

The study of $\mathbf{N}^{\star}(1535)$ and $\mathbf{N}^{*}(1650)$ from the lattice data

Jia－Jun Wu（UCAS）

Collaborators：C．D．Abell，D．B．Leinweber，Zhan－Wei Liu，A．W．Thomas Phys．Rev．D 108 （2023）9， 094519

Nstar2024 2024．6．15 York，British
 SUBAToMIC

中国科余伯大学
University of Chinese Academy of Sciences \qquad

Outline

- Introduction of HEFT : Derek's talk
- Analysis of N*(1535) and N*(1650)
- Summary and Outlook

Introduction of HEFT

J. M. M. Hall etc. PRD 87(2013), 094510

$$
\begin{aligned}
& H=H_{0}+H_{I} \\
& H_{0}=\sum_{i=1, n}\left|B_{i}\right\rangle m_{i}\left\langle B_{i}\right|+\sum_{\alpha}\left|\alpha\left(k_{\alpha}\right)\right\rangle\left[\sqrt{m_{\alpha 1}^{2}+k_{\alpha}^{2}}+\sqrt{m_{\alpha 2}^{2}+k_{\alpha}^{2}}\right]\left\langle\alpha\left(k_{\alpha}\right)\right|
\end{aligned}
$$

$\left|B_{i}\right\rangle \quad$ bare state, bare mass m_{i}
$\mid \alpha\left(\mathrm{k}_{\alpha}\right)>$ non-interaction channels

$$
\begin{aligned}
& H_{I}=\hat{g}+\hat{v} \\
& \hat{g}=\sum_{\alpha} \sum_{i=1, n}\left[\left|\alpha\left(k_{\alpha}\right)\right\rangle g_{i, \alpha}^{+}\left\langle B_{i}\right|+\left|B_{i}\right\rangle g_{i, \alpha}\left\langle\alpha\left(k_{\alpha}\right)\right|\right] \\
& \hat{v}=\sum_{\alpha, \beta}\left|\alpha\left(k_{\alpha}\right)\right\rangle v_{\alpha, \beta}\left\langle\beta\left(k_{\beta}\right)\right|
\end{aligned}
$$

Resonance

(Mass, Width, Pole position, Coupling)

Lattice
Spectrum

What is the Bare State?

$H=H_{0}+H_{I}$
$H_{0}=\sum_{i=1, n}\left|B_{i}\right\rangle m_{i}\left\langle B_{i}\right|+\sum_{\alpha}\left|\alpha\left(k_{\alpha}\right)\right\rangle\left[\sqrt{m_{\alpha 1}^{2}+k_{\alpha}^{2}}+\sqrt{m_{\alpha 2}^{2}+k_{\alpha}^{2}}\right] \backslash\left\langle\left(k_{\alpha}\right)\right|$
$\left|B_{i}\right\rangle \quad$ bare state, bare mass m_{i}
$\mid \alpha\left(k_{\alpha}\right)>$ non-interaction channels
ANALOGY (maybe inappropriate)
Quark $\longrightarrow \longrightarrow$ Person

Why Bare State ?

$H=H_{0}+H_{I}$
$H_{0}=\sum_{i=1, n}\left|B_{i}\right\rangle m_{i}\left\langle B_{i}\right|+\sum_{\alpha}\left|\alpha\left(k_{\alpha}\right)\right\rangle\left[\sqrt{m_{\alpha 1}^{2}+k_{\alpha}^{2}}+\sqrt{m_{\alpha 2}^{2}+k_{\alpha}^{2}}\right]\left\langle\alpha\left(k_{\alpha}\right)\right|$
$\left|\mathrm{B}_{\mathrm{i}}\right\rangle \quad$ bare state, bare mass m_{i}
$\left|\alpha\left(k_{\alpha}\right)\right\rangle$ non-interaction channels
ANALOGY (maybe inappropriate)

Introduction of HEFT

- T Matrix:
$t_{\alpha, \beta}\left(k_{\alpha}, k_{\beta}, E\right)=V_{\alpha, \beta}\left(k_{\alpha}, k_{\beta}\right)+\sum_{\gamma} \int k_{\gamma}^{2} d k_{\gamma} \frac{V_{\alpha, \gamma}\left(k_{\alpha}, k_{\gamma}\right) t_{\gamma, \beta}\left(k_{\gamma}, k_{\beta}, E\right)}{E-\sqrt{m_{\gamma 1}^{2}+k_{\gamma}^{2}}-\sqrt{m_{\gamma 2}^{2}+k_{\gamma}^{2}}+i \varepsilon}$

Resonance

(Mass, Width, Pole position, Coupling)

$$
\begin{aligned}
& S_{\alpha, \beta}=1-i 2 \sqrt{\rho_{\alpha}} t_{\alpha, \beta}\left(k_{0 \alpha}, k_{0 \beta}, E\right) \sqrt{\rho_{\beta}} \\
& \rho_{\alpha}=\frac{\pi k_{0 \alpha} \sqrt{m_{\alpha 1}^{2}+k_{0 \alpha}^{2}} \sqrt{m_{\alpha 1}^{2}+k_{0 \alpha}^{2}}}{E} \\
& \eta e^{2 i \delta_{\alpha}}=S_{\alpha, \alpha}
\end{aligned}
$$

HEFT

T matrix (Phase Shifts, inelasticity)

Lattice
Spectrum

Introduction of HEFT

- Hamiltonian with discrete momentum

$$
H_{0}=\sum_{i=1, n}\left|B_{i}\right\rangle m_{i}\left\langle B_{i}\right|+\sum_{\alpha, i}\left|\vec{k}_{\mathrm{i}},-\vec{k}_{\mathrm{i}}\right\rangle_{\alpha}\left[\sqrt{m_{\alpha_{B}}^{2}+k_{\alpha}^{2}}+\sqrt{m_{\alpha_{M}}^{2}+k_{\alpha}^{2}}\right]_{\alpha}\left\langle\vec{k}_{\mathrm{i}},-\vec{k}_{\mathrm{i}}\right|
$$

$$
H_{I}=\sum_{\mathrm{j}}(2 \pi / \mathrm{L})^{3 / 2} \sum_{\alpha} \sum_{i=1, n}^{\alpha, 1}\left[\left|\vec{k}_{\mathrm{j}},-\vec{k}_{\mathrm{j}}\right\rangle_{\alpha} g_{\left.\left.g_{i, \alpha}^{+}\left\langle B_{i}\right|+\left|B_{i}\right\rangle g_{i, \alpha}{ }_{\alpha}\left\langle\vec{k}_{\mathrm{j}},-\vec{k}_{\mathrm{j}}\right|\right]+\sum_{\mathrm{i}}(2 \pi /)^{3}\right)_{\alpha}^{3} \sum_{\beta}\left|\vec{k}_{\mathrm{i}},-\vec{k}_{\mathrm{i}}\right\rangle_{\alpha} v_{\alpha, \beta}\left\langle\vec{k}_{\mathrm{j}},-\vec{k}_{\mathrm{j}}\right| . \mid}\right.
$$

$$
\left(H_{0}+H_{I}\right)|\Psi>=E| \Psi>\quad \text { Eigen-Value } \leftrightarrow \quad \begin{aligned}
& \text { Lattice } \\
& \text { Spectrum }
\end{aligned}
$$

Eigen-Vector

T matrix

 inelasticity) (Phase Shifts,
Resonance

(Mass , Width, Pole position, Coupling)

HEFT

Momentur Space Real Discrete Momentum \$pace

Lattice
Spectrum

Introduction of HEFT

T matrix

(Phase Shifts, inelasticity)

Resonance

(Mass , Width, Pole position, Coupling)

1. Bulid Model

HEFT:

1. Build a Hamiltonian model;
2. If Experimental data available, we fit Experimental data to fix the parameters in the model;

If Lattice data available (close to physical pion mass), we fit these data;

If both, we can use both of them constraint the model parameters.

If we only have Lattice data with unphysical pion mass, we need another parameter for the mass dependence, such as mass slope.
3. From the fixed Hamiltonian, we can study the properties of Resonance. Especially, from the eigenvector in the finite volume, we can estimate the internal structure of the hadron.

3. Extract Phys.

Unphysical π mass ??

$N^{*}(1535)$

Zhan-wei Liu etc. Phys.Rev.Lett. 116 (2016) no.8, 082004

2 Channels: $\pi \mathrm{N}$ and $\eta \mathrm{N}$

$$
\frac{3 g_{\pi N}^{S} \tilde{u}(k) \tilde{u}\left(k^{\prime}\right)}{4 \pi^{2} f^{2}}
$$

$$
\begin{aligned}
& g_{\pi N}^{S}=-0.0608 \pm 0.0004 \\
& m_{0}=1601 \pm 14 \mathrm{MeV} \\
& g_{N_{\pi}^{*} \pi N}=0.186 \pm 0.006 \\
& g_{N_{0}^{*} \eta N}= 0.185 \pm 0.017 \\
& \chi_{\mathrm{DOF}}^{2}=6.8 \\
& 1531 \pm 29-i 88 \pm 2 \mathrm{MeV}
\end{aligned}
$$

$N^{*}(1535)$

Zhan-wei Liu etc. Phys.Rev.Lett. 116 (2016) no.8, 082004

The main components (at least 50%) of $\mathrm{N}^{*}(1535)$ is from the 3 quark core.

For $\mathrm{N}^{*}(1535) / \mathrm{N}^{*}(1650)$

Parameter	Value	Parameter	Value
$m_{N_{1}}^{(0)} / \mathrm{GeV}$	1.6301	$m_{N_{2}}^{(0)} / \mathrm{GeV}$	1.8612
$g_{\pi N}^{N_{1}}$	0.0898	$g_{\pi N}^{N_{2}}$	0.2181
$g_{\eta N}^{N_{1}}$	0.1525	$g_{\eta N}^{N_{2}}$	0.0009
${N_{1}}_{K \Lambda}$	0.0000	$g_{K \Lambda}^{N_{2}}$	-0.2367
$\Lambda_{\pi N}^{N_{1} / \mathrm{GeV}}$	1.2335	$\Lambda_{\pi N}^{N_{2}} / \mathrm{GeV}$	1.4000
$\Lambda_{\eta N}^{N_{1}} / \mathrm{GeV}$	1.2642	$\Lambda_{\eta N}^{N_{2}} / \mathrm{GeV}$	0.9521
$\Lambda_{K \Lambda}^{N_{1} / \mathrm{GeV}}$	\ldots	$\Lambda_{K \Lambda}^{N_{2}} / \mathrm{GeV}$	0.7283
$v_{\pi N, \pi N}$	-0.0655	$v_{\eta N, \eta N}$	-0.0245
$v_{\pi N, \eta N}$	0.0388	$v_{\eta N, K \Lambda}$	0.0320
$v_{\pi N, K \Lambda}$	-0.0757	$v_{K \Lambda, K \Lambda}$	0.1371
$\Lambda_{v, \pi N} / \mathrm{GeV}$	0.6000	$\Lambda_{v, \eta N} / \mathrm{GeV}$	0.9036
$\Lambda_{v, K \Lambda} / \mathrm{GeV}$	0.6060		

We consider three channels: $\pi N, \eta N, K \Lambda$

$$
\begin{array}{ll}
E_{N^{*}(1535)}=1510 \pm 10-(65 \pm 10) i \mathrm{MeV}, & E_{1}=1500-50 i \mathrm{MeV}, \\
E_{N^{*}(1650)}=1655 \pm 15-(67 \pm 18) i \mathrm{MeV} . & E_{2}=1658-56 i \mathrm{MeV},
\end{array}
$$

HEFT
11

Parameter	Value	Parameter	Value
$m_{N_{1}}^{(0)} / \mathrm{GeV}$	1.6301	$m_{N_{2}}^{(0)} / \mathrm{GeV}$	1.8612
$g_{\pi N}^{N_{1}}$	0.0898	$g_{\pi N}^{N_{2}}$	0.2181
$g_{\eta N}^{N_{1}}$	0.1525	$g_{\eta N}^{N_{2}}$	0.0009
$g_{K \Lambda}^{N_{1}}$	0.0000	$g_{K \Lambda}^{N_{2}}$	-0.2367
$\Lambda_{\pi N}^{N_{1} / \mathrm{GeV}}$	1.2335	$\Lambda_{\pi N}^{N_{2}} / \mathrm{GeV}$	1.4000
$\Lambda_{\eta N}^{N_{1} / \mathrm{GeV}}$	1.2642	$\Lambda_{\eta N}^{N_{2}} / \mathrm{GeV}$	0.9521
$\Lambda_{K \Lambda}^{N_{1}} / \mathrm{GeV}$	\ldots	$\Lambda_{K \Lambda}^{N_{2}} / \mathrm{GeV}$	0.7283
$v_{\pi N, \pi N}$	-0.0655	$v_{\eta N, \eta N}$	-0.0245
$v_{\pi N, \eta N}$	0.0388	$v_{\eta N, K \Lambda}$	0.0320
$v_{\pi N, K \Lambda}$	-0.0757	$v_{K \Lambda, K \Lambda}$	0.1371
$\Lambda_{v, \pi N} / \mathrm{GeV}$	0.6000	$\Lambda_{v, \eta N} / \mathrm{GeV}$	0.9036
$\Lambda_{v, K \Lambda} / \mathrm{GeV}$	0.6060		

For $\mathrm{N}^{*}(1535) / \mathrm{N}^{*}(1650)$

$$
\begin{gathered}
m_{N_{i}}\left(m_{\pi}^{2}\right)=m_{N_{i}}^{(0)}+\alpha_{N_{i}}\left(m_{\pi}^{2}-\left.m_{\pi}^{2}\right|_{\text {phys }}\right), \\
\alpha_{N_{1}}=0.944 \mathrm{GeV}^{-1}, \alpha_{N_{2}}=0.611 \mathrm{GeV}^{-1}, \\
\text { Fitting }
\end{gathered}
$$

Parameter	Value	Parameter	Value
$m_{N_{1}}^{(0)} / \mathrm{GeV}$	1.6301	$m_{N_{2}}^{(0)} / \mathrm{GeV}$	1.8612
$g_{\pi N}^{N_{1}}$	0.0898	$g_{\pi N}^{N_{2}}$	0.2181
$g_{\eta N}^{N_{1}}$	0.1525	$g_{\eta N}^{N_{2}}$	0.0009
$g_{K \Lambda}^{N_{1}}$	0.0000	$g_{K \Lambda}^{N_{2}}$	-0.2367
$\Lambda_{\pi N}^{N_{1} / \mathrm{GeV}}$	1.2335	$\Lambda_{\pi N}^{N_{2} / \mathrm{GeV}}$	1.4000
$\Lambda_{\eta N}^{N_{1} / \mathrm{GeV}}$	1.2642	$\Lambda_{\eta N}^{N_{2}} / \mathrm{GeV}$	0.9521
$\Lambda_{K \Lambda}^{N_{1}} / \mathrm{GeV}$	\ldots	$\Lambda_{K \Lambda}^{N_{2}} / \mathrm{GeV}$	0.7283
$v_{\pi N, \pi N}$	-0.0655	$v_{\eta N, \eta N}$	-0.0245
$v_{\pi N, \eta N}$	0.0388	$v_{\eta N, K \Lambda}$	0.0320
$v_{\pi N, K \Lambda}$	-0.0757	$v_{K \Lambda, K \Lambda}$	0.1371
$\Lambda_{v, \pi N} / \mathrm{GeV}$	0.6000	$\Lambda_{v, \eta N} / \mathrm{GeV}$	0.9036
$\Lambda_{v, K \Lambda} / \mathrm{GeV}$	0.6060		

$$
\begin{gathered}
m_{N_{i}}\left(m_{\pi}^{2}\right)=m_{N_{i}}^{(0)}+\alpha_{N_{i}}\left(m_{\pi}^{2}-\left.m_{\pi}^{2}\right|_{\text {phys }}\right), \\
\alpha_{N_{1}}=0.944 \mathrm{GeV}^{-1}, \alpha_{N_{2}}=0.611 \mathrm{GeV}^{-1}, \\
\text { Fitting }
\end{gathered}
$$

For $\mathrm{N}^{*}(1535) / \mathrm{N}^{*}(1650)$
 $\mathbf{L} \sim \mathbf{3} \mathbf{f m} \quad$ Fitting

University of Chinese Academy of Sciences

$\mathbf{L} \sim \mathbf{3} \mathbf{f m}$ Fitting

For N*(1535)/ N*(1650)

1. Scattering state 3q state
2. Two clear states
$\mathbf{L} \sim \mathbf{2 ~ f m}$ Not Fit

(28) 中

For N*(1535)

For One bare states:

$$
\bar{\chi}(0)|\Omega\rangle=\left|B_{0}\right\rangle
$$

Correlation Function: $\quad G_{\chi}(t, \boldsymbol{p})=\sum_{\boldsymbol{x}} e^{-i \boldsymbol{p} \cdot \boldsymbol{x}}\langle\bar{\Omega}| \chi(\boldsymbol{x}, t) \bar{\chi}(0,0)|\Omega\rangle$,

$$
\left.G_{\chi}(t)=\sum_{i}^{x}|\langle\Omega| \chi| E_{i}\right\rangle\left.\right|^{2} e^{-E_{i} t}, \quad G_{B_{0}}(t)=\sum_{i}\left|\left\langle B_{0} \mid E_{i}\right\rangle\right|^{2} e^{-E_{i} t}
$$

Contamination function: $C_{B_{0}}(t)=\frac{{ }^{i} 1}{G_{B_{0}}(t)} \sum_{i \neq B_{0}}\left|\left\langle B_{0} \mid E_{i}\right\rangle\right|^{2} e^{-E_{i} t}$

Define "Contamination Function" to compare HEFT VS LQCD

If $\left|\mathrm{E}_{\mathrm{B} 0}\right\rangle$ is a ground state,
$\mathrm{C}_{\mathrm{B} 0} \sim 0$.
If $\left|\mathrm{E}_{\mathrm{B} 0}\right\rangle$ is a excited state, $\mathrm{C}_{\mathrm{B} 0}(\mathrm{t})$ will have a minimal value as function of t.

For N*(1535)

For One bare states:

$$
\bar{\chi}(0)|\Omega\rangle=\left|B_{0}\right\rangle
$$

Correlation Function:

$$
\begin{aligned}
G_{\chi}(t, \boldsymbol{p}) & =\sum_{\boldsymbol{x}} e^{-i \boldsymbol{p} \cdot \boldsymbol{x}}\langle\bar{\Omega}| \chi(\boldsymbol{x}, t) \bar{\chi}(0,0)|\Omega\rangle, \\
G_{\chi}(t) & \left.=\sum_{i}|\langle\Omega| \chi| E_{i}\right\rangle\left.\right|^{2} e^{-E_{i} t}, \quad G_{B_{0}}(t)=\sum_{i}\left|\left\langle B_{0} \mid E_{i}\right\rangle\right|^{2} e^{-E_{i} t}
\end{aligned}
$$

Contamination function: $C_{B_{0}}(t)=\frac{{ }^{i} 1}{G_{B_{0}}(t)} \sum_{i \neq B_{0}}\left|\left\langle B_{0} \mid E_{i}\right\rangle\right|^{2} e^{-E_{i} t}$
Define "Contamination Function" to compare HEFT VS LQCD

If $\left|\mathrm{E}_{\mathrm{B} 0}\right\rangle$ is a ground state,
$\mathrm{C}_{\mathrm{B} 0} \sim 0$.
If $\left|\mathrm{E}_{\mathrm{B} 0}\right\rangle$ is a excited state, $\mathrm{C}_{\mathrm{B} 0}(\mathrm{t})$ will have a minimal value as function of t.

For Two bare states:

$$
\left(\alpha^{*} \overline{\chi_{1}}+\beta^{*} \overline{\chi_{2}}\right)|\Omega\rangle=\alpha^{*}\left|N_{1}\right\rangle+\beta^{*}\left|N_{2}\right\rangle,
$$

Correlation Function:

$$
\begin{aligned}
G_{j}(\boldsymbol{p}, t) & =\sum_{\boldsymbol{x}} e^{-i \boldsymbol{p} \cdot \boldsymbol{x}}\langle\bar{\Omega}|\left(\alpha_{j} \chi_{1}(\boldsymbol{x}, t)+\beta_{j} \chi_{2}(\boldsymbol{x}, t)\left(\alpha_{j}^{*} \bar{\chi}_{1}(0)+\beta_{j}^{*} \bar{\chi}_{2}(0)\right)|\Omega\rangle\right. \\
G_{j}(t) & =\sum_{i}\left(\alpha_{j}\left\langle N_{1}\right|+\beta_{j}\left\langle N_{2}\right|\right)\left|E_{i}\right\rangle\left\langle E_{i}\right|\left(\alpha_{j}^{*}\left|N_{1}\right\rangle+\beta_{j}^{*}\left|N_{2}\right\rangle\right) e^{-E_{i} t}, \\
& =\sum_{i}\left|\alpha_{j}\left\langle N_{1} \mid E_{i}\right\rangle+\beta_{j}\left\langle N_{2} \mid E_{i}\right\rangle\right|^{2} e^{-E_{i} t} .
\end{aligned}
$$

Contamination function: $\quad C_{j}(t)=\frac{1}{G_{j}(t)} \sum_{i \neq N_{1}, N_{2}}\left(\alpha_{j}\left\langle N_{1} \mid E_{i}\right\rangle+\beta_{j}\left\langle N_{2} \mid E_{i}\right\rangle\right)^{2} e^{-E_{i} t}$

$$
\begin{array}{ll}
\alpha_{1}=\left\langle N_{1} \mid E_{N_{1}}\right\rangle, & \beta_{1}=\left\langle N_{2} \mid E_{N_{1}}\right\rangle, \\
\alpha_{2}=\left\langle N_{1} \mid E_{N_{2}}\right\rangle, & \beta_{2}=\left\langle N_{2} \mid E_{N_{2}}\right\rangle
\end{array}
$$

Summary

- Here we find that the interpretation of the two resonances as three-quark cores dressed by scattering-state dynamics is consistent with the $L \sim 3 \mathrm{fm}$ lattice calculations.
- To extend to the $L \mathbf{\sim} \mathbf{~ f m}$ and $\mathbf{4} \mathbf{f m}$ are both quiet good.
- We define a "contamination function" related to the overlap of bare states with eigenstates, then we compare this function by Lattice input and HEFT results.
- All of these consistent comparisons show that the results of HEFT correctly reflect the structure of hadron from experimental and lattice data.

Outlook

- The most big problem is too many parameters.
- We have 21 free parameters! Data driven motivation.
- Now we want to improve our model by including $K \Sigma$ channel, ie., it will be four coupled channels.
- By using SU(3) symmetry, we set the fixed relationship of coupling constants of bare state with channels, and channels.
- Correspondingly, the fitting will be much hard.

Parameter	Value	Parameter	Value
$m_{N_{1}}^{(0)} / \mathrm{GeV}$	1.6301	$m_{N_{2}}^{(0)} / \mathrm{GeV}$	1.8612
$g_{\pi_{1}}^{N_{1}}$	0.0898	$g_{\pi N}^{N_{2}}$	0.2181
$g_{\eta_{1}}^{N_{N}}$	0.1525	$g_{\eta N}^{N N_{2}}$	0.0009
$\eta_{K \Lambda}^{N_{1}}$	0.0000	$g_{K \Lambda}^{N_{2}}$	-0.2367
$\Lambda_{\pi N}^{N_{N}} / \mathrm{GeV}$	1.2335	$\Lambda_{\pi N}^{N_{2}} / \mathrm{GeV}$	1.4000
$\Lambda_{\eta N}^{N_{1}} / \mathrm{GeV}$	1.2642	$\Lambda_{\eta N}^{N_{2}} / \mathrm{GeV}$	0.9521
$\Lambda_{K \Lambda}^{N_{1}} / \mathrm{GeV}$	\cdots	$\Lambda_{K \Lambda}^{N_{2}} / \mathrm{GeV}$	0.7283
$v_{\pi N, \pi N}$	-0.0655	$v_{\eta N, \eta N}$	-0.0245
$v_{\pi N, \eta N}$	0.0388	$v_{\eta N, K \Lambda}$	0.0320
$v_{\pi N, K \Lambda}$	-0.0757	$v_{K \Lambda, K \Lambda}$	0.1371
$\Lambda_{v, \pi N} / \mathrm{GeV}$	0.6000	$\Lambda_{v, \eta N} / \mathrm{GeV}$	0.9036
$\Lambda_{v, K \Lambda} / \mathrm{GeV}$	0.6060		

$$
\begin{aligned}
& \text { Bare masses (2): } \\
& m_{N * 1} \sim 1535, \quad m_{N * 2} \sim 1650 \\
& \text { Bare-Channel couplings }(2+2): \\
& g_{01}, \quad \Lambda_{1}, \quad g_{02}, \quad \Lambda_{2} \\
& \text { Channel-Channel coupling: } \\
& 1 \text { couplings: } \pi N, \eta N, K \Lambda, K \Sigma \\
& 4 \text { (or 1) cuts for each channel }
\end{aligned}
$$

Total: 8 or 11 parameters !

University of Chinese Academy of Sciences

Thanks for attention!

$\sqrt{\pi}$

