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Landau Singularities may not correspond to poles of the S-matrix, but
can mimic a resonance.

Originally proposed by Landau. Recently used to explain a lot of
observed peaks (one-loop level, rescattering effects not taken into
account).
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a1(1420): resonance like structure in COMPASS experiment.
(10.1103/PhysRevLett.115.082001)

Interpretation as a kinematical singularity — Mikhasenko et al.
(10.1103/PhysRevD.91.094015)

Triangle singularities in systems with non-zero spin particles — Bayar
et al. (10.1103/PhysRevD.94.074039)

Review — Guo et al. (10.1016/j.ppnp.2020.103757)

Relevance to lattice QCD — Korpa et al.
(10.1103/PhysRevD.107.L031505), Isken et al.
(10.1103/PhysRevD.109.034032)
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The Landau Equations

Can one say something about the non-analyticities of an integral,
without actually evaluating it? E.g.,

f (z) =

∫
C
dw g(z ,w).

Singularities in g can be avoided — contour deformation (to a
contour C ′).

When is this not possible?

1 Endpoint singularities.
2 Pinch singularities.
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The Landau Equations: singularities corresponding to Feynman
integrals (Landau singularities).

For the Feynman integral with N internal propagators and l loop
momenta,

I1 =

∫
l∏

i=1

d4ki
1∏N

r=1(qr (ki )
2 −m2

r )
.

For some real parameters αi , the Landau equations read,

αi (q
2
i −m2

i ) = 0 =⇒ αi = 0 or q2i = m2
i ,∑

i∈loop
αi q

µ
i (kj) = 0.
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αi ̸= 0 =⇒ all propagators go on-shell for the leading singularity.
One also needs αi > 0.

αi = 0 case is called the subleading singularity — equivalent to
contracting the propagator.

Interesting analogy: Feynman diagrams → electrical circuits;
propagators → wires, with current qi and resistance αi . Then the
Landau equations are identical to Kirchhoff’s law!2
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One also needs αi > 0.

αi = 0 case is called the subleading singularity — equivalent to
contracting the propagator.

Interesting analogy: Feynman diagrams → electrical circuits;
propagators → wires, with current qi and resistance αi . Then the
Landau equations are identical to Kirchhoff’s law!2

2∆V =
∑

IR, for a triangle circuit with ∆V = 0.
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The leading Landau singularity associated with the graph:

Landau singularity for p3 = mπ: p2/GeV ≡
√
σ/GeV ∈ [0.986, 1.024]

and p1/GeV ≡
√
s/GeV ∈ [1.385, 1.436].
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What happens to singularities after rescattering? Ladder diagrams.

1 + 1-loop diagram:

Check for leading and subleading singularities. . .
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For subleading singularities go through all contractions and check for
singular graphs. . .
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Accommodating infinite rescatterings.

The triangle singularity is present and no other singularities.
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Landau equations give the conditions for the singularity to be present.

One still needs to evaulate the corresponding Feynman integrals.

13 / 30



Introduction Analytic Aspects Infinite Volume Unitarity Formalism Conclusions

Landau equations give the conditions for the singularity to be present.

One still needs to evaulate the corresponding Feynman integrals.

13 / 30



Introduction Analytic Aspects Infinite Volume Unitarity Formalism Conclusions

Study the system using Infinite Volume 3-Body Unitary Formalism,
due to Mai et al.3

In brief: the system is split into a two-body subsystem — the isobar,
and the spectator, which is on-shell.

The full three-body amplitude is split into a connected and a
disconnected amplitude.4

One considers the Bethe-Salpeter ansatz, T = B + BGT , to
determine T .4

310.1140/epja/i2017-12368-4
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The equation to be solved,

T (p, q) = B(p, q) +

∫
d3l

(2π)3
1

2El
B(p, l)τ(σ(l))T (l , q).

We have the explicit forms of B and τ .

In this work, we consider scalar propagators, in relative s-wave.
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Need to carry out a coupled channel analysis.

There are two unknowns corresponding to each isobar — coupling
and bare mass.

These are fixed through PDG values of physical mass and width.

For f0 we also make use of gK/gp ratio from BaBaR collaboration.
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B is parametrised through the spectator masses.

Diagrammatically,
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The integral is solved numerically, using Gaussian quadrature.

But, singularities on the integration contour may prevent numerical
implementation.

Contour deformation: Evaluate the integral along a complex contour,
that is far from the singularities → obtain T (

√
s, q ∈ C).
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But, we need the amplitudes for q ∈ R → can be done in different
ways!
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The solution of the Bethe-Salpeter equation can be given in form of
the Born series.

This defines the loop expansion for the invariant mass distributions.

Complex Contour Analytic Continuation: We use a continued
fraction to obtain the isobar-spectator amplitude for q ∈ R.
At 1-loop level (the triangle),
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Amplitude squared vs.
√
s, for√

σ = 0.99 GeV.

We see the (leading) Landau singularity in both the plots.
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The solution of the Bethe-Salpeter equation can be given in form of
the Born series.

This defines the loop expansion for the invariant mass distributions.
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At 1 +∞-loop level,
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The magnitutes are quite similar!
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The order of magnitude of the amplitudes at the triangle level is
much larger than the subsequent levels.

Triangle diagram contributes the most to the amplitude:
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Charecteristic of triangle singularities: very sensitive to invariant
masses!
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Conclusions

Triangle singularity at 1-loop level and at higher loops as subleading
singularity.

The isobar-spectator model numerically implemented and the triangle
singularity observed at 1 +∞-loop level.

The singularity is of logarithmic nature at all levels.

The higher order diagrams did not have significant contributions =⇒
explains why no need to take final state interactions into account.

Outlook:

1 Realistic model — spin with pseudovector source.
2 a1(1420) on the lattice? Implement finite volume unitarity.5
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Landau singularities

Endpoint singularities: singularities in
g , hitting the contour C . E.g.,

f (z) =

∫ 2

1
dw

1

w − z
. (1) -π

-π /2

0

π /2

π
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Pinch singularities: Contour C , gets
trapped between two singularities in
g . E.g.,

f (z) =

∫ 2

1
dw

1

(w − z)(w − 5/2)
.

(2)

-π

-π /2

0

π /2

π
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Pinch singularity avoided when the
singularities approach from the same
side of the contour.

-π

-π /2

0

π /2

π
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The Other Method

Complex Contour on Riemann Surfaces (Cahill & Sloan)6:
Instead of a continued fraction, use the knowledge of the location of
the branch cuts to analytically continue the amplitude for q ∈ R.7
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Branch cuts of B for large

q.

610.1016/0375-9474(71)90156-4
7For a comprehensive review: The Quantum Mechanical Three-Body Problem,

Schmid & Ziegelmann.
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At 1 +∞-loop level,
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Matches with the other method.
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