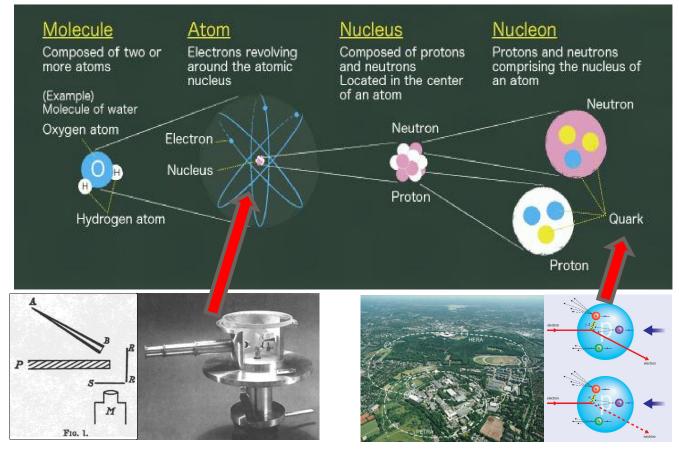
Study of antineutron and hyperon interact with nuclei at J/ψ factory

Weimin Song

Jilin University, Changchun, China

- C. Z. Yuan & M. Karliner, PRL 127, 012003 (2021) [arXiv:2103.06658]
 "Editors' suggestion" & "Featured in *Physics*"
- W. M. Song & C. Z. Yuan, Physics 51, 255 (2022)


NSTAR2024, June 17-21, 2024 @ York

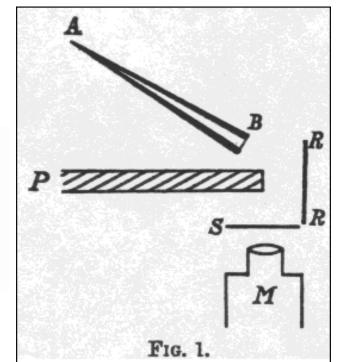
Outline

- Status of antineutron and hyperon as particle source
- Why J/ψ factory could improve the status much
- * Proof of concept at BESIII and prospect at STCF

Summary

Scattering experiments shed light on matter structure

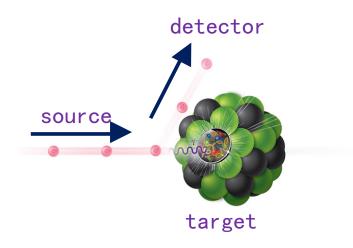
Rutherford experiment Nucleus



Geiger-Marsden experiment (Rutherford gold foil experiment)

- AB: conical glass tube containing "radium emanation" (radon), "radium A" (actual radium), and "radium C" (bismuth-214); its open end sealed with mica [云母]
- P: lead plate
- S: fluorescent zinc sulfide screen
- R: metal foil
- M: microscope

Geiger, Hans; Marsden, Ernest (1909). <u>"On a Diffuse Reflection of the α-</u> <u>Particles"</u>. <u>Proceedings of the Royal Society of London A</u>. **82** (557): 495.

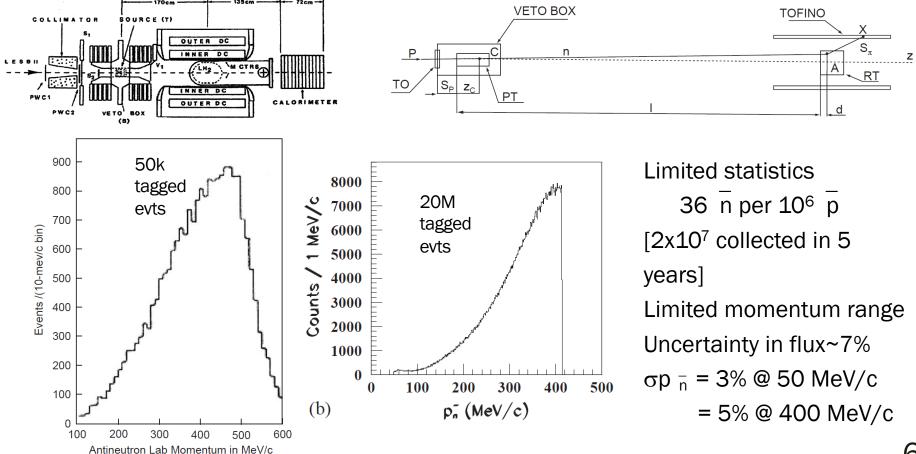


Particle sources

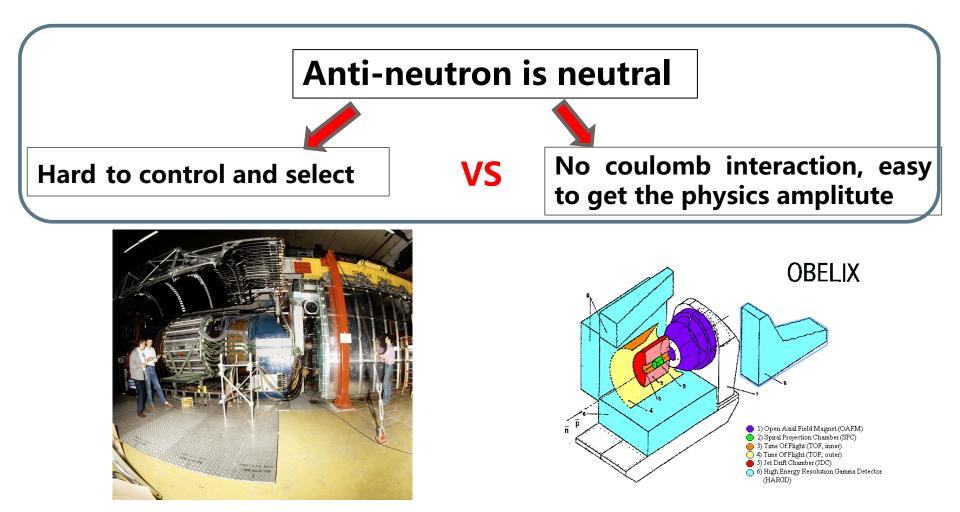
Three elements of scattering experiment : particle source, target, and detector

High quality particle source : long lifetime, easy to produce and control, low background, high intensity, good resolution.....

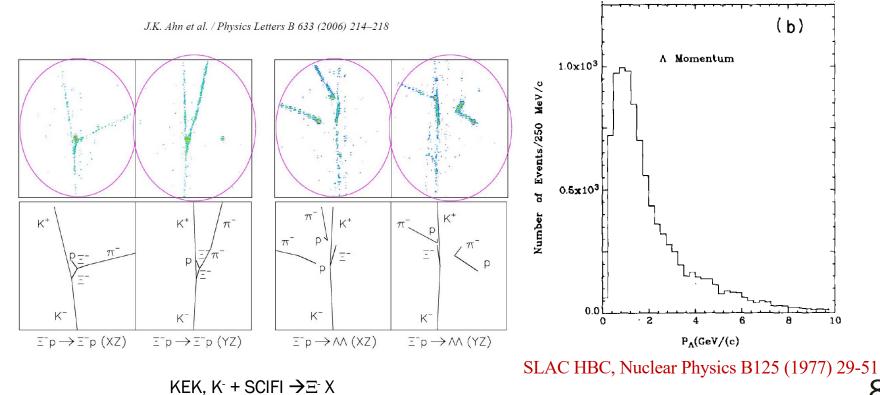
charged : electron/positron , muon , pion , kaon , proton , heavy ion


> neutral : photon , neutron , neutrino

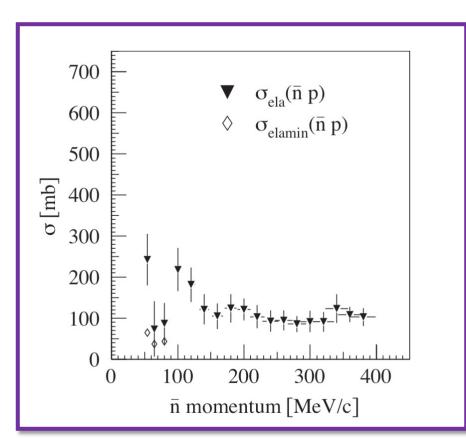
For more details: D.C. Faircloth, Particle Sources, 2103.13231 (Proceedings of the CERN–Accelerator–School: Introduction to Accelerator Physics)

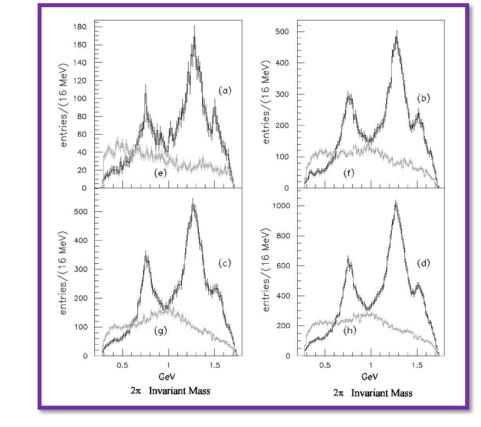

Beams of other neutral particles, such as antineutrons, K⁰ and \overline{K}^0 , long-lived hyperons (Λ , Σ^{\pm} , $\Xi^{0/-}$) and their antiparticles ($\overline{\Lambda}$, $\overline{\Sigma}^{\pm}$, $\overline{\Xi}^{0/+}$) have great physics potential, but they are typically much more difficult to produce and control.

Antineutron in history


Antineutron in history

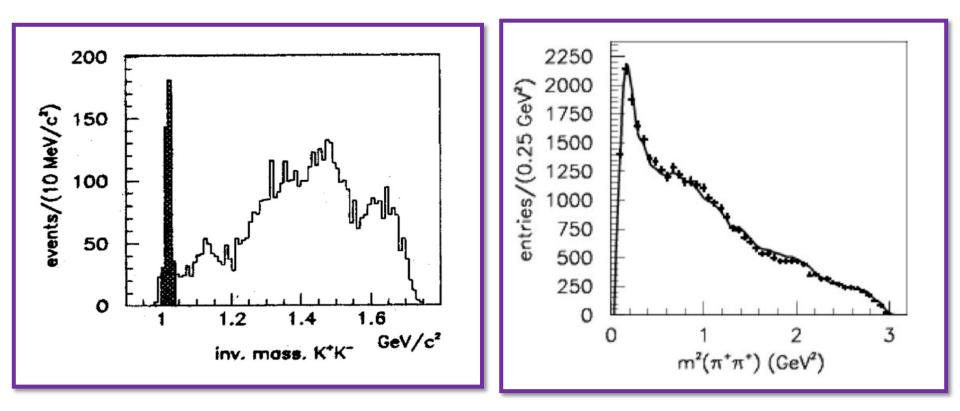
OBLIX experiment at CERN : $p\overline{p} \rightarrow n\overline{n}$ About 40 publications [Physics Report 383, 213-297]


Sources of Λ & other hyperons


- Bubble chamber experiments with hyperons from K⁻+target
- Emulsion experiments with K⁻+target \rightarrow K⁺+X, K⁺+K⁺+X, ...
- A few to about 10^4 events (typical O(100) tagged events)
- No anti-hyperon sources!

8

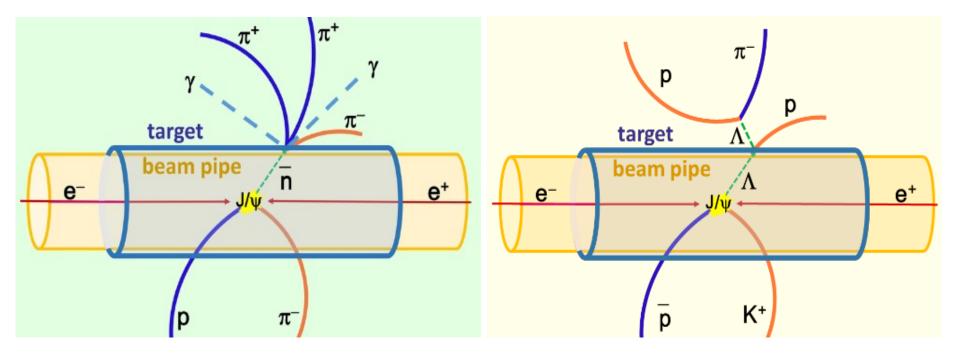
Many unsolved problems



Dip on the cross section: Initial-Final State Interaction?

 $f_0(1500)$: glue ball?

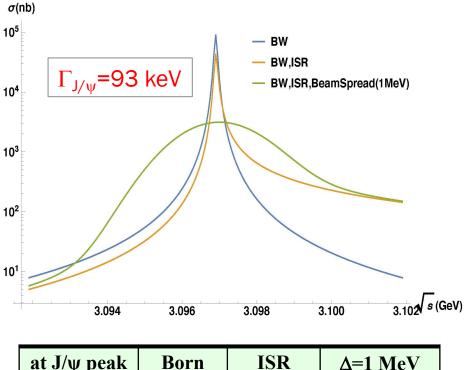
Many unsolved problems


Large Kaon pair production: OZI Violation? Paticle with lsospin=2?

How could we obtain antineutron/hyperson sources with better resolution, wider momentum range and lower cost?

The idea

Do fixed target experiments @ a super J/ ψ factory


Why J/ ψ decays: (1) huge cross section of $e^+e^- \rightarrow J/\psi$

$$\sigma_{Born}(s) = \frac{12\pi\Gamma_{ee}\Gamma_f}{(s-M^2)^2 + \Gamma_t^2 M^2}$$
$$\sigma_{r.c.}(s) = \int_0^{x_m} dx F(x,s) \frac{\sigma_{Born}(s(1-x))}{|1-\Pi(s(1-x))|^2}$$

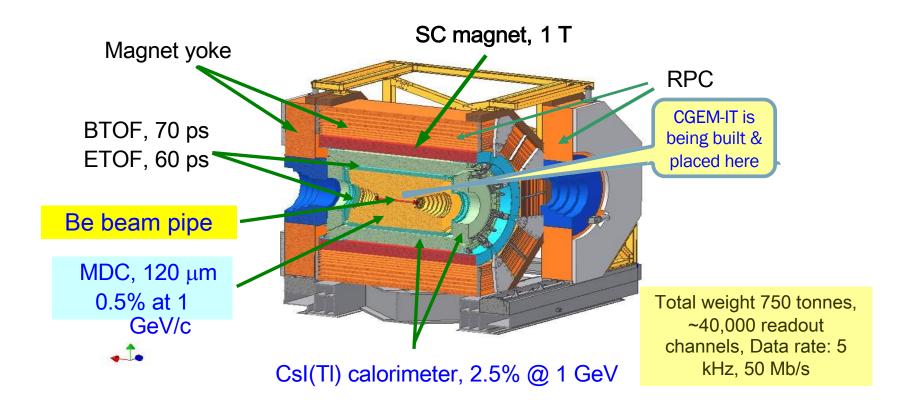
$$\sigma_{exp}(W) = \int_{0}^{\infty} dW' \sigma_{r.c.}(W') G(W', W)$$
$$G(W, W') = \frac{1}{\sqrt{2\pi}\Delta} e^{-\frac{(W-W')^2}{2\Delta^2}}$$

 ∞

Formulas from PLB 557 (2003) 192 Numbers & plot from Yuping Guo

at J/ψ peak	Born	ISR	Δ=1 MeV
σ (nb)	9.1×10 ⁴	4.4×10 ⁴	3,100

 \mathcal{L} = 0.5 nb⁻¹s⁻¹ @ BEPCII


Why J/ψ decays: (2) big B(J/ψ→baryons)

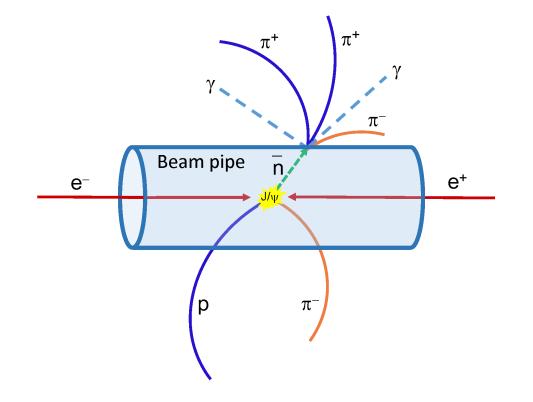
decay mode	${\cal B}~(imes 10^{-3})$	$p_{ m max}$ (MeV/c)
$J/\psi ightarrow p\pi^- ar n$	2.12	1174
$J/\psi ightarrow ar{\Lambda} \Lambda$	1.89	1074
$J/\psi o ar{p}K^+\Lambda$	0.87	876
$J/\psi ightarrow ar{\Sigma}^- \Sigma^+$	1.50	992
$J/\psi ightarrow ar{\Lambda} \pi^- \Sigma^+$	0.83	950
$J/\psi ightarrow ar{\Lambda} \pi^+ \Sigma^-$		945
$J/\psi ightarrow ar{\Xi}^0 \Xi^0$	1.17	818
$J/\psi ightarrow ar{\Xi}^+ \pi^- \Xi^0$		685
$J/\psi ightarrow ar{\Xi}^+ \Xi^-$	0.97	807
$J/\psi ightarrow ar{\Xi}^0 \pi^+ \Xi^-$		686
$\psi(2S) ightarrowar\Omega^+\Omega^-$	0.05	774
$\psi(2S) ightarrowar{\Xi}^0K^+\Omega^-$		606

Why J/ψ decays: (3) high tag efficiency

	$\mathcal{B}_{ ext{tag}}$	$arepsilon_{\mathrm{tag}}$
decay mode	(%)	(%)
$J/\psi ightarrow p\pi^-ar{n}$	100	5 0
$J/\psi ightarrow ar{\Lambda} \Lambda$	64	40
$J/\psi ightarrow ar{p}K^+\Lambda$	100	
$J/\psi ightarrow ar{\Sigma}^- \Sigma^+$	52	40
$J/\psi ightarrow ar{\Lambda} \pi^- \Sigma^+$	64	
$J/\psi ightarrow ar{\Lambda} \pi^+ \Sigma^-$	64	20
$J/\psi ightarrow ar{\Xi}^0 \Xi^0$	64	20
$J/\psi ightarrow ar{\Xi}^+ \pi^- \Xi^0$	6 4	
$J/\psi ightarrow ar{\Xi}^+ \Xi^-$	64	20
$J/\psi ightarrow ar{\Xi}^0 \pi^+ \Xi^-$	64	
$\psi(2S) ightarrowar\Omega^+\Omega^-$	44	20
$\psi(2S) ightarrow ar{\Xi}^0 K^+ \Omega^-$	64	

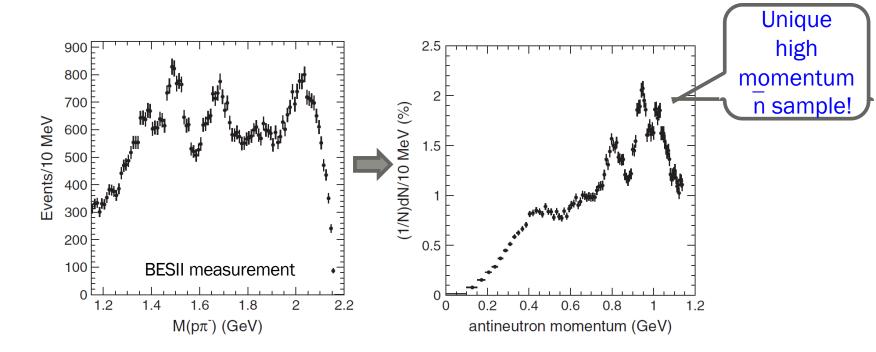
Proof of concept: study @ BESIII experiment

Has been in full operation since 2008, all subdetectors are in very good status!


Already mentioned by Xiaoyan, Karin, and Xiaorong in this meeting.

BESIII physics program

- * Light hadron physics: J/ Ψ decays, glueball search (10 billion J/ Ψ)
- Charmonium physics: charmonium states
 decays/transitions, XYZ (largest electron-positron collision dataset around 4 GeV)
- ***** Charm physics: charm meson/baryon decays
- Tau&R&QCD physics: R value, form factor measurement
- New physics: dark photon search, BSM


Already mentioned by Xiaoyan, Karin, and Xiaorong in this meeting.

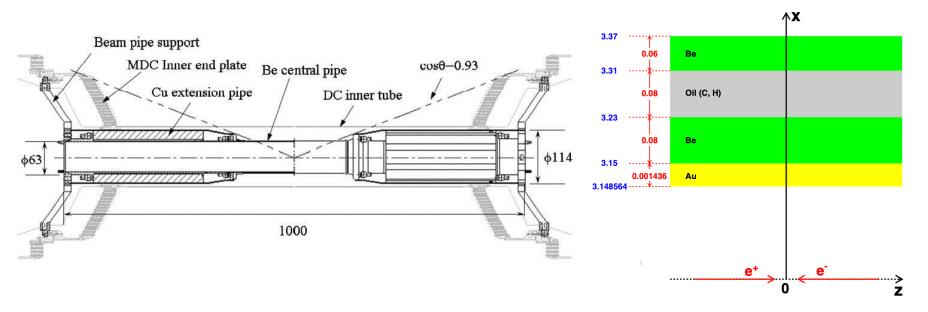
Proof of concept: study @ BESIII experiment

 $e^+e^- \rightarrow J/\psi \rightarrow p\pi^-\bar{n}, \bar{n}p \rightarrow \pi^+\pi^-\pi^+\pi^0, \pi^0 \rightarrow \gamma\gamma$

Proof of concept: study @ BESIII experiment

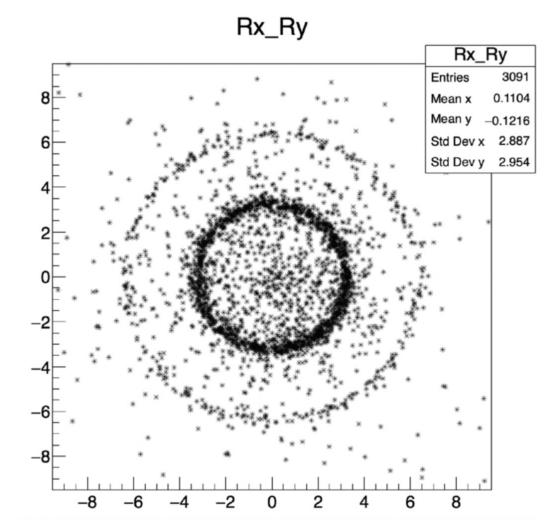
- $N(J/\psi) = 10^{10}$
- $B(J/\psi \to p\pi^{-}\bar{n}) = (2.12 \pm 0.09) \times 10^{-3}$
- ε = 40%
- Tagged $n = 10^{10}x2.12x10^{-3}x40\% = 8$ million!

- 0<p _i<1174 MeV/c
- σp: ~7 MeV/c
- n direction: O(mrad)

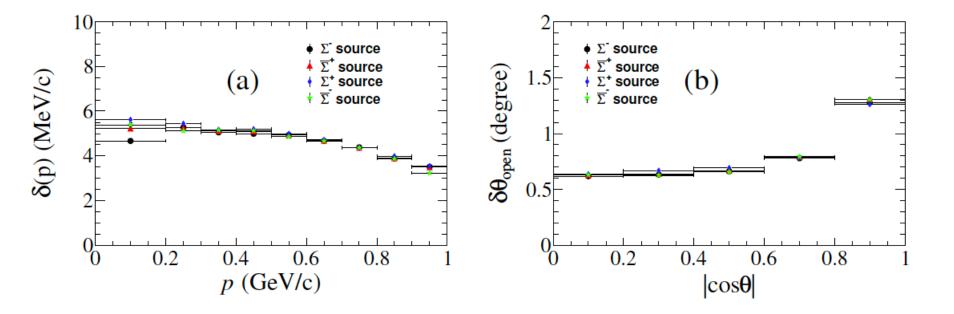

Hyperons and anti-hyperons at BESIII experiment

Baryon	c au (cm)	decay mode	${\cal B}~(imes 10^{-3})$	$p_{ m max}$ (MeV/c)	$n^B_{\rm BP}(\times 10^5)$
$ar{m{n}}$	$2.6 imes10^{13}$	$^3J/\psi ightarrow p\pi^-ar n$	2.12	1174	80
Λ	7.89	$J/\psi ightarrow ar{\Lambda} \Lambda$	1.89	1074	26
		$J/\psi ightarrow ar{p} K^+ \Lambda$	0.87	876	9
Σ^+	2.40	$J/\psi ightarrow ar{\Sigma}^- \Sigma^+$	1.50	992	4
		$J/\psi ightarrow ar{\Lambda} \pi^- \Sigma^+$	0.83	950	1
Σ^{-}	4.43	$J/\psi ightarrow ar{\Lambda} \pi^+ \Sigma^-$		945	
Ξ^0	8.71	$J/\psi ightarrow ar{\Xi}^0 \Xi^0$	1.17	818	7
		$J/\psi ightarrow ar{\Xi}^+ \pi^- \Xi^0$		685	
Ξ^{-}	4.91	$J/\psi ightarrow ar{\Xi}^+ \Xi^-$	0.97	807	3
		$J/\psi ightarrow ar{\Xi}^0 \pi^+ \Xi^-$		686	
Ω^{-}	2.46	$\psi(2S) ightarrow ar{\Omega}^+ \Omega^-$	0.05	774	0.05
		$\psi(2S) ightarrow ar{\Xi}^0 K^+ \Omega^-$		606	

The Ω hyperons are produced from 3 billion $\psi(2S)$ event sample. All these particles can also be produced in decays of other charmonia.

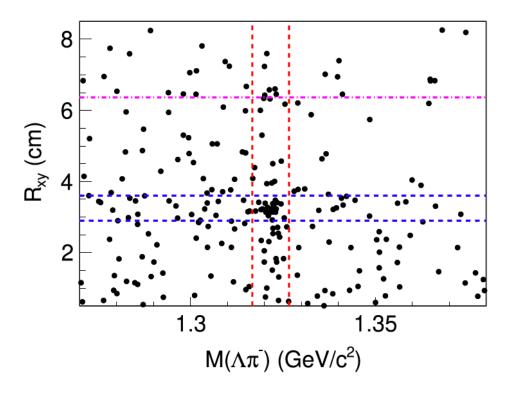

Proof of concept: study @ BESIII experiment

The BESIII J/ ψ data sample has been collected already, the detector material close to the interaction point in the inner detector serves as an effective target.



with $\sigma(\bar{n}p) \approx \sigma(\bar{n}n) \approx 100$ mb expect 1–2% of tagged \bar{n} -s interact with Be & 1-2% with C fiber target so ~100,000 \bar{n} + Be events and ~100,000 \bar{n} + C events

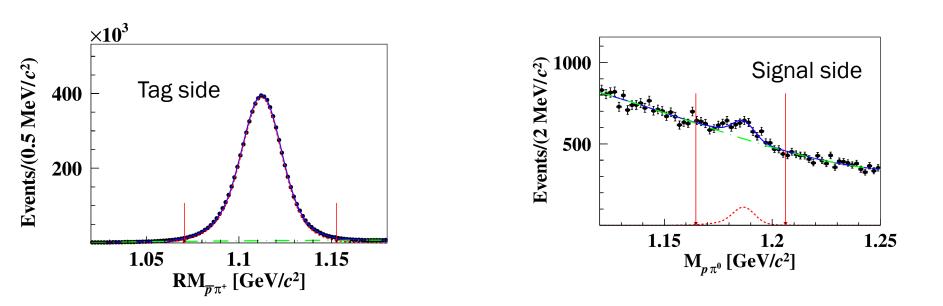
$J/\psi \rightarrow p\pi^- \bar{n}$ @ BESIII experiment


J/ψ → ΛΣπ @ BESIII experiment

Momentum resolution (left), angular resolution (right)

PRD 108, 112012 (2023)

First Study of Reaction $\Xi^0 n \to \Xi^- p$ Using Ξ^0 -Nucleus Scattering at an Electron-Positron Collider

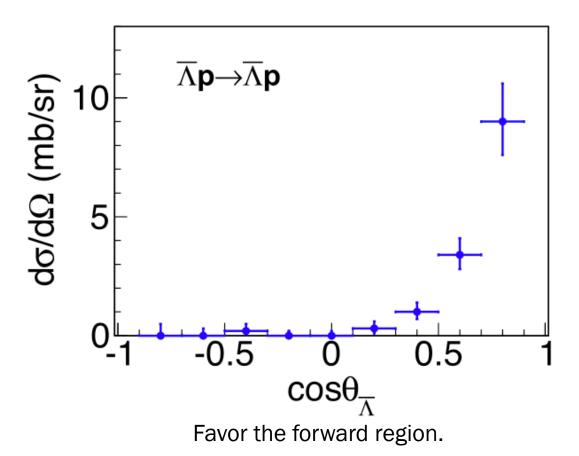

$$\sigma(\boldsymbol{\Xi}^{0}\boldsymbol{n} \rightarrow \boldsymbol{\Xi}^{-}\boldsymbol{p})$$
= (7.4 \pm 1.8_{sta} \pm 1.5_{sys}) mb

Consistent with calculations based on chiral effective field theory, and resonating-group method. First measurement of ΛN inelastic scattering with Λ from $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \bar{\Lambda}$

Letter

M. Ablikim *et al.** (BESIII Collaboration)

(Received 10 October 2023; accepted 12 April 2024; published 14 May 2024)

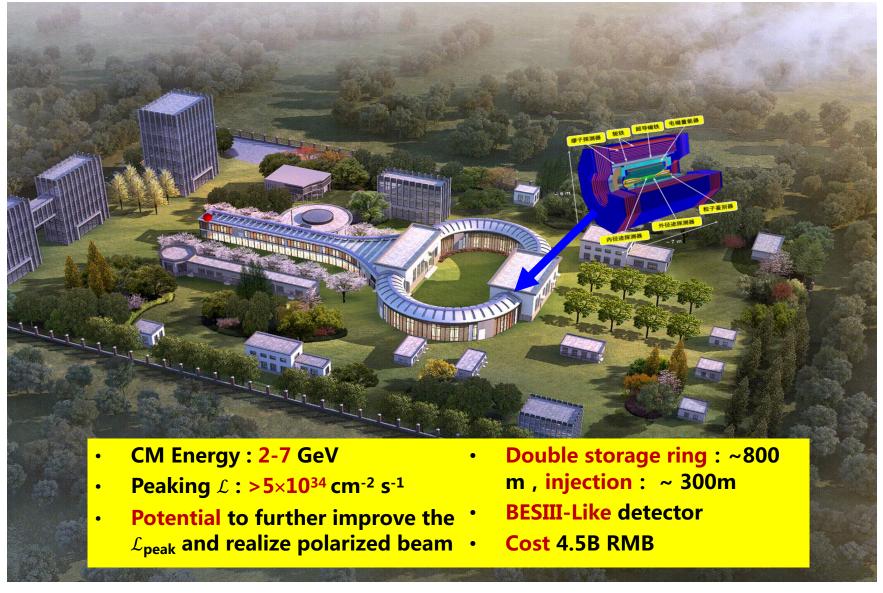


 $\sigma(\Lambda + \textbf{\textit{p}} \rightarrow \Sigma^+ + X)$ = ($19.3 \pm 2.4_{sta} \pm 1.8_{sys}$) mb

First Study of Antihyperon-Nucleon Scattering $\bar{\Lambda}p \rightarrow \bar{\Lambda}p$ and Measurement of $\Lambda p \rightarrow \Lambda p$ Cross Section

M. Ablikim *et al.*^{*} (BESIII Collaboration)

(Received 11 January 2024; revised 4 May 2024; accepted 7 May 2024; published 4 June 2024)

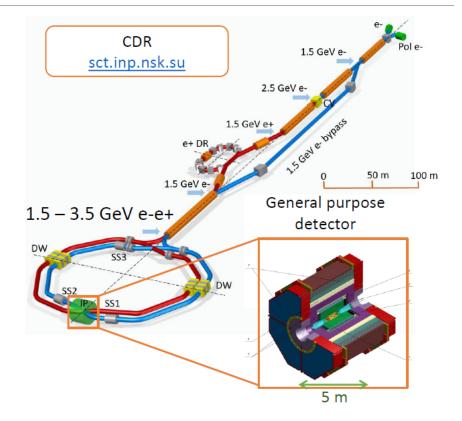


A super J/ ψ factory with 10¹² J/ ψ events per year

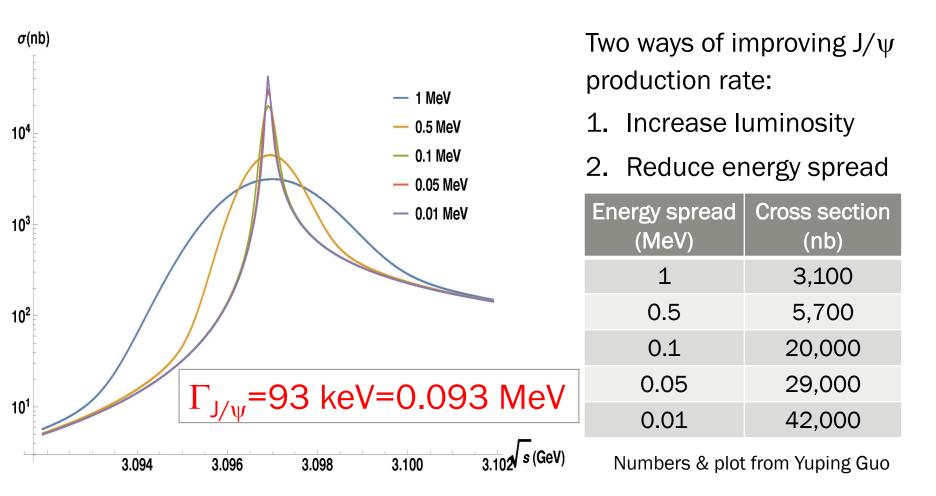
- > Design luminosity = $O(100) \times \mathscr{L}$ @BESIII ~ 10^{35} cm⁻²s⁻¹
 - ✓ Existing proposals: STCF (China), SCTF (Novosibirsk)
- > Detector improvements vs. BESIII: tracking, PID, γ detection
- > $(1-3) \times 10^{12} \text{ J/}\psi$ events/year = $100 \times \text{BESIII}$ sample
- Further improvements to expand range of physics topics
 - $\checkmark\,$ Reduce the diameter of the beam pipe
 - ✓ Interchangeable custom targets inside the detector
 - ✓ Subdetector for specific final states, e.g. deuteron, triton, ...

More details will be mentioned by Xiaorong's talk on Friday.

STCF in China

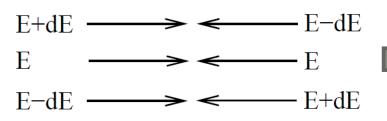


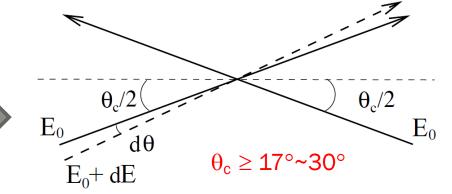
STCF workshop, Guangzhou, 2022


Ivan Logashenko (BINP) PhiPsi2022

Super charm-tau factory

- Super charm-tau factory is e⁺e⁻ collider, dedicated to precision study of properties of charm-quark, tau-lepton, study of strong interactions, search of BSM physics
 - Beam energy from 1.5 (1.0) to 3.5 GeV
 - Luminosity $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{c}^{-1}$ @ 2 GeV
 - Longitudinally polarized electron beam
- Experiments will be conducted using state-ofthe-art general purpose detector
 - Tracking (including low p_t)
 - \circ Calorimetry (high resolution, fast, π^0/γ sep.)
 - Particle ID ($\mu/\pi/K/p$ up to 1.5 GeV/c)


A hyper J/ ψ factory with 10¹³ J/ ψ events?



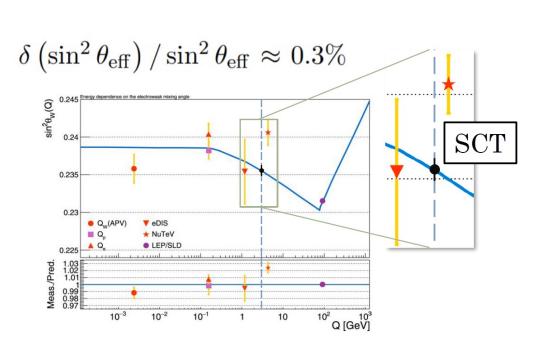
A new scheme of monochromatization?

V. I. Telnov, 2008.13668v3 Monochromatization of e⁺e⁻ colliders with a large crossing angle

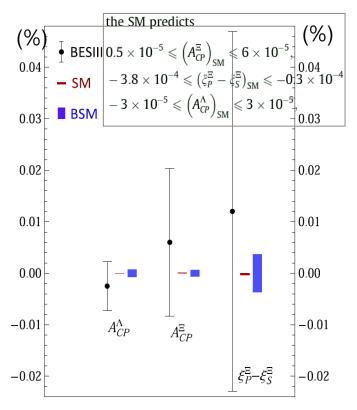
Existing monochromatization scheme for head-on collisions will reduce luminosity significantly New scheme: Provide the beams with an angular dispersion such that a beam particle arrives to the IP with a horizontal angle that depends on its energy.

$$\sigma_W/W \sim (3-5) \times 10^{-6}$$

 σ W=10-15 keV @ J/ ψ peak

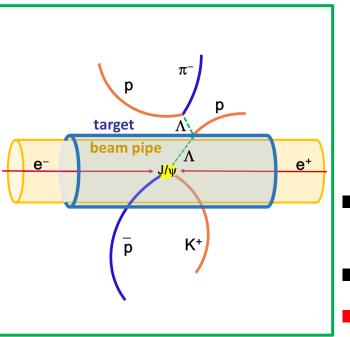

and J/ψ is moving!

Potential physics studies

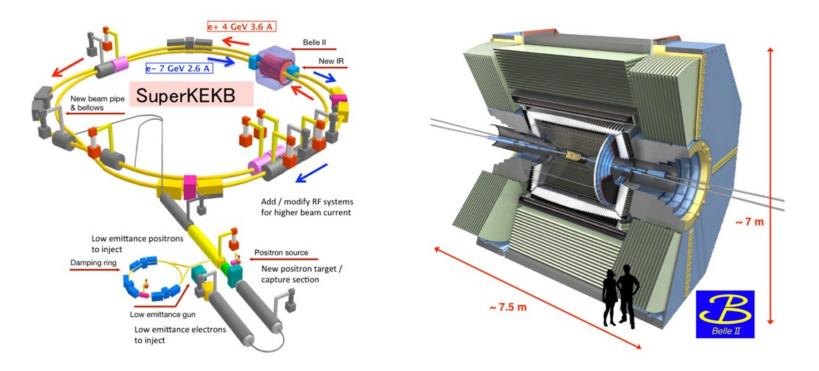

- antinucleon-nucleon interaction
- OZI violation
- nonvalence ss components of the nucleon
- (anti)hyperon-nucleon interaction
- (multi-strange) hypernuclei
- light hadron spectroscopy, including exotics and many others
- cross sections of antineutrons with material for the calibration of Monte Carlo simulation codes for particle physics and medical applications, such as FLUKA and GEANT4
- Hyperon puzzle and size of neutron stars
- Maybe more topics from nuclear physics community

Potential physics with direct J/ψ decays

- 1. Precision measurement of Weinberg angle
- 2. CPV in hyperon decays
- 3. New physics searches with $10^{12^{-14}}$ produced J/ ψ events


A. Bondar et al., JHEP 03 (2020) 76

X. G. He et al., Science Bulletin, Volume 67, Issue 18, 2022


33

Summary: Do fixed target experiments @ a super J/ ψ factory

- Super (or hyper) J/ψ factory
 - e^+e^- annihilation @ 3.097 GeV; O(10¹²⁻¹³) J/ ψ events/year
 - State of the art detector
 - Variety of custom removable targets
 - Smaller beam pipe
- High quality sources of long lived (anti-)hyperons and \bar{n} for many different kinds of experiments
- Same software, similar systematic effects
- No need to share beam time
- No need for additional resources, additional infrastructure, minimal further investments
- A variety of physics topics

The idea could be extended: Belle II, CEPC.....

Belle II: Cross section of ee->baryon antibaryon via ISR or in the continuum, as well as in the B decays is about 10-100 pb; the reconstruction efficiency is about 20%; With 50 ab⁻¹ data, there are 10⁸ – 10⁹ strange baryon.

35

CEPC: higher energy means stronger boost, and hyperons with shorter life time could reach the beam pipe.

Thanks very much!