Triangle Singularities in a Hilbert's House NSTAR24, York

Ajay S. Sakthivasan¹

M. Döring ^{2,3} M. Mai ^{1,2} A. Rusetsky ^{1,4}

¹HISKP & BCTP, University of Bonn

²INS & Department of Physics, GWU

³Thomas Jefferson National Accelerator Facility

⁴Tbilisi State University

June 17, 2024

Presentation Outline

2 Analytic Aspects

3 Infinite Volume Unitarity Formalism

4 Conclusions

Introduction

• Hadronic resonances correspond to poles of the S-matrix.

Introduction

- Hadronic resonances correspond to poles of the S-matrix.
- Experimentally peaks in invariant mass distributions.

Introduction

- Hadronic resonances correspond to poles of the S-matrix.
- Experimentally peaks in invariant mass distributions.
- All observed peaks correspond to hadronic states? No.

• Landau Singularities may not correspond to poles of the *S*-matrix, but can *mimic* a resonance.

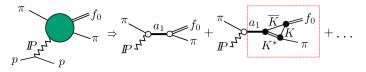
- Landau Singularities may not correspond to poles of the S-matrix, but can *mimic* a resonance.
- Originally proposed by Landau. Recently used to explain a lot of observed peaks (one-loop level, rescattering effects not taken into account).

- Landau Singularities may not correspond to poles of the *S*-matrix, but can *mimic* a resonance.
- Originally proposed by Landau. Recently used to explain a lot of observed peaks (one-loop level, rescattering effects not taken into account).
- We try to achieve the following:

- Landau Singularities may not correspond to poles of the *S*-matrix, but can *mimic* a resonance.
- Originally proposed by Landau. Recently used to explain a lot of observed peaks (one-loop level, rescattering effects not taken into account).
- We try to achieve the following:
 - To systematically study the effect of final-state rescattering.

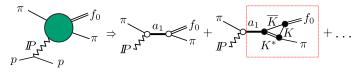
- Landau Singularities may not correspond to poles of the *S*-matrix, but can *mimic* a resonance.
- Originally proposed by Landau. Recently used to explain a lot of observed peaks (one-loop level, rescattering effects not taken into account).
- We try to achieve the following:
 - It o systematically study the effect of final-state rescattering.
 - It consistently describe the unstable particles.

- Landau Singularities may not correspond to poles of the *S*-matrix, but can *mimic* a resonance.
- Originally proposed by Landau. Recently used to explain a lot of observed peaks (one-loop level, rescattering effects not taken into account).
- We try to achieve the following:
 - To systematically study the effect of final-state rescattering.
 - 2 To consistently describe the unstable particles.
 - Solution Apply this to an $a_1(1420)$ -like system, and eventually the $a_1(1420)$ system¹.



¹Figure from: 10.1103/physrevlett.127.082501

- Landau Singularities may not correspond to poles of the *S*-matrix, but can *mimic* a resonance.
- Originally proposed by Landau. Recently used to explain a lot of observed peaks (one-loop level, rescattering effects not taken into account).
- We try to achieve the following:
 - **1** To systematically study the effect of final-state rescattering.
 - 2 To consistently describe the unstable particles.
 - Apply this to an a₁(1420)-like system, and eventually the a₁(1420) system¹.



¹Figure from: 10.1103/physrevlett.127.082501

• *a*₁(1420): resonance like structure in COMPASS experiment. (10.1103/PhysRevLett.115.082001)

- *a*₁(1420): resonance like structure in COMPASS experiment. (10.1103/PhysRevLett.115.082001)
- Interpretation as a kinematical singularity Mikhasenko et al. (10.1103/PhysRevD.91.094015)

- *a*₁(1420): resonance like structure in COMPASS experiment. (10.1103/PhysRevLett.115.082001)
- Interpretation as a kinematical singularity Mikhasenko et al. (10.1103/PhysRevD.91.094015)
- Triangle singularities in systems with non-zero spin particles Bayar et al. (10.1103/PhysRevD.94.074039)

- *a*₁(1420): resonance like structure in COMPASS experiment. (10.1103/PhysRevLett.115.082001)
- Interpretation as a kinematical singularity Mikhasenko et al. (10.1103/PhysRevD.91.094015)
- Triangle singularities in systems with non-zero spin particles Bayar et al. (10.1103/PhysRevD.94.074039)
- Review Guo et al. (10.1016/j.ppnp.2020.103757)

- *a*₁(1420): resonance like structure in COMPASS experiment. (10.1103/PhysRevLett.115.082001)
- Interpretation as a kinematical singularity Mikhasenko et al. (10.1103/PhysRevD.91.094015)
- Triangle singularities in systems with non-zero spin particles Bayar et al. (10.1103/PhysRevD.94.074039)
- Review Guo et al. (10.1016/j.ppnp.2020.103757)
- Relevance to lattice QCD Korpa et al. (10.1103/PhysRevD.107.L031505), Isken et al. (10.1103/PhysRevD.109.034032)

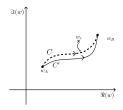
• Can one say something about the non-analyticities of an integral, without actually evaluating it? E.g.,

$$f(z)=\int_C dw \ g(z,w).$$

• Can one say something about the non-analyticities of an integral, without actually evaluating it? E.g.,

$$f(z)=\int_C dw \ g(z,w).$$

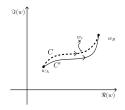
Singularities in g can be avoided — contour deformation (to a contour C').



• Can one say something about the non-analyticities of an integral, without actually evaluating it? E.g.,

$$f(z)=\int_C dw \ g(z,w).$$

Singularities in g can be avoided — contour deformation (to a contour C').

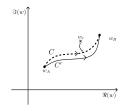


• When is this not possible?

• Can one say something about the non-analyticities of an integral, without actually evaluating it? E.g.,

$$f(z)=\int_C dw \ g(z,w).$$

Singularities in g can be avoided — contour deformation (to a contour C').

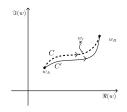


When is this not possible?
Endpoint singularities.

• Can one say something about the non-analyticities of an integral, without actually evaluating it? E.g.,

$$f(z)=\int_C dw \ g(z,w).$$

Singularities in g can be avoided — contour deformation (to a contour C').



- When is this not possible?
 - Endpoint singularities.
 - Pinch singularities.

• The Landau Equations: singularities corresponding to Feynman integrals (*Landau singularities*).

Analytic Aspects

- The Landau Equations: singularities corresponding to Feynman integrals (*Landau singularities*).
- For the Feynman integral with N internal propagators and / loop momenta,

$$I_1 = \int \prod_{i=1}^l d^4 k_i \ \frac{1}{\prod_{r=1}^N (q_r(k_i)^2 - m_r^2)}.$$

Analytic Aspects

- The Landau Equations: singularities corresponding to Feynman integrals (*Landau singularities*).
- For the Feynman integral with N internal propagators and / loop momenta,

$$H_1 = \int \prod_{i=1}^{l} d^4 k_i \; rac{1}{\prod_{r=1}^{N} (q_r(k_i)^2 - m_r^2)}.$$

• For some real parameters α_i , the Landau equations read,

$$\alpha_i(q_i^2 - m_i^2) = 0 \implies \alpha_i = 0 \text{ or } q_i^2 = m_i^2,$$
$$\sum_{i \in \text{loop}} \alpha_i \ q_i^{\mu}(k_j) = 0.$$

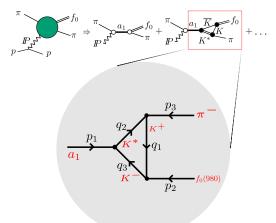
• $\alpha_i \neq 0 \implies$ all propagators go on-shell for the leading singularity. One also needs $\alpha_i > 0$.

- α_i ≠ 0 ⇒ all propagators go on-shell for the leading singularity. One also needs α_i > 0.
- α_i = 0 case is called the subleading singularity equivalent to contracting the propagator.

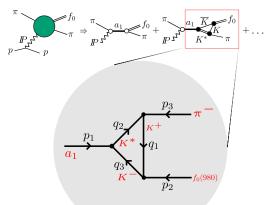
- α_i ≠ 0 ⇒ all propagators go on-shell for the leading singularity. One also needs α_i > 0.
- α_i = 0 case is called the subleading singularity equivalent to contracting the propagator.
- Interesting analogy: Feynman diagrams \rightarrow electrical circuits; propagators \rightarrow wires, with current q_i and resistance α_i . Then the Landau equations are identical to Kirchhoff's law!²

 $^{2}\Delta V = \sum IR$, for a triangle circuit with $\Delta V = 0$.

• The leading Landau singularity associated with the graph:



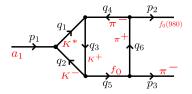
• The leading Landau singularity associated with the graph:



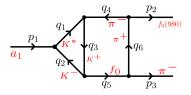
• Landau singularity for $p_3 = m_{\pi}$: $p_2/\text{GeV} \equiv \sqrt{\sigma}/\text{GeV} \in [0.986, 1.024]$ and $p_1/\text{GeV} \equiv \sqrt{s}/\text{GeV} \in [1.385, 1.436]$.

• What happens to singularities after rescattering? Ladder diagrams.

- What happens to singularities after rescattering? Ladder diagrams.
- 1 + 1-loop diagram:



- What happens to singularities after rescattering? Ladder diagrams.
- 1 + 1-loop diagram:

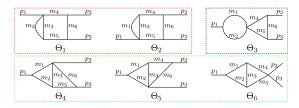


• Check for leading and subleading singularities...

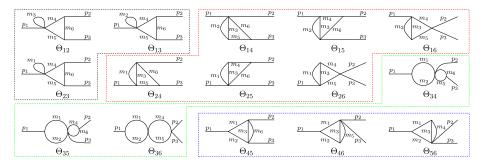
• Leading singularity is not present.

- Leading singularity is not present.
- For subleading singularities go through all contractions and check for singular graphs. . .

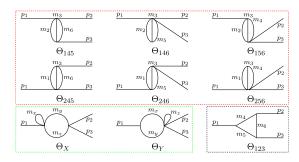
- Leading singularity is not present.
- For subleading singularities go through all contractions and check for singular graphs. . .



- Leading singularity is not present.
- For subleading singularities go through all contractions and check for singular graphs. . .



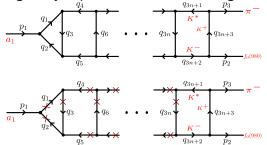
- Leading singularity is not present.
- For subleading singularities go through all contractions and check for singular graphs. . .



• Accommodating infinite rescatterings.

Analytic Aspects

- Accommodating infinite rescatterings.
- The triangle singularity is present and no other singularities.



• Landau equations give the conditions for the singularity to be present.

- Landau equations give the conditions for the singularity to be present.
- One still needs to evaulate the corresponding Feynman integrals.

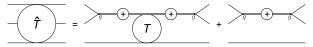
• Study the system using Infinite Volume 3-Body Unitary Formalism, due to Mai et al.³

³10.1140/epja/i2017-12368-4

- Study the system using Infinite Volume 3-Body Unitary Formalism, due to Mai et al.³
- In brief: the system is split into a two-body subsystem the isobar, and the spectator, which is on-shell.

³10.1140/epja/i2017-12368-4

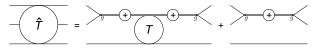
- Study the system using Infinite Volume 3-Body Unitary Formalism, due to Mai et al.³
- In brief: the system is split into a two-body subsystem the isobar, and the spectator, which is on-shell.
- The full three-body amplitude is split into a connected and a disconnected amplitude.⁴



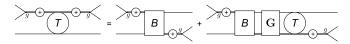
³10.1140/epja/i2017-12368-4

⁴Figure from: 10.1140/epja/i2017-12368-4

- Study the system using Infinite Volume 3-Body Unitary Formalism, due to Mai et al.³
- In brief: the system is split into a two-body subsystem the isobar, and the spectator, which is on-shell.
- The full three-body amplitude is split into a connected and a disconnected amplitude.⁴



• One considers the Bethe-Salpeter ansatz, T = B + BGT, to determine T.⁴



³10.1140/epja/i2017-12368-4 ⁴Figure from: 10.1140/epja/i2017-12368-4 • The equation to be solved,

$$T(p,q) = B(p,q) + \int \frac{d^3\mathbf{I}}{(2\pi)^3} \frac{1}{2E_I} B(p,I)\tau(\sigma(I))T(I,q).$$

• The equation to be solved,

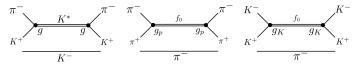
$$T(p,q) = B(p,q) + \int \frac{d^3\mathbf{I}}{(2\pi)^3} \frac{1}{2E_I} B(p,I)\tau(\sigma(I))T(I,q).$$

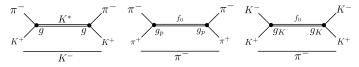
• We have the explicit forms of B and τ .

• The equation to be solved,

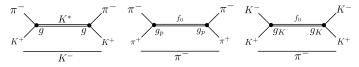
$$T(p,q) = B(p,q) + \int \frac{d^3\mathbf{I}}{(2\pi)^3} \frac{1}{2E_I} B(p,I)\tau(\sigma(I))T(I,q).$$

- We have the explicit forms of B and τ .
- In this work, we consider scalar propagators, in relative s-wave.

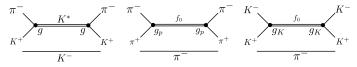




• There are two unknowns corresponding to each isobar — coupling and bare mass.



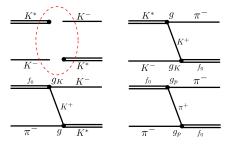
- There are two unknowns corresponding to each isobar coupling and bare mass.
- These are fixed through PDG values of physical mass and width.



- There are two unknowns corresponding to each isobar coupling and bare mass.
- These are fixed through PDG values of physical mass and width.
- For f_0 we also make use of g_K/g_p ratio from BaBaR collaboration.

• *B* is parametrised through the spectator masses.

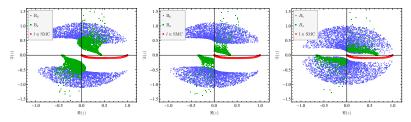
- *B* is parametrised through the spectator masses.
- Diagrammatically,



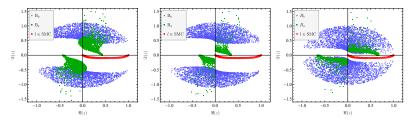
• The integral is solved numerically, using Gaussian quadrature.

- The integral is solved numerically, using Gaussian quadrature.
- But, singularities on the integration contour may prevent numerical implementation.

- The integral is solved numerically, using Gaussian quadrature.
- But, singularities on the integration contour may prevent numerical implementation.
- Contour deformation: Evaluate the integral along a complex contour, that is far from the singularities → obtain T(√s, q ∈ C).



- The integral is solved numerically, using Gaussian quadrature.
- But, singularities on the integration contour may prevent numerical implementation.
- Contour deformation: Evaluate the integral along a complex contour, that is far from the singularities → obtain T(√s, q ∈ C).



• But, we need the amplitudes for $q \in \mathbb{R} \to \mathsf{can}$ be done in different ways!

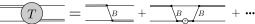
$$\boxed{T} = \boxed{B} + \boxed{B} + \cdots$$

$$\boxed{T} = \boxed{B} + \boxed{B} + \cdots$$

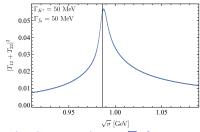
• This defines the loop expansion for the invariant mass distributions.

$$\boxed{T} = \boxed{B} + \boxed{B} + \cdots$$

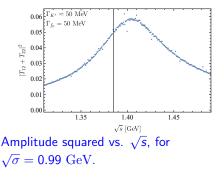
- This defines the loop expansion for the invariant mass distributions.
- Complex Contour Analytic Continuation: We use a continued fraction to obtain the isobar-spectator amplitude for *q* ∈ ℝ.

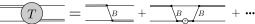


- This defines the loop expansion for the invariant mass distributions.
- Complex Contour Analytic Continuation: We use a continued fraction to obtain the isobar-spectator amplitude for *q* ∈ ℝ.
- At 1-loop level (the triangle),

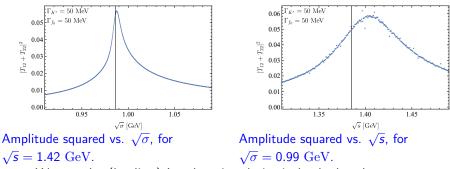


Amplitude squared vs. $\sqrt{\sigma}$, for $\sqrt{s} = 1.42 \text{ GeV}.$

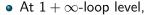


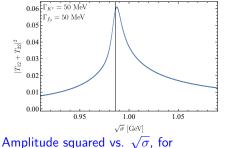


- This defines the loop expansion for the invariant mass distributions.
- Complex Contour Analytic Continuation: We use a continued fraction to obtain the isobar-spectator amplitude for *q* ∈ ℝ.
- At 1-loop level (the triangle),

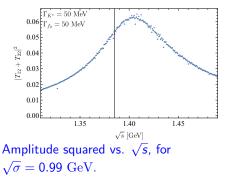


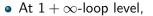
• We see the (leading) Landau singularity in both the plots.

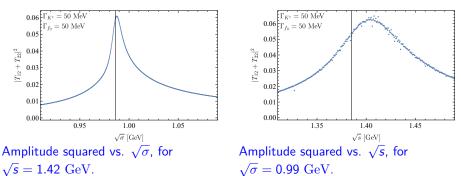




 $\sqrt{s} = 1.42 \text{ GeV}.$



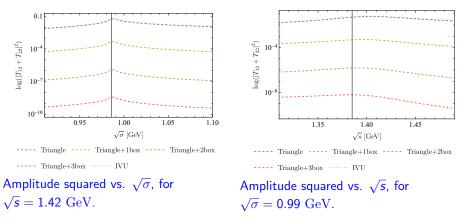




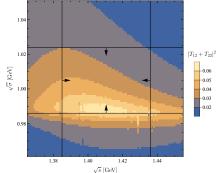
• The magnitutes are quite similar!

• The order of magnitude of the amplitudes at the triangle level is much larger than the subsequent levels.

- The order of magnitude of the amplitudes at the triangle level is much larger than the subsequent levels.
- Triangle diagram contributes the most to the amplitude:



• Charecteristic of triangle singularities: very sensitive to invariant masses!



• Triangle singularity at 1-loop level and at higher loops as subleading singularity.

- Triangle singularity at 1-loop level and at higher loops as subleading singularity.
- The isobar-spectator model numerically implemented and the triangle singularity observed at $1+\infty\text{-loop}$ level.

- Triangle singularity at 1-loop level and at higher loops as subleading singularity.
- The isobar-spectator model numerically implemented and the triangle singularity observed at $1+\infty\text{-loop}$ level.
- The singularity is of logarithmic nature at all levels.

- Triangle singularity at 1-loop level and at higher loops as subleading singularity.
- The isobar-spectator model numerically implemented and the triangle singularity observed at $1+\infty\text{-loop}$ level.
- The singularity is of logarithmic nature at all levels.
- The higher order diagrams did not have significant contributions \implies explains why no need to take final state interactions into account.

- Triangle singularity at 1-loop level and at higher loops as subleading singularity.
- The isobar-spectator model numerically implemented and the triangle singularity observed at $1+\infty\text{-loop}$ level.
- The singularity is of logarithmic nature at all levels.
- The higher order diagrams did not have significant contributions \implies explains why no need to take final state interactions into account.
- Outlook:
 - Realistic model spin with pseudovector source.

- Triangle singularity at 1-loop level and at higher loops as subleading singularity.
- The isobar-spectator model numerically implemented and the triangle singularity observed at $1+\infty\text{-loop}$ level.
- The singularity is of logarithmic nature at all levels.
- The higher order diagrams did not have significant contributions \implies explains why no need to take final state interactions into account.
- Outlook:
 - Realistic model spin with pseudovector source.
 - 2 $a_1(1420)$ on the lattice? Implement finite volume unitarity.⁵

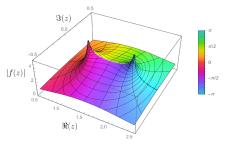
⁵10.1140/epja/i2017-12440-1

Thanks for listening!

Landau singularities

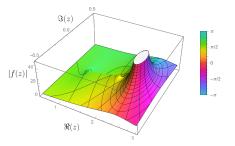
Endpoint singularities: singularities in *g*, hitting the contour *C*. E.g.,

$$f(z) = \int_1^2 dw \ \frac{1}{w-z}.$$
 (1)

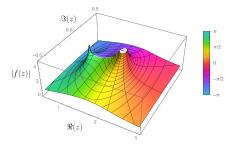


Pinch singularities: Contour *C*, gets trapped between two singularities in *g*. E.g.,

$$f(z) = \int_{1}^{2} dw \, \frac{1}{(w-z)(w-5/2)}.$$
(2)



Pinch singularity avoided when the singularities approach from the same side of the contour.



The Other Method

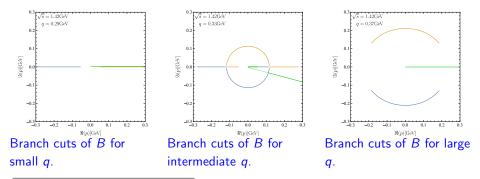
• Complex Contour on Riemann Surfaces (Cahill & Sloan)⁶: Instead of a continued fraction, use the knowledge of the location of the branch cuts to analytically continue the amplitude for $q \in \mathbb{R}^{.7}$

⁶10.1016/0375-9474(71)90156-4

⁷For a comprehensive review: *The Quantum Mechanical Three-Body Problem*, Schmid & Ziegelmann.

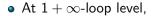
The Other Method

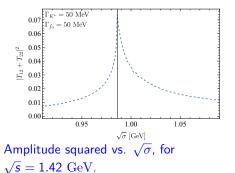
• Complex Contour on Riemann Surfaces (Cahill & Sloan)⁶: Instead of a continued fraction, use the knowledge of the location of the branch cuts to analytically continue the amplitude for $q \in \mathbb{R}^{.7}$

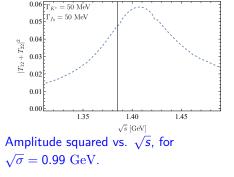


⁶10.1016/0375-9474(71)90156-4

⁷For a comprehensive review: *The Quantum Mechanical Three-Body Problem*, Schmid & Ziegelmann.







Analytic Aspects

1.40

 \sqrt{s} [GeV]

1.45

