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Continuous Electron Beam Accelerator Facility

« CEBAF is a CW recirculating linac utilizing 418 SRF cavities
to accelerate electrons up to 12 GeV through 5-passes

* the heart of the machine is the SRF cavities

* cavity instabilities and trips account for a large
percentage of machine down time




Case Study I: Detection

* Goal:
Automate the process of identitying unstable SRF cavities.

* Description:
SRF cavities can become unstable and lead to a machine trip, without presenting

a fault themselves. ldentitying these unstable cavities with present diagnostics is
difficult and time-consuming.

e Solution:

1) develop and install a new fast DAQ system for the legacy SRF cavities

2) apply unsupervised learning to identity unstable cavities (i.e. which cavity isn’t
behaving like the others?)




Filter and Collect Raw Signals from an Event
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« filter collects data when a fault involves a BLM, ion chamber, or BLA trip but not a cavity trip
* 1 event = 20 cryomodules x 8 cavities/cryomodule x 2 signals/cavity = 320 signals
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Pre-Process and Extract Features
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e standardize data

* extract n-features per signal using tsfresh and concatenate
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Principal Component Analysis (PCA)

» use PCA to reduce dimensionality
from 2n to 2 for visualization

» compute centroid of cluster

* compute distance of every data
point from centroid and plot
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Distance from Centroid

1 event = 160 cavities X< 2 signals/cavity > 8,192 points/signal

(courtesy H. Ferguson)
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« anomalous cavities are easily identitied as outliers
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Timeline View: Multiple Events

* plot the top 5 distances as a function of time from 61 events in early 2023

* marker size is proportional to distance from centroid

Potential Unstable Cavities




Potential Unstable Cavities

Timeline View: Multiple Events
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Case Study Il: Identification

* Goal:

Classity cavity faults to:
1) provide feedback to control room operators (short term)
2) provide data-driven guidance for maintenance activities (long term)

* Description:

A DAQ captures fast-sampled RF signals from (C100) cavity fault events and writes
the data to file for oftline analysis.

e Solution:

Leverage several thousands of labeled fault events to train a DL model in a
supervised way to classity time series signals.




Data Acquisition System

* a waveform harvester was developed to capture RF time-series signals after a fault and

write them to file for later analysis
v" each of the 17 harvested wavetorm signals is 8,192 points long

v’ trigger set such that 94% of the recorded data precedes the fault and 6% after
v’ pre-tfault data provides valuable information about the root cause of the trip

fault event

streaming data

8,192 samples X 0.2 ms/sample = 1.64 seconds
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Visualization and Communication

* for ML models to be effective, information must be communicated clearly and concisely

e visualize spatial and temporal nature of model predictions
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Case Study Ill: Prediction

* Goal:
Proactively predict it a cavity fault will occur.
* Description:

Currently deployed ML models analyze data after a tault has occurred. Investigate
the use of machine learning to predict it a fault will occur from pre-fault data.

e Solution:

Train a 1D CNN — LSTM model architecture to discriminate between “stable” and
“impending fault” signals.

t=-600ms t=-500ms t=-400ms t=-300mst=-200ms t=-100 ms
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Binary Classifier Results for Prediction

* each fault example contains 15 100 ms windows of pre-fault data (1.5 sec)

* plot shows the number of consecutive windows correctly predicted as a fault by the model
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Data Quality Management

* DAQ Configuration Control (or lack thereof)
v'the system is the foundation of the fault identification and fault prediction work
v different groups can, and will, leverage the system for a variety of uses

v'the flexibility of the system (i.e. sampling rate, when and how it is triggered) is both
powertul and, in the absence of contfiguration control, detrimental

* Low Level RF (LLRF) Upgrade

v'the LLRF system controls cavities, and in particular how they respond during a fault event
v'the upgrade system creates very different fault signatures in the data

v'several years — and many thousands of labeled examples — can no longer be used for
training models

e Data Drift

v'in ML applications for accelerators, addressing data dritt is critical (seasonal changes,
changes between operational runs, changes due to software/firmware modifications, etc.)

v'this remains a work in progress for us
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Example of Data Drift

e compare signals from “normal”/stable SRF cavity operation from Fall 2022 and

March 2023

Fault Classification Best Model

accuracy 90.14%

True label

if the data was indistinguishable,
the model would be “confused”
and be reflected in the accuracy

Predicted label
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Summary

» detecting, localizing (isolation) and classitying (identitication) taults represent
areas ripe tfor ML application

* the transition to fault prediction represents an ultimate goal

* in general, higher tidelity data is needed as you move along the spectrum
from detection to isolation to identitication to prediction

* more and more sources of information-rich data are becoming available,
however data quality management remains a challenge




Thank You.
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