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@ To consistently describe the unstable particles.
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o Triangle singularities in systems with non-zero spin particles — Bayar
et al. (10.1103/PhysRevD.94.074039)

@ Review — Guo et al. (10.1016/j.ppnp.2020.103757)

@ Relevance to lattice QCD — Korpa et al.
(10.1103/PhysRevD.107.L031505), Isken et al.
(10.1103/PhysRevD.109.034032)
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@ When is this not possible?
© Endpoint singularities.
@ Pinch singularities.
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@ The Landau Equations: singularities corresponding to Feynman
integrals (Landau singularities).

@ For the Feynman integral with N internal propagators and / loop
momenta,
’ 1
h= | [[d* =5 :
-l

r=1(ar(ki)? — mg)

@ For some real parameters «;, the Landau equations read,

ai(q? —m?) =0 = a;=0o0r g = m?

> aigf(k)=0.

i€loop
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Introduction Analytic Aspects Infinite Volume Unitarity Formalism Conclusions

@ aj #0 = all propagators go on-shell for the leading singularity.
One also needs «; > 0.

@ «;j = 0 case is called the subleading singularity — equivalent to
contracting the propagator.

@ Interesting analogy: Feynman diagrams — electrical circuits;
propagators — wires, with current g; and resistance «;. Then the
Landau equations are identical to Kirchhoff's law!?

2AV =Y IR, for a triangle circuit with AV = 0.
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@ The leading Landau singularity associated with the graph:
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@ The leading Landau singularity associated with the graph:
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e Landau singularity for p3 = my: p2/GeV = /o /GeV € [0.986,1.024]
and p;/GeV = /s/GeV € [1.385,1.436].
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@ What happens to singularities after rescattering? Ladder diagrams.

o 1+ 1-loop diagram:

q4 P2
“—— >
q1 s f0(980)
p1 % xt
K* g3 M6
a1 @ K+

K >./<> N3 —

95 p3

@ Check for leading and subleading singularities. . .
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o Leading singularity is not present.

@ For subleading singularities go through all contractions and check for
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@ Leading singularity is not present.

@ For subleading singularities go through all contractions and check for

singular graphs.
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@ Accommodating infinite rescatterings.

@ The triangle singularity is present and
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no other singularities.
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@ Landau equations give the conditions for the singularity to be present.

@ One still needs to evaulate the corresponding Feynman integrals.
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@ In brief: the system is split into a two-body subsystem — the isobar,
and the spectator, which is on-shell.

@ The full three-body amplitude is split into a connected and a
disconnected amplitude.*
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@ Study the system using Infinite Volume 3-Body Unitary Formalism,
due to Maij et al 3

@ In brief: the system is split into a two-body subsystem — the isobar,
and the spectator, which is on-shell.

@ The full three-body amplitude is split into a connected and a
disconnected amplitude.*

T = T +

@ One considers the Bethe-Salpeter ansatz, T = B+ BGT, to
determine T.*

P ®i j® < >_z/®=‘ ; 2.
T = B oot HI G .

%10.1140/epja/i2017-12368-4
*Figure from: 10.1140/epja/i2017-12368-4
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@ The equation to be solved,

3
T(p,q) = B(p, q)+/(2d7rl)32153(p, N7(a())T(, q).

@ We have the explicit forms of B and 7.

@ In this work, we consider scalar propagators, in relative s-wave.

15/30



Introduction Analytic Aspects Infinite Volume Unitarity Formalism

@ Need to carry out a coupled channel analysis.

. T T T K K~
K* fl) f[]

K+ K+ @t ™ K*t K+

16 /30



Infinite Volume Unitarity Formalism

@ Need to carry out a coupled channel analysis.

s T T T K
K* fo
K+ K+ @t

K- T B

@ There are two unknowns corresponding to each isobar — coupling
and bare mass.

16 /30



Introduction Analytic Aspects

Infinite Volume Unitarity Formalism

@ Need to carry out a coupled channel analysis.

s T T T K
K* fo

K+ K+ 7t

@ There are two unknowns corresponding to each isobar — coupling
and bare mass.

@ These are fixed through PDG values of physical mass and width.

16 /30



Introduction Analytic Aspects Infinite Volume Unitarity Formalism

Need to carry out a coupled channel analysis.
T, T T T K- K~
K fo fo
g 9 9p 9p 9K 9K
K+ Kt at T Kt K+
K- T T

There are two unknowns corresponding to each isobar — coupling
and bare mass.

These are fixed through PDG values of physical mass and width.

For fy we also make use of gk /g, ratio from BaBaR collaboration.

16 /30
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@ B is parametrised through the spectator masses.

@ Diagrammatically,

K* VK~ K* g T
e . K K- 95 T
o 9K K- o 9w
K+ 7t
m 9 K* T 9p fo
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Infinite Volume Unitarity Formalism

@ The integral is solved numerically, using Gaussian quadrature.

@ But, singularities on the integration contour may prevent numerical
implementation.

@ Contour deformation: Evaluate the integral along a complex contour,
that is far from the singularities — obtain T(\/s, g € C).

@ But, we need the amplitudes for ¢ € R — can be done in different
ways!

18/30
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o At 1-loop level (the triangle),
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@ The solution of the Bethe-Salpeter equation can be given in form of
the Born series.

@ This defines the loop expansion for the invariant mass distributions.

@ Complex Contour Analytic Continuation: We use a continued
fraction to obtain the isobar-spectator amplitude for g € R.

o At 1-loop level (the triangle),

I = 50 MeV 0.06 Fge = 50 MeV -
0.05F s = 50 MeV Iy, =50 MeV PaSiace
0.05F P S
e 004t o 0.04 'l A
T 003f S ook rd ]
& g 4 ™~
= 0.02F = 0_02/ ]
0.01 0.01F
0.00E E 0.00E
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Vo [GeV] Vs [GeV)
Amplitude squared vs. /c, for Amplitude squared vs. /s, for
/s =1.42 GeV. Vo =0.99 GeV.

@ We see the (leading) Landau singularity in both the plots.
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o At 1+ oo-loop level,
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Infinite Volume Unitarity Formalism

Tpe = 50 MeV j "
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& ~/»
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o At 1+ oo-loop level,

0.06FTx+ = 50 McV Ty = 50 MeV
Ty, = 50 MeV 0.06fp ;. — 50 MeV
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Amplitude squared vs. /c, for Amplitude squared vs. /s, for
Vs =1.42 GeV. Vo =0.99 GeV.

@ The magnitutes are quite similar!
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@ The order of magnitude of the amplitudes at the triangle level is
much larger than the subsequent levels.

@ Triangle diagram contributes the most to the amplitude:
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Amplitude squared vs. /c, for Amplitude squared vs. /s, for
Vs = 1.42 GeV. Vo =0.99 GeV.
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@ Charecteristic of triangle singularities: very sensitive to invariant

masses!

[T + Taol?

0.06
0.05
0.04
0.03
0.02
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Conclusions

Conclusions

@ Triangle singularity at 1-loop level and at higher loops as subleading
singularity.

@ The isobar-spectator model numerically implemented and the triangle
singularity observed at 1 4 oco-loop level.

@ The singularity is of logarithmic nature at all levels.

@ The higher order diagrams did not have significant contributions —>
explains why no need to take final state interactions into account.

o Outlook:

@ Realistic model — spin with pseudovector source.
@ 2:(1420) on the lattice? Implement finite volume unitarity.®

510.1140/epja/i2017-12440-1
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Conclusions

Landau singularities

Endpoint singularities: singularities in
g, hitting the contour C. E.g.,

w—2z

2
f(z):/ldw L
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Pinch singularities: Contour C, gets
trapped between two singularities in

g Eg.,

1

2
) :/1 o (W—z)(w—5/z)(‘2)
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Conclusions

Pinch singularity avoided when the
singularities approach from the same
side of the contour.
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Conclusions

The Other Method

e Complex Contour on Riemann Surfaces (Cahill & Sloan)®:
Instead of a continued fraction, use the knowledge of the location of
the branch cuts to analytically continue the amplitude for g € R.”

©10.1016/0375-9474(71)90156-4
"For a comprehensive review: The Quantum Mechanical Three-Body Problem,

Schmid & Ziegelmann.
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o At 1+ oo-loop level,
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[Ty + Toal?

@ Matches with the other method.

0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.00

T
Mo

M1

T T

0.95

1.00 1.05
V7 [GeV]

0.06r @

0.00E

1.35 1.40
V5 [Gev)

1.45

Amplitude squared vs. /a, for
Vs =1.42 GeV.

Amplitude squared vs. /s, for
Vo =0.99 GeV.

30/30



	Introduction
	Analytic Aspects
	Infinite Volume Unitarity Formalism
	Conclusions

