

New tools for ATLAS DSS

<u>Florian Haslbeck^{1,2}</u>, Ignacio Asensi¹, Carlos Solans¹, Gustavo Uribe³

25 August 23

¹ CERN [CH] ² Uni. Oxford [UK], ³ Uni. Antonio Narino [COL]

What is the ATLAS Detector Safety System (DSS)?

2

- hardware-based interlock system shared across LHC experiments
- returns the detector + infrastruture to safe state taking predefined "actions" given signal inputs
- any alarm is followed up by operators, and discussed in weekly operations meeting
- inputs + outputs are defined on "positive safety logic" (low = true, high = false)
 trigger also if no power

What is the ATLAS Detector Safety System (DSS)?

What is the ATLAS Detector Safety System (DSS)?

ATLAS Subsystems are described to varying degree of detail in DSS (alarms and actions)

Human safety is treated by separate system (CSAM) that is linked to firebrigade on-site

DSS alarms are categorised in 4 criticality levels:

Criticality	Description	Total 850
Level 3	Immediate threat to detector or personnel.	145
Level 2	Medium impact to detector.	595
Level 1	Contained impact to other systems	65
Level 0	Purely informative.	34

A recent example of DSS in action

What tools do we need and want for DSS

DSS is designed for highest reliability. Tools are used to understand and predict alarms.

Tools must be:

- very reliable
- easy to understand (by anyone in the control room)
- any uncertainty / interpretation must be left to the operators as they have to take the ultimate decision.

Challenges:

- ATLAS is a highly complex system with many interdependencies
- various degrees of information per sub-system (for DSS)
- small dataset as luckily things work most of the time ;)

Tools: Technical Coordination Expert System

object orientated, rule-based description of detector and infrastructure

> 13000 elements, 89000 relations power, water, gas, network, DSS

accessible via website

is extensively used to predict interventions and to review events

DSS Alarms

Alarms (32) CSV	•	Status e	5
Search			
AL_COL_BeamPipe_VA_ChillerFailure			
AL_COL_BeamPipe_VJA_CoolingNotRunning			
AL_COL_BeamPipe_VJC_CoolingNotRunning			
AL_COL_IBL_CO2_CoolingNotReady			
AL_COL_IBL_CO2_CoolingNotRunning			
AL_COL_IBL_CO2_PlantA_NOTinBakeOutMode			
AL_COL_IBL_CO2_PlantB_NOTinBakeOutMode			
AL_Emergency_ATLAS_OFF			
AL_INF_BakeOut_EmergencyStop			
AL_INF_Smoke_USA15_2Areas			
AL_INF_Smoke_USA15L3_CVArea			
AL_INF_Smoke_UX15			
AL_INF_US15_Flooding			
AL_INF_USA15andUX15_Flooding			
AL_LUC_TempTooHigh_SideA			
AL_LUC_TempTooHigh_SideC			
AL_PIX_IBL_Temperature_Interlock			
AL_PIX_Temperature_Interlock			
AL_SN2_Smoke_InnerDetectorA			
AL_SN2_Smoke_InnerDetectorC			
AL_SN3_Smoke_BWA_and_BWC			
AL_SN3_Smoke_CentralTrench			
AL_SN3_Smoke_InnerArea_and_BWA			
AL_SN3_Smoke_InnerArea_and_BWC			
AL_SN3_Smoke_InnerArea_and_MuonBarrel			
AL_SN3_Smoke_InnerDetector			
AL_SN3_Smoke_MacroArea_BWA_2alarms			
AL_SN3_Smoke_MacroArea_BWC_2alarms			
AL_SN3_Smoke_MacroArea_InnerArea_2alarms			
AL_SN3_Smoke_MacroArea_MuonBarrel_2alarms	5		
AL_SN3_Smoke_MuonBarrel_and_BWA			
AL_SN3_Smoke_MuonBarrel_and_BWC		0	

atlas-expert-system.web.cern.ch/

Tools: Most probable cause algorithm

Get possible points of failures for affected systems based on Expert system description

idea:

traverse graph, identify the common predecessors of affected systems from predecessors

Problems:

- graph is imbalanced as sytems are described to different detail (⇒biased sorting)
- graph iteration can become slow
- current algo. can returns O(100) points of failure if any object is already off or alarm was triggered before

Graph representation of Expert system databse

Tools: pre-calculated simulation

Speed up MPC tool by pre-calculating some simulations:

Simulate switching off each element individually and store any switched off elements.

many failures have "unique" alarms ⇒ map DSS alarms to failure

color: criticality of alarm combination

Alarms can be caused accidently, e.g. switch off of a system

Current tools have no access to historical events.

Event analysis:

Use weekly review of events (2018 – 2023) to categorise in

- intervention: due to repairs, maintenance etc
- unexpected: errors and faults

⇒ majority of events are
caused by interventions!
⇒ "false" alarms can damage detector
(e.g. cooling) and lessen attention

Time analysis of events

Interventions

Unexpected events

might be taken wrongly as intervention!

New database with historical events (and particular the impact of interventions!)

Publish similar events and other useful information (e.g. ongoing interventions) in website. Use Expert system, MPC, tabulated simulation, documention, ...

Knowing the impact of interventions can help optimising planning

Idea: autogenerate weekly forecasts that can be used in weekly reviews.

Conclusion

- DSS: reliable, hardware based system to keep ATLAS safe
- majority of alarms are currently caused by interventions
- tools are used to find point of failure and to predict impact of interventions
- various challenges make "traditional" MVA hard
- Iooking forward to your ideas and inputs!