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Siamese Twin Models

» Siamese Model consist of twin networks (shared
weights and biases) that learn to transform inputs
into a reduced representation ( feature extraction)

» The reduced representation is compared with an
appropriate distance function

» Further processing may require to provide final
similarity score
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» Traditional DL classification models fails to
identify unseen anomalies (OOD)

» Similarity based models can correctly
classify unseen anomalies. Ex Siamese

model

» Siamese model does not explicitly model
the classification but focuses on the

similarities

Rare anomaly
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Siamese Twin Models for DOQM

> Systems are designed to work -> A lot of normal operation data (good quality data)

> Profile of good quality data available

» In most cases, normal operation data is similar

» Siamese Models can be trained to produce similarity with normal operation data - Monitor new data

» References can be changed (or masked) on the fly upon change in the system - Adaptive
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Uncertainty Quantification in Machine Learnin

> Deterministic transformation functions

» Decision making based on predictions from ML models

» Uncertainty Quantification is required to make an informed decision

Uncertainty Types: Aleatoric vs Epistemic uncertainties

> Aleatoric 2 Data uncertainties

» Epistemic = Model or Out of training distribution uncertainty (OOD)
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Large data sets with higher dimensions and GP

> GP provides robust UQ but scales poorly with increase in data samples (O(n3))
» For large datasets and/or in large feature space, GP approximation is required
» Deep Neural Networks (DNN) are very expressive and scales with size of dataset

» DNN can deal with different types of data including images, text, and timeseries

» What about UQ for DNN?
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(c) Quantile Regression

GP takes into
account distance
between input
samples explicitly

AI4DQM 2023 | Uncertainty Aware Anomaly Prediction with Siamese Twin Models | kishan@ jlab.org

~N

Hidden Layer
h: X—H

Dense Layer
p: H—Y y

! !

Spectral Normalized
Hidden Layer
h: X—H

— h(x) e

Gaussian Process
— h(x) — -y

p: H-Y

X —_—

o
Spectral Neural Gaussian Process

+ Distance preservation via Spectral Norm on
each hidden layer

* Reduced expressivity, harder to learn

+ Distance preservation via bi-lipschitz
Ly x ||y — @a|| < [[hay = ha,|| < Lo X [|lz1 — 22|

L, and L, are hyper-parameters, hy , h,, are
hidden layer outputs corresponding to inputs

Ql, X, respectively /
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Anomaly Prediction at SNS Accelerator

Super Conducting Linac Cavities

» Accelerators are complex multi-system machine

» Failure in any equipment can cause errant beams

_____________________

» Fault prediction is beneficial in many ways including reduced
downtime
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Data Preparation
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Uncertainty Aware Siamese Model and Results

» We use Siamese Model to predict similarities with normal reference waveforms

» Attached GP approximation layer at the end to provide UQ

» The ROC curves bands are produced by smearing the predictions with uncertainty

» To evaluate the OOD uncertainty robustness

» Introduced a different anomaly type (not included in training)

» The model predicts OOD anomaly reasonably well with higher uncertainty
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Online System
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» Developed by ORNL collaborators

» Siamese twin on LabVIEW RT DCML
and Unix ML Server (JLab)
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» DCML feeds data for machine learning
training and inference while the

original DCM still protects the
machine

DCM(L) archives up to 25
before the errant beam pulse
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Online Results
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Conclusion

» Siamese Twin Models are used to learn the similarity between inputs
» Robust Adaptive Data Quality Monitoring can be achieved using Siamese Twin models

» DL models (including Siamese Twin) can be made OOD uncertainty aware by adding GP
approximation

Distance between input samples need to be preserved through hidden layers
Presented uncertainty aware anomaly prediction is used for SNS accelerator

The Model is able to identify unseen anomalies and provide confidence level

YV V VY VY

Trained Models are deployed in real time system for fast anomaly prediction
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