PR12-23-004

A Search for a Nonzero Strange Form Factor of the Proton at $2.5(\mathrm{GeV} / \mathrm{c})^{2}$

R.Beminiwattha, S.P.Wells, N.Simicevic, D.Hamilton, O.Jevons, R.Montgomery, C. Palatchi, K.Paschke, S.Ali, X.Bai, G.Cates, R.Lindgren, N.Liyanage, V.Nelyubin, R. Richards, X.Zheng, B.Wojtsekhowski, A.Camsonne, S.Covrig Dusa, P.Degtiarenko, D.Gaskell, O.Hansen, W. Henry, D. Higinbotham, D.Jones, M.Jones, C.Keppel, D. Mack, S. Lassiter, D.Meekins, R.Michaels, B.Raydo, H.Szumila-Vance, A.S.Tadepalli, T.Horn, E.Cisbani, G. Urciuoli, E.King, J.Napolitano, P.M.King, P.A.Souder, P.Markowitz, E.Brash, P.Monaghan, T.Hobbs, G.Miller, J.Lichtenstadt, T.Kolar, E.Piasetzky, G.Ron, D.Armstrong, T.Averett, S.Mayilyan, H.Mkrtchyan, A.Mkrtchyan, A.Shahinyan, V.Tadevosyan, H.Voskanyan, W.Tireman, P.Datta, E.Fuchey, A.J.R.Puckett, S.Seeds, C.Munoz-Camacho

LaTech, Glascow, Indiana, UVa, JLab, CUA, INFN - Roma, Temple, Ohio, Syracuse, FIU, CNU, Fermilab, UWashington, Tel Aviv U, Hebrew U, W\&M, AANL Yerevan, Northern Michigan, UConn, Orsay

Strongly motivated proposal

Highlights from PAC50 final report:

Motivation: The experiment aims at measuring the strange quark contribution to the proton electromagnetic form factors. This is crucial for their flavour decomposition. This compelling physics case is motivated by recent progress in lattice QCD calculations and by phenomenological models highlighting the potential of a measurement at large Q^{2}.
Summary: The presented physics case is timely and extremely compelling.
Measurement and Feasibility: Although the setup is very simple from the kinematic point of view and the measurement is largely limited by statistical uncertainty...

From the 2023 Theory TAC: In my opinion, the possibility to observe nontrivial SFF of the nucleon is very interesting and the experiment should be approved.

Updated technical details

"The PAC would like to see the results of a detailed Geant 4 simulation of the experiment confirming the claim of low background in the experiment, as the independent TAC report recommended."
We developed detailed GEANT4 simulation to confirm our analytic estimates of rates and backgrounds
"In addition, a detailed design of the experimental setup (including electronics and DAQ) should be presented to assess the viability of the measurement."
We present a more complete description of the front-end electronics and DAQ
From the 2023 TAC The collaboration has done a good job of developing a GEANT4-based Monte Carlo simulation of the radiation and backgrounds and detector responses, thus addressing several of the concerns of the previous TAC. It would be advised to benchmark these simulations against measurements, perhaps using data from SBS or, when it runs, the NPS.

Charge symmetry and the nucleon form factors

Charge Symmetry

$$
\begin{aligned}
& G_{E}^{p}=\frac{2}{3} G_{E}^{u, p}-\frac{1}{2} G_{E}^{d, p} \\
& G_{E}^{n}=\frac{2}{3} G_{E}^{u, n}-\frac{1}{3} G_{E}^{d, n}
\end{aligned}
$$

$$
G_{E}^{p}=\frac{2}{3} G_{E}^{u, p}-\frac{1}{3} G_{E}^{d, p}-\frac{1}{3} G_{E}^{s}
$$

$$
G_{E}^{n}=\frac{2}{3} G_{E}^{u, n}-\frac{1}{3} G_{E}^{d, n}-\frac{1}{3} G_{E}^{s}
$$

Charge symmetry is assumed for the form factors, $G_{E}^{u, p}=G_{E}^{d, n}$, etc. and used to find the flavor separated form-factors, measuring $G_{E, M}^{p, n}$ to find $G_{E, M}^{u, d}$

But this can broken! One way is to have a non-zero strange form-factor, which breaks the " 2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:

$$
G_{E}^{p, Z}=\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E}^{u, p}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E}^{d, p}+\left(-1+\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E}^{s}
$$

A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

$$
\begin{aligned}
\delta G_{E}^{u} & \equiv G_{E}^{u, p}-G_{E}^{d, n} \\
\delta G_{E}^{d} & \equiv G_{E}^{d, p}-G_{E}^{u, n}
\end{aligned}
$$

So, more generally: this experiment tests the assumption of charge symmetry which is crucial to the flavor decomposition of the form factors

Strangeness form factors

Polarized electron beam elastic e-p scattering

$$
\begin{gathered}
A_{P V}=-\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}} \cdot\left[\left(1-4 \sin ^{2} \theta_{W}\right)-\frac{\epsilon G_{E}^{p} G_{E}^{n}+\tau G_{M}^{p} G_{M}^{n}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}-\frac{\left.\epsilon G_{E}^{p} \overline{G_{E}^{s}}\right)+\tau G_{M}^{p}\left(G_{M}^{s}\right)}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right. \\
\left.+\epsilon^{\prime}\left(1-4 \sin ^{2} \theta_{W}\right) \frac{G_{M}^{p} G_{A}^{Z p}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right]
\end{gathered}
$$

$$
\mathrm{A}_{\mathrm{PV}}=(-226 \mathrm{ppm}) *\left[0.075+0.542-6.43^{*}\left(G_{M}^{s}+0.32 G_{E}^{s}\right)+0.038\right]
$$

$$
\mathrm{Q}_{w} \quad \text { EMFF strange form-factors axial }
$$

$A_{P V}=150 \mathrm{ppm}$ at $\theta=15.5^{\circ}, \mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2}(\mathrm{if} \mathrm{sFF}=0)$

Proton strange form factors via parity violating elastic electron scattering

Strange form factors are measured to be consistent with zero at low Q2,
but do not rule out non-zero values at higher Q^{2},
especially for magnetic form factor which is more accessible at higher Q^{2}

Strange form-factor predictions

Conclusion: sFF small (but non-zero) at low Q^{2}, but quite reasonable to think they may grow relatively large at large Q^{2}

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{D}}=0.0477 \text { at } 2.5 \mathrm{GeV}^{2} \\
& \text { uncertainty here ranges from }(0.036,-0.051) \\
& \mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{D}} \sim 1 \text { is not excluded } \\
& \rightarrow \text { possible } \delta A_{P V} \sim \pm 22 \mathrm{ppm}, \sim \pm 15 \% \text { of } A_{P V}^{n s}
\end{aligned}
$$

Strange form-factors on the lattice

J. Green et al., Phys. Rev. D 92, 031501 (2015)

(a)

(b)

\mathbf{Q}^{2} dependence of $\mathbf{Q}^{4} \mathrm{~F}_{1}$

$$
\begin{aligned}
& F_{1 p}=e_{u} F_{1}^{u}+e_{d} F_{1}^{d}+e_{s} F_{1}^{s} \\
& F_{1 n}=e_{u} F_{1}^{d}+e_{d} F_{1}^{u}+e_{s} F_{1}^{s}
\end{aligned}
$$

$$
F_{1}^{u}=2 F_{1 p}+F_{1 n}-F_{1}^{s} \quad F_{1}^{d}=2 F_{1 n}+F_{1 p}-F_{1}^{s}
$$

Assuming $\delta G_{E, M}^{s} \sim G_{D} \sim 0.048 \rightarrow \delta\left(Q^{4} F_{1}^{u}\right) \sim \pm 0.17$

$$
F_{1}=\frac{G_{E}+\tau G_{M}}{1+\tau}=\frac{G_{E}+0.7 G_{M}}{1.7} \sim \frac{G_{D}}{1.7}
$$

- Flavor separated form factors are a crucial piece of information for GPDs / nuclear femtography.
- So far, these have relied on poorly tested assumptions of strange quark contributions.
- Experimentally not ruled out (at level of yellow band) and lattice calculations do not rule out significant contributions (at level of $1 x-2 x$ the green band)

This measurement is needed

Experiment context

Experimental concept

- 6.6 GeV beam
- $10 \mathrm{~cm} \mathrm{LH}_{2}$ target, $65 \mu \mathrm{~A}, \mathcal{L}=1.7 \times 10^{38} \mathrm{~cm}^{-2} / \mathrm{s}$
- Full azimuthal coverage, $\sim 42 \mathrm{msr}$
- Elastic kinematics between electron and proton
- Angular correlation e-p
- Scattered electron at 15.5 degrees
- Scattered proton at 42.4 degrees
- High resolution calorimeter for electron arm
- Calorimeter trigger for proton arm

Pipelined triggered readout, recording events with:

- E>threshold in calorimeter
- polar and azimuthal coincidence
- ECAL cluster center vs HCAL block matches ep elastic

Off-line analysis

- pixel hodoscope adds more precise proton position
- Tighten cuts, especially polar angle

Detector System

HCAL - hadron calorimeter

- Detector elements from the SBS HCAL
- 288 blocks, each $15.5 \times 15.5 \times 100 \mathrm{~cm}^{3}$
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

- Detector elements from the NPS calorimeter
- 1200 blocks, each $2 \times 2 \times 20 \mathrm{~cm}^{3}$
- PbWO_{4} scintillator
- 1 cm lead shield

Scintillator array

- New detector, requires construction
- 7200 blocks, each $3 \times 3 \times 10 \mathrm{~cm}^{3}$
- Used for position resolution in front of HCAL
- Not used to form trigger
- 5 cm Lead shield in front to reduce photon load

Calorimeters reusing components

NPS electromagnetic calorimeter

- $1200 \mathrm{PBWO}_{4}$ scintillators, PMTs + bases
- will run in future NPS experiment
- Only PMT base region needs cooling for required performance

SBS hadronic calorimeter

- 288 iron/scintillator detectors, PMTs + bases
- Already in use with SBS

Scintillator Array

New detector, must be built for this experiment

- Extruded plastic scintillator block
- Readout with wavelength-shifting fiber
- Each fiber read by pixel on multi-anode PMT
- 7200 blocks, each $3 \times 3 \times 10 \mathrm{~cm}^{3}$
- Pipeline TDC readout (VETROC)

Design matches CDET scintillator array built for GEP - 2400 elements, $0.5 \times 4 \times 50 \mathrm{~cm}^{3}$

- Already built, will run next year

Installation in Hall C

3.5 m target shift downstream from pivot due to space limitation on the SHMS side Will need a very substantial frame to support HCAL

Scattering chamber

Cylindrical scattering chamber with large Al window to pass 15° electrons and 45° protons Design uses a cone with "ribs", plus an inverted hemisphere center, windows could be as thin as 0.5 mm

Requires air gap - will use He bag (not shown) to transport beam, so open air gap is only $\sim 50 \mathrm{~cm}$

Triggering

Grouping calorimeter "subsystems" for energy threshold and coincidence triggering of event record

- each polar column of detectors, overlapping with neighbors
- sum amplitude with conservative coincidence timing window
- compare to conservative energy threshold
- trigger when complementary (ECAL and HCAL) subsystems are both above threshold ~ only about 35 kHz

Electron subsystems

- $1200 \mathrm{PbWO}_{4}$ crystals
- $2 \times 2 \times 20 \mathrm{~cm}^{3}$
- 5×5 grouping for subsystem
- 240 overlapping subsystems

Proton subsystems

- 288 iron/scintillators
- $15.5 \times 15.5 \times 100 \mathrm{~cm}^{3}$
- 3×3 grouping for subsystem
- 96 overlapping subsystems
N.B. definitely triggered (not "streaming") readout. I had to get educated about what people meant when they said that word...

Advantage: simplicity over dynamic clusterization, and fully sufficient for acceptance, resolution, and background

Buffered readout for fast counting

Readout for fast counting is now a very common challenge and enabled by new, and now common, technologies. In particular, SOLID will face this challenge in measurement of PV-DIS, and this experiment will be an important testing ground for precise asymmetry counting measurements.

Concept very similar to the HPS DAQ, used in 2019 or NPS DAQ:

JLab FADC250 for HCAL and ECAL readout
Provides the pulse information for a fast, "deadtime-less" trigger
vxSIVME Crate

\longrightarrow VTP (VXS Trigger Processor)
Running, updating sums over subsystems, finds ECAL+HCAL coincidence

One VXS crate will handle one sixth of ECAL + HCAL, also provide external trigger for ScintArray pipelineTDC readout

Expect $\sim 35 \mathrm{kHz}$ total, $\sim 450 \mathrm{Mb} / \mathrm{s}$ data rate, distributed over 6 separate crates

Scintillator TDC readout

Two workable options, based on previously implements MAPMT pipeline readout
model based on CDET detector (GEP)

- NINO chip module, VETROC for scintillator readout.
- Need 38 boards, 3 crates.
- Pipeline event record triggered by calorimeter coincidence trigger.
- Use HCAL subsystem number to select scint elements for readout
- Record time, time-over-threshold for scint elements (preferred)
- 35 kHz trigger rate, $8 \mathrm{Bt} /$ read, 225 elements $=65 \mathrm{MB} / \mathrm{sec}$
model based on CLAS12 RICH
- MAROC3a FPGA readout module
- discriminated signal
- SSP readout board for scintillator readout.
- Need 38 front-end boards, 2 SSP, 1 crate.
- Event record triggered by calorimeter coincidence trigger.
- All elements recorded hit or not, $35 \mathrm{kHz} * 7200$ bits $=32 \mathrm{MB} / \mathrm{sec}$

Other possible discriminator boards, if availability is limited (such as SAMPA...)

ECAL cluster rates

The relatively high ECAL cut (~66\% of beam energy) greatly reduces the trigger rate

$$
\begin{array}{|l|l|}
\hline \mathrm{ECAL}>4.5 \mathrm{GeV} & 153 \mathrm{kHz} \\
\hline
\end{array}
$$

$\mathrm{ECAL}>4.5 \mathrm{GeV}$	
$\&$	35 kHz
$\mathrm{HCAL}>50 \mathrm{MeV}$	

Rates and Precision

Beam and target: 60 uA on $10 \mathrm{~cm} \mathrm{LH} 2=>$ luminosity is $1.6 \times 10^{38} \mathrm{~cm}^{-2} / \mathrm{s}$
Trigger (online)

- Elastic coincidence 18 kHz signal in full detector
- Inelastic (pion production) coincidence trigger rate $\sim 16 \mathrm{kHz}$
- Accidental coincidence rate $<2 \mathrm{kHz}$
- $\sim 150 \mathrm{kHz}$ total singles rate in ECAL $>4.5 \mathrm{GeV}$ energy threshold, $240 / 5$ unique subsystems
- ~19 MHz total singles rate in HCAL > 50 MeV energy threshold, $96 / 3$ unique subsystems
- Temporal coincidence cut 20 ns
- $\sim 35 \mathrm{kHz}$ total coincidence trigger rate
- Live time ($1-35 \mathrm{kHz}$ *20ns) ~99.9\%

Offline analysis

- ECAL cluster center, scintillator array to improve geometric cuts, cut edge hits, ECAL cut, 4 ns timing
- Accepted elastic signal reduced to 13 kHz - production statistics
- Inelastic (pion production) $<0.4 \%$, accidentals $<1 \times 10^{-5}$ due to angular precision and higher E cut

Beam polarization 85\%
40 days production runtime \rightarrow Raw asymmetry statistical precision $\delta\left(\mathrm{A}_{\text {raw }}\right) \sim 5 \mathrm{ppm}$ $\rightarrow A_{P V}=-150+/-6.2 \mathrm{ppm}$

Elastic event discrimination

dashed lines = offline cuts

Fraction of total by event type	Online	Offline
Elastic scattering	0.531	0.989
Inelastic (pion electro-production)	0.450	0.002
Quasi-elastic scattering (target windows)	0.015	0.008
π^{0} photo-production	0.004	0.001

"sideband" analyses will help verify QE and inelastic asymmetries

Error budget

quantity	value	contributed uncertainty
Beam polarization	$85 \% \pm 1 \%$	1.2%
Beam energy	$6.6+/-0.003 \mathrm{GeV}$	0.1%
Scattering angle	$15.5^{\circ} \pm 0.03^{\circ}$	0.4%
Beam intensity	$<100 \mathrm{~nm},<10 \mathrm{ppm}$	0.2%
Backgrounds	$<0.2 \mathrm{ppm}$	0.2%
G_{E}^{n} / G_{M}^{n}	-0.2122 ± 0.017	0.9%
G_{E}^{p} / G_{M}^{p}	0.246 ± 0.0016	0.1%
σ_{n} / σ_{p}	0.402 ± 0.012	1.2%
$G_{A}^{Z p} / G_{\text {Dipole }}$	-0.15 ± 0.02	0.9%
Total systematic uncertainty:		2.2%

$$
\text { or } 3.3 \mathrm{ppm}
$$

Statistical precision for A_{PV} : $6.2 \mathrm{ppm}(4.1 \%)$

There is also an uncertainty from radiative correction, is small except for a dominant "anapole" piece. If the anapole uncertainty is not improved, this would contribute at additional $4.1 \mathrm{ppm}(2.7 \%)$ uncertainty

Projected result

$$
\begin{gathered}
\delta \mathrm{A}_{\mathrm{PV}}= \pm 6.2 \text { (stat) } \pm 3.3 \text { (syst) } \\
\delta\left(G_{E}^{s}+3.1 G_{M}^{s}\right)= \pm 0.013 \text { (stat) } \pm 0.007 \text { (syst) }=0.015 \text { (total) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { If } G_{M}^{s}=0, \delta G_{E}^{s} \sim 0.015, \quad\left(\text { about } 34 \% \text { of } \mathrm{G}_{\mathrm{D}}\right) \\
& \text { If } G_{E}^{s}=0, \delta G_{M}^{s} \sim 0.005,\left(\text { about } 11 \% \text { of } \mathrm{G}_{\mathrm{D}}\right)
\end{aligned}
$$

The proposed measurement is especially sensitive to G_{M}^{s}
The proposed error bar reaches the range of lattice predictions, and the empirically unknown range is much larger.

Summary

Configuration \#	Procedure	Beam current, $\mu \mathrm{A}$	time, days
C1	Beam parameters	$1-70$	1
C2	Detector calibration	10	$2 / 3$
C3	Dummy target data	20	$1 / 3$
C4	Moller polarimetery	$1-5$	3
C5	$A_{P V}$ data taking	60	40
	Total requested time		45

- 10+ years after the last sFF searches were performed, a new experiment is proposed for much higher Q^{2}, motivated by interest in flavor decomposition of electromagnetic form factors
- Projected accuracy at 11% of the dipole value allows high sensitivity search for non-zero strange form factor.
-The proposed error bar is in the range possibly suggested by lattice predictions, and significantly inside the range from the simple extrapolation from previous data
-Technical case has been fleshed out, with a detailed MonteCarlo, significant CAD design work,
- We are requesting PAC approval of 45 days of beam time (65 uA on 10 cm long LH2 target).

Backup slides

Helicity-correlated Beam Asymmetries

Position differences (like angle, but angle $\sim 10 x$ smaller):
APV roughly proportional to Q^{3}, so sensitivity $\delta A / \delta \theta \sim 3 \delta \theta / \theta$
Assume very large (by today's standards) position difference of 200 nm , to be compared to 79 cm radius of ECAL

$$
200 \mathrm{~nm} / 79 \mathrm{~cm} \sim 250 \mathrm{nrad} \rightarrow \frac{\delta \theta}{\theta} \sim 1 \mathrm{ppm}, \text { or } \frac{\delta A}{A} \sim 3 \mathrm{ppm}, \sim 2 \% .
$$

Azimuthal symmetry leads to excellent cancellation, so the net effects will be very small.
Similarly, energy, assuming 200 nm in dispersive bpm ($\sim 1 \mathrm{~m}$ dispersion) $\rightarrow 0.2 \mathrm{ppm}$, or 0.15%
Can be corrected with regression

Charge asymmetry

Using feedback, <10ppm easily achievable. 1% calibration $\rightarrow 0.1$ ppm systematic, 0.06%

A sense of scale in important here: Qweak ($\sigma \sim 10 p p b$), PREX-2 (16ppb) and CREX (100ppb) were between 60x - 600x more precise in terms of the absolute asymmetry error bar, they were all much more sensitive to beam asymmetries (by factors of $4 \mathrm{x}-100 \mathrm{x}$), and they all successfully kept the total beam correction uncertainty to be small compared to their statistical error.

With regard to the challenges of HCBA, this proposal is far inside the envelope of the tools we have used many times here at JLab.

Strawman Budget

scattering chamber	Vacuum chamber - large pipe+window Scattering chamber shift	$\begin{gathered} 500 \mathrm{k} \\ \text { will exist } \end{gathered}$
ECAL/HCAL support	ECAL support	200k
	ECAL cooling	tbd
	Lead shield for ECAL	tbd
	HCAL support	300k
	FADCs (exist for HCAL/ECAL)	exists
	VTP, DAQ crates + CPUs + data links	mostly exists
Scintillator array construction		
~7200 elements	Scint array maPMTs (125×64 channels)	450k
	Scint array extruded scint	50k
	Scint array support	100k
Scintillator array readout	Lead shield for scint array	tbd
	Scint Array TDC + front end	400k
	Total, a bit over	\$2000k

Work packages

Collaboration institutions have expressed interest in various components

Component	Lead or interested groups
Target chamber and detector structure	JLAB target and design groups
HCAL design and assembly	JLab design, +....
ECAL design and assembly	AANL, with expert advice from Orsay
Scint array design and fabrication	LaTech, Indiana...
DAQ	JLab DAQ Group, UVa, Ohio...
Analysis software LaTech	
Beam Polarimetry	UVa, Temple, JLab Hall A/C
Polarized beam and source	Indiana

Pion electro-production contribution

ep detection of inelastic scattering.

Largest contribution from Delta, with strong exclusion from coincidence geometery

Angular separation:
6° (at Δ peak)
2.8° (at π threshold)
Angular resolution $\sim 0.6^{\circ}$ (polar)
Proton cone around Δ recoil, projected to polar angle:
RMS $=2^{\circ}($ so, 2.5σ separation for $\Delta)$

Fraction to elastic rate $<0.3 \%$

Fraction of total by event type	Online	Offline
Elastic scattering	0.531	0.989
Inelastic (pion electro-production)	0.450	0.002
Quasi-elastic scattering (target windows)	0.015	0.008
π^{0} photo-production	0.004	0.001

Single pion photo-production contribution pion (ECAL) - proton (HCAL) coincidence

EPA: functions $N(\omega)$, different E

Remaining single pion events $<0.1 \%$ of elastic rate

$$
\begin{aligned}
\frac{d \sigma}{d t}_{\gamma n \rightarrow \pi^{-} p} & =1.7 \times 0.83 \times\left(\frac{10}{s\left[\mathrm{GeV}^{2}\right]}\right)^{7}(1-z)^{-5}(1+z)^{-4}\left(\mathrm{nb} / \mathrm{GeV}^{2}\right), \\
N_{\pi^{-} p} & =\frac{d \sigma}{d t}{\pi^{-} p} \frac{p_{\pi^{-}}^{2}}{\pi} \Delta \Omega_{\pi^{-}} f_{\pi^{-} p}\left[\frac{\Delta E_{\gamma}}{E_{\gamma}} \frac{t_{r a d}}{X_{o}} \mathcal{L}_{e n}\right]
\end{aligned}
$$

Near the end point the photon yield
is going down \longrightarrow reduction in factor $t_{r a d} / X_{0}$
$\mathrm{f}_{\pi-p}$ takes care of the cuts on angular correlation/resolution

Fraction of total by event type	Online	Offline
Elastic scattering	0.531	0.989
Inelastic (pion electro-production)	0.450	0.002
Quasi-elastic scattering (target windows)	0.015	0.008
π^{0} photo-production	0.004	0.001

Accidental background coincidence calculation

Online:
Electron arm single rate for $\mathrm{E}_{\mathrm{e}^{\prime}}>4.5 \mathrm{GeV}$ is $\sim 150 \mathrm{kHz}: 3 \mathrm{kHz} /$ subsystem
Proton arm single rate $19 \mathrm{MHz}: 0.6 \mathrm{MHz} /$ subsystem
Time window in the trigger $20 \mathrm{~ns}->$ total accidental coincidence rate $\sim 38 \mathrm{~Hz}$ x 48 subsystems: 2 kHz
Offline:
Time window in analysis 4 ns , smaller area (high resolution part) and geometry cuts \rightarrow Accidental rate is $<10 \mathrm{~Hz}$

Background events from Al

- assumed 5 mils target cell windows, $\sim 5 \%$ nucleon
- Fermi energy smears quasi-elastic scattering distribution, about $80 x$ suppression
- B/S < 0.1\%
- a dummy target will be used to check accepted rate

Beam Background - per subsystem

Energy deposited, for ECal

Anapole Moment

In the context of a very large discrepancy from SAMPLE, the anapole radiative correction was investigated as a possible cause

$$
\tilde{G}_{A}^{e}\left(Q^{2}\right)=\left[\tau_{3} g_{A}\left(1+R_{A}^{(T=1)}\right)+\frac{3 F-D}{2} R_{A}^{(T=0)}+\left(1+R_{A}^{(0)}\right) \Delta s\right] G_{A}^{D}\left(Q^{2}\right)
$$

The 1-quark and many-quark corrections to the axial charges in the $\overline{M S}$ renormalization scheme.

	$R_{A}^{(T=1)}$	$R_{A}^{(T=0)}$	$R_{A}^{(0)}$
1-quark	-0.172	-0.253	-0.551
Many-quark	$-0.086(0.34)$	$0.014(0.19)$	-
Total	$-0.258(0.34)$	$-0.239(0.20)$	-0.551

values from Shi-Lin Zhu, S.J. Puglia, Barry R. Holstein,
M.J. Ramsey-Musolf, Phys. Rev. D 62 (2000) 033008.

Suggests a coefficient on the axial term at $\mathrm{Q}^{2}=0$:

$$
\left(1+R_{A}^{(T=1)}\right)=0.74 \pm 0.34
$$

Without improvement, this would correspond to 4.1 ppb , or 2.7% of A_{PV}
Q^{2} dependence was explored at that time - suggested that it may be significant, but hasn't been evaluated since, or to high Q^{2}.
(Here, I believe this $\mathrm{F}\left(\mathrm{Q}^{2}\right)$ multiplies only the many-quark $R_{A}^{(T=1)}=-0.086$ contribution.)

Gamma-Z Box

Additional radiative correction to Q_{w}

$$
Q_{W}^{p}=\left(1+\Delta \rho+\Delta_{e}\right)\left(1-4 \sin ^{2} \theta_{W}(0)+\Delta_{e}^{\prime}\right)+\square_{W W}+\square_{Z Z}+\square_{\gamma Z}(0)
$$

For Qweak, added $\sim 0.5 \%$ uncertainty

Here, $\square_{\gamma Z}^{\mathrm{v}}(0)=0.0095 \pm 0.0005$ and $\square_{\gamma Z}^{\mathrm{a}}(0)=-0.0036 \pm 0.0004$ which together is about $1.33 \pm 0.14 \mathrm{ppm}(0.9 \pm 0.1 \%)$

Caveat: this calculation is for forward direction. Off-forward expected to be greatly reduced (but this is also model dependent).

Axial piece smaller, didn't receive as much recent attention/update, seems stable with energy

JLab Fast Electronics FADC250 / VTP

JLab FADC250 for HCAL and ECAL readout Provides the input for a fast, "deadtime-less" trigger

FADC Trigger path: Pulse detector/integrator

VTP (VXS Trigger Processor)
Performs the trigger logic computation

DAQ Diagram

One VXS crate will handle one sector of ECAL + HCAL, also provide external trigger for ScintArray TDC readout

This six synchronized but independent systems will form the full DAQ

