Uncertainty Aware Anomaly Prediction with Siamese Twin Models

Kishansingh Rajput

Staff Computer Scientist

Thomas Jefferson National Accelerator Facility

- Siamese Twin Models
- Siamese Twin for DQM
- Uncertainty Aware Siamese Models
- Errant Beam Prediction at Spallation Neutron Source Accelerator
 - Data Preparation
 - Model and Training
 - Results and Deployment in real time system
- Conclusion
- ➢ References

Siamese Twin Models

- Siamese Model consist of twin networks (shared weights and biases) that learn to transform inputs into a reduced representation (feature extraction)
- The reduced representation is compared with an appropriate distance function
- Further processing may require to provide final similarity score

- Traditional DL classification models fails to identify unseen anomalies (OOD)
- Similarity based models can correctly classify unseen anomalies. Ex Siamese model
- Siamese model does not explicitly model the classification but focuses on the similarities

AI4DQM 2023 | Uncertainty Aware Anomaly Prediction with Siamese Twin Models | kishan@jlab.org

Siamese Twin Models for DQM

- Systems are designed to work -> A lot of normal operation data (good quality data)
- Profile of good quality data available
- > In most cases, normal operation data is similar
- Siamese Models can be trained to produce similarity with normal operation data Monitor new data
- ➢ References can be changed (or masked) on the fly upon change in the system Adaptive

How about the

uncertainties?

Uncertainty Quantification in Machine Learning

Deterministic transformation functions

Decision making based on predictions from ML models

Uncertainty Quantification is required to make an informed decision

Uncertainty Types: Aleatoric vs Epistemic uncertainties

- ➢ Aleatoric → Data uncertainties
- ➢ Epistemic → Model or Out of training distribution uncertainty (OOD)

Gaussian Process (GP) provide robust uncertainty quantification

AI4DQM 2023 | Uncertainty Aware Anomaly Prediction with Siamese Twin Models | kishan@jlab.org

5

- > GP provides robust UQ but scales poorly with increase in data samples (O(n^3))
- > For large datasets and/or in large feature space, **GP approximation** is required
- > Deep Neural Networks (DNN) are very expressive and scales with size of dataset
- > DNN can deal with different types of data including images, text, and timeseries
- ➤ What about UQ for DNN?

UQ in Deep Learning

Anomaly Prediction at SNS Accelerator

- Accelerators are complex multi-system machine
- ➢ Failure in any equipment can cause errant beams
- Fault prediction is beneficial in many ways including reduced downtime

Goal: To predict errant beam pulses (with uncertainty quantification) before they occur to avoid potential damage to the equipment(s) and reduce the downtime

Dataset:

- We used the macro-pulse before an errant beam pulse (and labeled it as anomaly) and macro-pulses from the normal operation (and labeled them as normal) for our studies
- Our hypothesis: there is a sign about upcoming anomaly in macro-pulses even before it happens
- > We also need to forecast the fault within a **short time window** to be actionable

Data Preparation

- Pair data from normal operation to other data (both normal and anomaly)
- The data before anomalies are used for training to be able to predict future anomalies
- A training data generator (keras) is used to generate combination of normalnormal and normalanomaly pairs
- Labels are marked according to the pairs

Uncertainty Aware Siamese Model and Results

- > We use Siamese Model to predict similarities with normal reference waveforms
- > Attached GP approximation layer at the end to provide UQ
- > The ROC curves bands are produced by smearing the predictions with uncertainty
- To evaluate the OOD uncertainty robustness
 - Introduced a different anomaly type (not included in training)
 - > The model predicts OOD anomaly reasonably well with higher uncertainty

Reference

Waveform

Input Layer

ResNet Neural Net

Lambda Distance

Acquired

Waveform

Input Layer

Online System

- Upcoming pulse type decision (good or bad) must be made between pulses (~15 milliseconds)
- ➢ Random Forest on LabVIEW FPGA
 - Developed by ORNL collaborators
- Siamese twin on LabVIEW RT DCML and Unix ML Server (JLab)
- DCML feeds data for machine learning training and inference while the original DCM still protects the machine

11

Online Results

DCML:

Can run up to 4 deterministic
SNN inferences

ML Server:

- Can run 20 deterministic inferences per pulse at 60 Hz to compare incoming waveform with multiple references (can be normal or abnormal)
- Create average similarity to improve results
- Presents results over EPICS

Conclusion

- Siamese Twin Models are used to learn the similarity between inputs
- > Robust Adaptive Data Quality Monitoring can be achieved using Siamese Twin models
- DL models (including Siamese Twin) can be made OOD uncertainty aware by adding GP approximation
- Distance between input samples need to be preserved through hidden layers
- Presented uncertainty aware anomaly prediction is used for SNS accelerator
- > The Model is able to identify unseen anomalies and provide confidence level
- > Trained Models are deployed in real time system for fast anomaly prediction

Collaborators: Malachi Schram (JLab), Willem Blokland (ORNL), Yigit Yucesan (ORNL), Alexander Zukov (ORNL), Pradeep Ramuhali (ORNL), Frank Liu (ORNL), Charles Peters (ORNL), David Brown (ORNL), Cary Long (ORNL)

Acknowledgement: This work was supported by the DOE Office of Science, United States under Grant No. DE-SC0009915 (Office of Basic Energy Sciences, Scientific User Facilities program) and DE-FG02-87ER40315. ORNL is managed by UT-Battelle, LLC for the US Department of Energy (DOE) under contract DE-AC05-00OR22725. Jefferson Laboratory is managed by Jefferson Sc. Assoc., LLC for the US Department of Energy (DOE) under Contract No. DE-AC05-06OR2317. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

13

W Blokland, K Rajput et. al. Uncertainty aware anomaly detection to predict errant beam pulses in the Oak Ridge Spallation Neutron Source accelerator

- https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.25.122802

Kishansingh Rajput et. al. **Uncertainty Aware Deep Learning for Particle Accelerators** - <u>https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_182.pdf</u>

Jeremiah Zhe Liu et. al. **Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness** - <u>https://proceedings.neurips.cc/paper/2020/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf</u>

