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CMS Electromagnetic Calorimeter

e Electromagnetic calorimeter (ECAL)
o Measures energy of photons and electrons.
o Consists of 75,848 lead tungstate (PbWO,) crystals, arranged in central barrel (EB) section and
two endcaps (EE+, EE-).
m Electrons and photons produce scintillation light when passing through the crystal,
in proportion to the particle’s energy.
m Scintillation light is detected by the photo-detectors, converted to electrical signal.
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Online Data Quality Monitoring for ECAL

e In the operation of the particle detector, it is important to monitor the quality of data and catch
anomalies in the detector.

e Online Data Quality Monitoring (DQM) of CMS ECAL offers a real-time snapshot of a subset of raw
data, followed by a quality interpretation.
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o Highly time-sensitive operational task

o Challenge: Anomalies can come in all shapes and sizes. — impossible to anticipate all failure
modes.
=> Utilize machine learning as a possible solution.



Dataset and Pre-processing

e Dataset taken from 2018 LHC collisions, manually certified as “good”.
o Use occupancy histograms processed as 2D images for the quality plot.
m Crystal with energy deposit above a set threshold — occupancy of 1 for the crystal.
m Each image represents each Lumi-Section (LS) of ~23 seconds.

e Pre-processing
o Normalize the occupancy data by PileUp (PU), additional proton-proton interactions within the
same proton bunch crossing.
— Make occupancy images consistent across different LHC run conditions.
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Machine Learning for Anomaly Detection

e Unsupervised machine learning for a more robust anomaly detection
o Autoencoder (AE) model can learn the “good” pattern of detector data.
m Encoding layers: learn a representation of data and compress the feature.
m Decoding layers: reconstruct the input from the compressed features.
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-> AE can spot the anomalies that deviate from the learned norm, eliminating the need for hand-coded
rules for every failure mode.
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e AE-based anomaly detection and localization
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[3] Loss map
Mean Squared Error loss
High loss in the anomaly

[2] AE-reconstructed map
Anomaly not reconstructed

[1] Input map
Anomaly present
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Using anomaly tagging
threshold

e Anomaly tagging threshold is obtained from validation sets with “fake anomalies”.
o Based on loss values of anomalous towers from the anomaly validation sets,

choose a loss threshold that AE can catch 99% of all anomalies.



Training and Validation Strategy

e Training
o Network: Convolutional Neural Network (CNN) with ResNet architecture
m Train AE models each for the barrel and endcaps.
o Dataset: 90k occupancy images from “good” dataset

e Validation
o Validation sets using 10k “good” occupancy images
m Nominal validation: using the “good” occupancy images
m Fake anomaly validation: same images with anomalies manually introduced
e Zero occupancy tower
e Hot tower
e Missing supermodule (barrel) [1] / sector (endcaps)
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Post-processing: Spatial and Time Correction

e Spatial correction: account for spatial variations in the ECAL response
o Crystals at high |5| exhibit higher occupancy than those at low ||.
o Normalize loss maps by the average occupancy map.
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e Time correction: exploit time-dependent nature of anomalies.
o Anomalies in towers persist throughout several LSs, while fluctuations do not.
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Validating with Fake Anomalies

e Performance metric: False discovery rate (FDR) Private Work (CMS Data) 2018 (13 TeV)
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Testing with Real Anomalies

e Test on data with real anomalies, using the loss threshold from fake anomaly validation.
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=> Catches anomalies well with various shapes and sizes. 10



Deployment in Online DQM for ECAL

e AE-based DQM is deployed in the ECAL Online DQM workflow, as a new ML quality plot.

e Detecting potential bad towers
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[1] Quality plot from AE [2] Average occupancy map

o ML quality plot [1] shows a tower that had very low occupancy in several LSs — “semi-transient
anomaly” — not shown in other plots in current DQM.
o Its low occupancy shows up in the average occupancy produced offline [2].

=> AE can also spot potentially degrading towers.
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e Developed a robust ML-based anomaly detection & localization system for CMS ECAL.
o After accounting for spatial and time variations in the detector response, AE-based system is

able to detect various anomalies in fake anomaly with an estimated FDR of ~6% at 99%
detection rate.

o AE-based system is able to detect real anomalies of arbitrary shapes.

e The system has been deployed in the ECAL Online DQM workflow for barrel, detecting bad and
potentially degrading towers.

o This method can be generalized to anomalies of arbitrary shapes and extended to other
experiments requiring data quality monitoring.
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Pre-processing: PU Correction

e Occupancy is linearly related to PU.
o In order to make our data consistent across different runs and LHC conditions, remove PU
dependency from our occupancy data.

EE+ Total occupancy (sum of occupancies in all towers) vs. PU
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Pre-processing: Masking Problematic Towers

e Masking towers with known issues
o Some towers are known to have issues throughout the 2018 runs.
o Mask those towers from the dataset, and not include them in the list of “valid towers” of our
interest for training and validation.
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Ratio of AE-reconstructed image and original input image for Endcap
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Padding for training and validation dataset
o Add padding around the occupancy map image for training and validation, copying the adjacent

edges.
When calculating anomaly threshold from loss map, do not consider the loss from the padded
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Validation with Fake Anomalous Towers

e Fake anomaly validation sets for each AE model (EB and EE):

O
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1) “Zero occupancy tower” validation: fake zero occupancy tower manually introduced to one

of valid towers from each occupancy map.
2) “‘Hot tower” validation [*]: fake hot tower (high occupancy) manually introduced to one of

valid towers from each occupancy map.
3) “Missing supermodule (EB) / sector (EE)” validation: missing supermodule/sector

manually introduced.
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e 25 crystals per tower, 500 events per LS, f can be 1 at max. Target f> 0.1 for barrel, f > 0.2 for endcap. 18



Baseline for Comparison

e Baseline studies for comparison performed for barrel.
e Baseline loss per tower: compare each tower occupancy tq)n to n-ring average occupancy (tn>.

o Define baseline towerloss =t -(t)|
®.n ®.n n
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Spatial Correction

e Motivation: high FDR for zero occupancy towers
o Low-loss towers are mostly around the outer ring of the endcap [1], related to the presence of
gradient in the occupancy map [2].
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-> Spatial correction: normalize the loss map with average occupancy map.
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1D Loss Histograms after Each Corrections

Loss histograms for EE—: before [1], after spatial [2], and time [3] corrections.
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Application for Actual Runs

e Choose final anomaly threshold that can catch all anomalies considered

Private Work (CMS Data) 2018 (13 TeV)
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— Zero occupancy tower (dead tower) threshold can catch both dead and hot towers.
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Further Studies with 2018 Data

e Validation studies with the “fake” anomalies on 2018 dataset, but with the following changes:

o Split dataset into each run era for 2018 (Run[A-D]). Average occupancy map used for
spatial correction is also obtained from each corresponding run era.

o Used the final anomaly threshold (more conservative one — dead tower anomaly
threshold) to predict both dead and hot towers.

FDR after all corrections RunA RunB RunC RunD
EE+ 0.020 0.014 0.087 0.010
Dead Tower
EE- 0.020 0.013 0.088 0.022
EE+ 0.020 0.014 0.086 0.010
Hot Tower
EE- 0.020 0.013 0.087 0.021
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Further Studies with 2018 Data

e Check which towers are contributing to the FDR for EE+.
o Check false positives in FDR
— “good” towers that are not “fake” anomaly towers, with occupancy above anomaly

threshold.

Private Work Private Work Private Work Private Work

(CMS Data) EE 2018 (13 TeV) (CMS Data) EE 2018 (13 TeV) (CMS Data) EE 2018 (13 TeV) (CMS Data) EE 2018 (13 TeV)

20 20 20 20

18 18 10-: 18 6x107

16 _ 16 _ _ 16 _

14 B 14 B B 14 ‘E

12 ;: 12 104 E ? 12 xaom _E
> 10 ; > 10 ; 10- ; - 10 ;

8 107 g 8 g g 8 3x 10-12

4 4 B 4

5 , 107 5 2x10°*

0 [ 0 4x107° 0

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 Z!O 12 14 16 18 20 0 2 4 6 8 }0 12 14 16 18 20 0 2 4 6 8 }0 12 14 16 18 20
EDR after all corrections RunA RunB RunC RunD
Dead (Hot) Tower EE+ 0.020 (0.020) 0.014 (0.014) 0.087 (0.086) 0.010 (0.010)

24



Further Studies with 2018 Data

e Check which towers are contributing to the FDR for EE-.
o Check false positives in FDR
— “good” towers that are not “fake” anomaly towers, with occupancy above anomaly
threshold.
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