methods

An Di, G. Eichmann, C. Fischer, SL, work in progress

Present and future applications

Stefan Leupold

• standard model prediction for magnetic moment of the muon

Hoferichter/Hoid/Kubis/SL/Schneider, Phys.Rev.Lett. 121 (2018) 11, 112002

 hadronic input for electromagnetic radiation from hot/dense strongly interacting matter

figure bottom right: Friman, Pirner, Nucl.Phys.A 617 (1997) 496

Many thanks to my collaborators

- Di An; PhD Uppsala (UU) ongoing (supported by VR)
- Fernando Alvarado; PhD Valencia ongoing
- Moh Moh Aung; PhD SUT (Thailand), now postdoc

(supported by International Science Programme ISP)

- Carlos Granados; postdoc UU, now researcher Vienna, Virginia
- Elisabetta Perotti; PhD UU, now postdoc Boulder, Colorado
- Olov Junker; physics master UU, now TSL, Uppsala
- Timea Vitos; physics master UU, now VR postdoc, Budapest
- Luis Alvarez-Ruso; professor Valencia
- Yupeng Yan; professor SUT

Publications

- C. Granados, S. Leupold and E. Perotti, Eur. Phys. J. A **53**, no.6, 117 (2017)
- S. Leupold, Eur. Phys. J. A 54, no.1, 1 (2018)
- O. Junker, S. Leupold, E. Perotti and T. Vitos, Phys. Rev. C **101**, no.1, 015206 (2020)
- F. Alvarado, D. An, L. Alvarez-Ruso and S. Leupold, Phys. Rev. D **108**, no.11, 114021 (2023)
- M. M. Aung, S. Leupold, E. Perotti and Y. Yan, arXiv:2401.17756 [hep-ph].
- D. An, S. Leupold, in preparation

Spare slides

Form factors in $\Sigma^{*0}(1385) o \Lambda \, e^+ e^-$ (not measured yet)

- our method: dispersion relation (unsubtracted in lack of data) O. Junker, SL, E. Perotti, T. Vitos, Phys. Rev. C 101 (2020) 1, 015206
- ρ meson is included via pion phase shift (model independent)

• "our" triangles with baryons are beyond vector-dominance model

How to get the pion vector form factor?

$$F_{V}(s) = (1 + \alpha_{V} s) \exp \left\{ s \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{\delta(s')}{s'(s' - s - i\epsilon)} \right\}$$

with pion phase shift δ and $\alpha_V \approx 0.12 \,\text{GeV}^{-2}$ (from fit to FF data)