NSTAR2024 @ York

Recent results from SPring-8 LEPS2

Today I concentrate on light baryon spectroscopy in BGOegg experiment.

Plenary session (20 June, 2024) Norihito Muramatsu RARIS, Tohoku University

SPring-8 LCS Beamlines

SPring-8 LCS Beamlines

LEPS2 Beamline

NIM A 1033 (2022) 166677

NIM A 1033 (2022) 166677

LEPS2 Beamline

NIM A 1033 (2022) 166677

Light Baryon Spectroscopy @ BGOegg

Now meson photoproduction data are the main input for PWA.

$$\gamma N \rightarrow N^*$$
 or $\Delta^* \rightarrow MN$ The type of a mesonA nucleon targetworks as "filters" foris excited in theisospin & quark-intermediate state.flavor coupling.

Polarization observables are useful to **decompose** overlapping resonances.

$$egin{aligned} & \gamma p
ightarrow \pi^0 p \ & \gamma p
ightarrow \omega p \ & \gamma p
ightarrow \eta p \ & \gamma p
ightarrow \eta p \ & \gamma p
ightarrow \eta' p \end{aligned}$$

[PRC100 (2019) 055202] [PRC102 (2020) 025201] [PRC106 (2022) 035201] In preparation for publication <New results>

Importance of Polarization Data at W~2 GeV

There are missing resonances at W ≥ 2 GeV in comparison with the spectra calculated by quark models & lattice QCD. But data amount is not enough yet especially for polarization observables and heavier meson photoproduction.

Photon Beam Asymmetry Σ

High linear polarization at $W \approx 2$ GeV is important to measure " Σ " and solve spin amplitudes for the study of missing resonances. High statistics data are expected for a single polarization observable.

BGOegg Experiment

BGOegg Experiment

> World's highest performance for the energies of 1 GeV or less.

Experiment	LEPS2/BGOegg	MAMI-A2	2 CH	BELSA/TAPS	BGO-OD
Calorimeter	BGOegg	Crystal Ball	TAPS	Crystal Barrel	BGO Rugby Ball
Scintillation crystal	BGO	NaI(Tl)	BaF_2	CsI(Tl)	BGO
Number of channels	1320	672	384 528	1290	480
Energy resolution (σ) at 1 GeV	1.38%	2.0%	2.6%	2.5%	1.3%
π^0 mass resolution (MeV/c ²)	6.7	9		10	12*
η mass resolution (MeV/c ²)	14.4	21		22	¹⁵ * 7/2

<u> π^0 photoproduction</u>

Physics aspects

High precision data can be obtained thanks to its **larger** σ . $I(\pi^0)=1 \Rightarrow Both N^*(I=\frac{1}{2}) \text{ and } \Delta^*(I=\frac{3}{2}) \text{ contribute in the s-channel.}$

Differential Cross Section of $\gamma p \rightarrow \pi^0 p$

22 energy bins for 1300<E_{γ}<2400 MeV & **17 polar angle bins** for -1.0<cos θ_{π}^{CM} <0.7

BGOegg [PRC100(2019)055202]
 CLAS [PRC76 (2007) 025211]
 CBELSA [PRL94 (2005) 012003]
 CBELSA [PRC84 (2011) 055203]
 GRAAL [EPJA26 (2005) 399]
 LEPS [PLB657 (2007) 32]

Note: BGOegg results are plotted in **every other energy bin**. Overlaid histograms indicate the systematic uncertainties of BGOegg results.

Photon Beam Asymmetry of \gamma p \rightarrow \pi^0 p

16 energy bins for 1300<E_y<2400 MeV & 16 polar angle bins for $-1.0 < \cos \theta_{\pi}^{CM} < 0.6$

BGOegg [PRC100(2019)055202]
 CLAS [PRC88 (2013) 065203]
 CBELSA [PRC81 (2010) 065210]
 GRAAL [EPJA26 (2005) 399]
 LEPS [PLB657 (2007) 32]
 Toaresbury [NPB104(1976)253]
 Daresbury [NPB154(1979)492]
 CEA [PRL28(1972)1403]
 Yerevan [PLB48(1974)463]
 Syst. error (hist) : 0.006 - 0.050

Angular behavior similar to the other experimental results at lower energies.

Photon Beam Asymmetry of \gamma p \rightarrow \pi^0 p

16 energy bins for 1300<E_y<2400 MeV & 16 polar angle bins for $-1.0 < \cos \theta_{\pi}^{CM} < 0.6$

BGOegg [PRC100(2019)055202]
 CLAS [PRC88 (2013) 065203]
 CBELSA [PRC81 (2010) 065210]
 GRAAL [EPJA26 (2005) 399]
 LEPS [PLB657 (2007) 32]
 Toaresbury [NPB104(1976)253]
 Daresbury [NPB154(1979)492]
 : CEA [PRL28(1972)1403]
 Yerevan [PLB48(1974)463]
 Syst. error (hist) : 0.006 - 0.050

- Angular behavior similar to the other experimental results at lower energies.
- Discrepancy b/w LCS vs. brems. at middle energies.

Photon Beam Asymmetry of \gamma p \rightarrow \pi^0 p

16 energy bins for 1300<E_y<2400 MeV & 16 polar angle bins for $-1.0 < \cos \theta_{\pi}^{CM} < 0.6$

BGOegg [PRC100(2019)055202]
 CLAS [PRC88 (2013) 065203]
 CBELSA [PRC81 (2010) 065210]
 GRAAL [EPJA26 (2005) 399]
 LEPS [PLB657 (2007) 32]
 Toaresbury [NPB104(1976)253]
 Daresbury [NPB154(1979)492]
 CEA [PRL28(1972)1403]
 Yerevan [PLB48(1974)463]
 Syst. error (hist) : 0.006 - 0.050

- Angular behavior similar to the other experimental results at lower energies.
- Discrepancy b/w LCS vs. brems. at middle energies.
- ➤ A wide angle measurement at E_γ≥1.9 GeV for the first time.

<u>Comparison with PWA: $d\sigma/d\Omega$ of $\gamma p \rightarrow \pi^0 p$ </u>

• : BGOegg data (2019) **Bonn-Gatchina - - -** : BG2014 : BG2019 η & $π^0 π^0$ photoproduction data from CBELSA. [PLB 803 (2020) 135323, EPJA 51 (2015) 95] **GW SAID** - : CM12 (2012) - : SM22 (2022) World-wide π^0 photoproduction data in 2011-2021.

[PRC 108 (2023) 065205]

All solutions more or less reproduce the BGOegg $d\sigma/d\Omega$ result.

<u>Comparison with PWA: Σ of $\gamma p \rightarrow \pi^0 p$ </u>

BGOegg data (2019) **Bonn-Gatchina –** – : BG2014 : BG2019 **GW SAID** : CM12 (2012) : SM22 (2022) Only a limited number of resonances have significant contribution. (PRC 108 (2023) 065205) E_{0+} : N(1535), N(1650) M_{1-} : N(1440) E_{1+}/M_{1+} : N(1720), Δ (1232), $\Delta(1620)$ E_{2-}/M_{2-} : N(1520), Δ (1700) E_{2+}/M_{2+} : N(1675), Δ (1905), $\Delta(1910)$ E_{3-}/M_{3-} : N(1680), Δ (1950)

<u>Comparison with PWA: Σ of $\gamma p \rightarrow \pi^0 p$ </u>

<u>η & η' photoproduction</u>

Physics aspects

 $I(\eta/\eta')=0 \Rightarrow Only \text{ contributions from } N^*(I=\frac{1}{2}) \text{ should exist.}$ Possible to investigate N^*s coupling with $s\overline{s}$.

 η' : Useful to explore **higher mass resonances**, but experimental

data are scarce, particularly for polarization observables.

BGOegg experiment

 $\gamma p \rightarrow \eta p ; \eta \rightarrow \gamma \gamma$ (Br=39.4%)

<u>η & η' photoproduction</u>

Physics aspects

 $I(\eta/\eta')=0 \Rightarrow$ Only contributions from $N^*(I=\frac{1}{2})$ should exist. Possible to investigate N^*s coupling with $s\overline{s}$.

 η' : Useful to explore **higher mass resonances**, but experimental

data are scarce, particularly for polarization observables.

BGOegg experiment

 $\begin{array}{ll} \gamma p \rightarrow \eta p \ ; \eta \rightarrow \gamma \gamma & (\text{Br=39.4\%}) \\ \gamma p \rightarrow \eta' p \ ; \eta' \rightarrow \gamma \gamma & (\text{Br=2.3\%}) \\ & \text{or } \eta' \rightarrow \pi^0 \pi^0 \eta \ (\text{Br=22.4\%}) \rightarrow 6\gamma \end{array}$

Differential Cross Section of $\gamma p \rightarrow \eta p$

20 energy bins for 1820< \sqrt{s} <2320 MeV & **16 polar angle bins** for -1.0< $\cos\theta_{\Pi}^{CM}$ <0.6

There are inconsistencies at $\cos \theta_{\eta}^{c.m.} \leq -0.2 \& W > 2 \text{ GeV}$ among experiments.

Comparison with PWA: $d\sigma/d\Omega$ of $\gamma p \rightarrow \eta p$

There are **ambiguities at backward angles & higher energies** reflecting the experimental situation.

Alternative method to measure $d\sigma/d\Omega$ of $\gamma p \rightarrow \eta p$

BGOegg standard method All the final-state particles are detected, but only direction is measured for a proton.

Alternative method to measure $d\sigma/d\Omega$ of $\gamma p \rightarrow \eta p$

BGOegg standard method All the final-state particles are detected, but **only direction** is measured for a proton.

Alternative analysis

 P_{proton} is also measured atRPC-TOF in an extremelyforward acceptance region.(Full kinematical informationat the kinematic fit.) \downarrow

Two results are consistent with each other.

Bump structure in $d\sigma/d\Omega$ of γp \rightarrow ηp

Photon Beam Asymmetry of γp→ηp

10 energy bins for $1820 < \sqrt{s} < 2320$ MeV & 8 polar angle bins for $-1.0 < \cos \theta_{\eta}^{CM} < 0.6$

New precise data for W>2.0 GeV & No PWA models reproduce our result.

Photon Beam Asymmetry of γp→ηp

10 energy bins for $1820 < \sqrt{s} < 2320$ MeV & 8 polar angle bins for $-1.0 < \cos \theta_{\Pi}^{CM} < 0.6$

New precise data for W>2.0 GeV & No PWA models reproduce our result. \Rightarrow Improved PWA solutions are required possibly with high-mass N^* contributions.

<u>A new analysis for $\gamma p \rightarrow \eta' p$ </u>

Opening angles in η' decays are large enough to cover forward acceptance.

Results in the two decay modes agree with each other. \Rightarrow Weighted averages were taken as combined results.

Differential cross section of $\gamma p \rightarrow \eta' p$

- The BGOegg result is statistically consistent with the CLAS and CBELSA/TAPS data.
- High precision measurement is achieved at the most backward angles.

20 / 26

Differential cross section of $\gamma p \rightarrow \eta' p$

- The BGOegg result is statistically consistent with the CLAS and CBELSA/TAPS data.
- High precision measurement is achieved at the most backward angles.

High energy enhancement is seen at the most backward angles.

Photon beam asymmetry of $\gamma p \rightarrow \eta' p$

Statistically consistent with the CLAS & Graal results at lower energies.

Photon beam asymmetry of $\gamma p \rightarrow \eta' p$

 Statistically consistent with the CLAS & Graal results at lower energies.
 New data at W>2.1 GeV.

Photon beam asymmetry of $\gamma p \rightarrow \eta' p$

21 / 26

Comparison with PWA: $d\sigma/d\Omega \& \Sigma$ of $\gamma p \rightarrow \eta' p$

- : BG2019 predictions [K. Nikonov & A. Sarantsev, Private Communication; PLB 772 (2017) 247]

There is room to improve the solution for reproducing Σ at W > 2140 MeV.

<u>ω photoproduction</u>

Physics aspects

I(ω)=0 \Rightarrow Only $N^*(I=\frac{1}{2})$ contribution exists at *s*-channel. Useful to investigate **higher mass resonances**. 12 spin amplitudes \Rightarrow Many observables ($d\sigma/d\Omega$, Σ , $\rho_{\lambda_V \lambda'_V}$, ...)

BGOegg experiment

Differential Cross Section of $\gamma p \rightarrow \omega p$

 ● BGOegg [PRC102 (2020) 025201]
 □ CLAS [PRC80 (2009) 065208]

 ○ CBELSA [EPJA 51(2015) 6]
 ☆ CBELSA [PLB749 (2015) 407]

 ↓ LEPS [PRC80 (2009) 052201R]
 △ LEPS-TPC [PTEP2015 013D01]

— BG2019 [K. Nikonov & A Sarantsev, Private communication; PLB 755 (2016) 97]

Inconsistencies at backward angles among experiments, affecting the existing PWA solution.

Small values of $|\rho_{1-1}^1|$ indicate stronger contributions of *s*-channel.

New measurements for Σ (W>2.1 GeV) & ρ_{1-1}^1 (W>2.0 GeV). Small values of $|\rho_{1-1}^1|$ indicate stronger contributions of *s*-channel. A current PWA solution more or less reproduces data points.

Summary & Prospects

- Spring-8 LEPS2/BGOegg experiment is unique for the spectroscopy of light baryon resonances because of the high linear polarization of a photon beam at $1.3 < E_{\gamma} < 2.4$ (1.82 < W < 2.32) GeV. In addition, precise data are newly given for extremely backward angles.
- The $d\sigma/d\Omega$, Σ, and SDME for the reactions $\gamma p \rightarrow \pi^0 p$, ηp , $\eta' p$, ωp have been measured as shown today. The statistics is being twice by using unanalyzed data.
- \blacktriangleright **<u>Phase-II experiment</u>** has just started. (In-medium η' mass study)

- (1) Liquid deuterium (neutron) target : Isospin structure of baryon resonances.
- (2) **Double-meson photoproduction** : High-mass resonance search. Require polarization observables in 3-body kinematics. [cf. **EPJA50** (2014) 74.]