Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering (VCS-II)

A Proposal to Jefferson Lab PAC-51

On behalf of the VCS-II collaboration and its spokespeople: N. Sparveris*, H. Atac, A. Camsonne, M.K. Jones and M. Paolone

Michael Paolone, New Mexico State University, July 26th 2023

*contact person

Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering (VCS-II)

H. Atac (spokesperson), R. Li, N. Sayadat, S. Shesthra, N. Sparveris (spokesperson / contact), S. Webster Temple University, Philadelphia, PA, USA

A. Camsonne (spokesperson), J-P. Chen, A. Deur, M. K. Jones (spokesperson), M. D. McCaughan, A. Tadepalli Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

W. Armstrong, S. Joosten, Z.E. Meziani, C. Peng Argonne National Laboratory, IL,USA

M. Ali, M. Paolone (spokesperson) New Mexico State University, NM, USA

A.T. Katramatou, G.G. Petratos Kent State University, Kent, OH, USA E. Brash Christopher Newport University, VA, USA

> J. Bernauer, E. Cline, W. Li Stony Brook University, NY, USA

G. Huber University of Regina, Canada

Z. Zhao Duke University and Triangle Universities Nuclear Laboratory, NC, USA

> N. Liyanage, M. Nycz University of Virginia, VA, USA

R. Gilman Rutgers, The State University of New Jersey, NJ, USA C. Ayerbe Gayoso William and Mary, Williamsburg, VA, USA

M. Mihovilovic, S. Sirca Faculty of Mathematics and Physics, U. of Ljubljana & Jozef Stefan Institute, Ljubljana, Slovenia

M. Demirci Karadeniz Technical University, Turkey

D. Androic University of Zagreb, Faculty of Science, Croatia

P. Markowitz Florida International University, Miami, FL, USA

N. Santiesteban University of New Hampshire, NH, USA

If we want to understand the characteristics of the proton as a building block of the universe... we need to understand the dynamics of the proton's constituents and how they contribute to those emergent characteristics.

- **Polarizability** is in an important characteristic of the proton: •
 - How rigid is the proton in the presence of an EM field?
 - A fundamental property of the proton!
 - Sensitive to the excitation of the proton.
 - Can be accessed by Compton scattering (the photon) acting as an induced EM field)
- Generalized Polarizabilities (GPs)
 - Accessed via virtual photon interaction.
 - Probe length (Q2) provides information on proton constituents in relation to structure of the proton

The proton is the only known stable composite particle!

If we want to understand the characteristics of the proton as a building block of the universe... we need to understand the dynamics of the proton's constituents and how they contribute to those emergent characteristics.

- **Polarizability** is in an important characteristic of the proton:
 - How rigid is the proton in the presence of an EM field?
 - A fundamental property of the proton!
 - Sensitive to the excitation of the proton.
 - Can be accessed by Compton scattering (the photon) acting as an induced EM field)
- Generalized Polarizabilities (GPs)
 - Accessed via virtual photon interaction.
 - Probe length (Q2) provides information on proton constituents in relation to structure of the proton

$$\vec{p} = \alpha_E \vec{E}$$

Electric Polarizability

If we want to understand the characteristics of the proton as a building block of the universe... we need to understand the dynamics of the proton's constituents and how they contribute to those emergent characteristics.

- **Polarizability** is in an important characteristic of the proton:
 - How rigid is the proton in the presence of an EM field?
 - A fundamental property of the proton!
 - Sensitive to the excitation of the proton.
 - Can be accessed by Compton scattering (the photon) acting as an induced EM field)
- Generalized Polarizabilities (GPs)
 - Accessed via virtual photon interaction.
 - Probe length (Q2) provides information on proton constituents in relation to structure of the proton

If we want to understand the characteristics of the proton as a building block of the universe... we need to understand the dynamics of the proton's constituents and how they contribute to those emergent characteristics.

- **Polarizability** is in an important characteristic of the proton:
 - How rigid is the proton in the presence of an EM field?
 - A fundamental property of the proton!
 - Sensitive to the excitation of the proton.
 - Can be accessed by Compton scattering (the photon) acting as an induced EM field)
- Generalized Polarizabilities (GPs)
 - Accessed via virtual photon interaction.
 - Probe length (Q2) provides information on proton constituents in relation to structure of the proton

Paramagnetic Contribution from direct alignment

$$\overrightarrow{m} = \beta_M \overrightarrow{B}$$

Magnetic **Polarizability**

If we want to understand the characteristics of the proton as a building block of the universe... we need to understand the dynamics of the proton's constituents and how they contribute to those emergent characteristics.

- **Polarizability** is in an important characteristic of the proton:
 - How rigid is the proton in the presence of an EM field?
 - A fundamental property of the proton!
 - Sensitive to the excitation of the proton.
 - Can be accessed by Compton scattering (the photon) acting as an induced EM field)
- Generalized Polarizabilities (GPs)
 - Accessed via virtual photon interaction.
 - Probe length (Q2) provides information on proton constituents in relation to structure of the proton

Paramagnetic Contribution from direct alignment

Diamagnetic contribution from meson cloud partially cancels with paramagnetic

 $\overrightarrow{m} = \beta_M \overrightarrow{B}$

Magnetic

Polarizability

Static Polarizabilities

Listed in the PDG as a fundamental property: $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$

N BARYONS (S = 0, I = 1/2) $p, N^+ = u \ u \ d; \ n, N^0 = u \ d \ d$	PDGID:5016 JSON (beto) IN	Spire Q
p $I(J^{P}) = 1/2(1/2^{+})$		
p MASS (atomic mass units u)	$1.007276466621 \pm 0.000000000053$ u	~
p MASS (MeV)	$938.27208816 \pm 0.00000029~{ m MeV}$	~
$m_p - m_{\overline{p}} / m_p$	$< 7 imes 10^{-10}$ CL=90.0%	~
$\left \frac{q_p}{m_p}\right / \left(\frac{q_z}{m_p}\right)$	$1.00000000003 \pm 0.0000000016$	~
$\left \left \frac{q_p}{m_p}\right -\frac{q_p}{m_p}\right)/\frac{q_p}{m_p}$	$(0.1\pm 6.9) imes 10^{-11}$	~
$ q_p+q_{\overline{p}} /e $	$< 7 imes 10^{-10}$ CL=90.0%	~
$ q_p + q_e /e$	$< 1 imes 10^{-21}$	~
p MAGNETIC MOMENT	$2.7928473446 \pm 0.0000000008\mu_N$	~
P MAGNETIC MOMENT	$-2.792847344 \pm 0.000000004 \mu_N$	~
$(\mu_p + \mu_{\overline{p}}) / \mu_p$	$(2\pm4) imes10^{-9}$	~
p ELECTRIC DIPOLE MOMENT	$< 2.1 imes 10^{-25}$ e cm	~
Electric polarizability $lpha$	$0.00112 \pm 0.00004 ~{ m fm}^3$	~
Magnetic polarizability 🕱	$(2.5\pm0.4) imes10^{-4}{ m fm}^3$ (S = 1.2)	~
Charge radius	0.8409 ± 0.0004 fm	~
Magnetic radius	0.851 ± 0.026 fm	~
Mean life $ au$	$>9 imes10^{29}$ years CL=90.0%	~
D MEAN LIFE		×

Static Polarizabilities

Listed in the PDG as a fundamental property:

$\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$

N BARYONS (S = 0, I = 1/2) $p, N^+ = u u d; n, N^0 = u d d$		PDGID:5016	JSCN (betc)	INSPIRE Q) ⁻⁴ fm ³)
p $I(J^P) = 1/2(1/2^+)$					α _E (10
p MASS (atomic mass units u)	1.0	007276466621 ± 0.000	00000 00053 u	~	
p MASS (MeV)	93	8.27208816 ± 0.00000	029 MeV	~	
$ m_p - m_{\overline{p}} /m_p$	<	7×10^{-10} CL=90.0%		~	
$\left \frac{q_{\rm b}}{m_{\rm p}}\right /\left(\frac{q_{\rm b}}{m_{\rm p}}\right)$	1.0	000000000003 ± 0.000	000000016	×	
$\left(\left \frac{q_p}{m_p}\right - \frac{q_p}{m_p}\right) / \frac{q_p}{m_p}$	(0	$(1\pm 6.9) imes 10^{-11}$		~	
$ q_p + q_{\bar{p}} /e$	<	$7 imes 10^{-10}$ CL=90.0%		~	
$ q_p + q_c /e$	<	$1 imes 10^{-21}$		~	
p MAGNETIC MOMENT	2.3	7928473446 ± 0.00000	$000008 \mu_N$	~	
P MAGNETIC MOMENT		2.792847344 ± 0.0000	$00004 \mu_N$	~	
$(\mu_p + \mu_{\overline{p}}) / \mu_p$	(2	$(\pm4) imes10^{-9}$		~	
p ELECTRIC DIPOLE MOMENT	<	$2.1\times 10^{-25}~e{\rm cm}$		~	
Electric polarizability $lpha$	0.0	$00112 \pm 0.00004~{ m fm}^3$		~	
Magnetic polarizability eta	(2	$(.5\pm0.4) imes10^{-4}$ fm 3 (S	i = 1.2)	~	A STATE OF STATE OF STATE
Charge radius	0.8	8409 ± 0.0004 fm		~	
Magnetic radius	0.8	851 ± 0.026 fm		~	
Mean life $ au$	>	$9 imes 10^{29} \text{years}$ CL=90.0	9%	~	
P MEAN LIFE				~	

Decay Modes

Generalized Polarizabilities

Accessed via virtual Compton scattering (VCS) Dependent on Q2

Virtual Compton Scattering $e + p \rightarrow e' + p' + \gamma$

SCATTERING PLANE

DR

valid below & above Pion threshold

- Traditionally, there are two methods to extract the polarizabilities:
 - The DR (dispersion relations) method:
 - Available above and below the pion threshold
 - The scalar polarizabilities enter as free parameters to be fit.
 - The LEX (Low energy expansion) method
 - Valid only below the pion threshold

Dispersive integrals for Non Born amplitudes

Spin GPs are fixed

Scalar GPs have an unconstrained part

Fit to the experimental cross sections at each \mathbf{Q}^2

MIT-Bates @ Q²=0.06 GeV²

MAMI-A1 @ Q²=0.33 GeV²

Jlab-Hall A @ Q²=0.9 & 1.8 GeV²

Early Experiments

Initial investigations showed that the proton generally increases in stiffness as Q^2 increases.

MIT-Bates @ Q²=0.06 GeV²

MAMI-A1 @ Q²=0.33 GeV²

Initial investigations showed that the proton generally increases in stiffness as Q^2 increases.

Early $Q^2 = 0.33$ GeV² measurement at MAMI seemed to buck the trend of a monatomic decrease. A second measurement at MAMI had similar results. Phys. Rev. Lett 85, 708 (2000) Eur. Phys. J. A37, 1-8 (2008)

Early Experiments

Theoretical Predictions

A. Yu. Korchin and O. Scholten A. Metz and D. Drechsel

Phys. Rev. D 62, 014013 (2000) Phys. Rev. C 63, 025205 (2001) Phys. Rev. C 58, 1098 (1998) Z. Phys. A 356, 351 (1996)

Theoretical Predictions

Theoretical Predictions

Recent Experiments/Efforts

Recent Experiments/Efforts

Recent Experiments/Efforts

Current Landscape and Questions

Electric Polarizability:

- Is the observed structure coincidental?
 - If so: More precise measurements will help inform theory.
 - If not: Strong tension exists in the world data. Additional measurements can help pinpoint possible sources of tension

Magnetic Polarizability

- Large uncertainties and discrepancies exist in the world data.
- High precision data is needed to disentangle diamagnetic and paramagnetic contributions in the nucleon.

Current Landscape and Questions

Electric Polarizability:

- Is the observed structure coincidental?
 - If so: More precise measurements will help inform theory.
 - If not: Strong tension exists in the world data. Additional measurements can help pinpoint possible sources of tension

Magnetic Polarizability

- Large uncertainties and discrepancies exist in the world data.
- High precision data is needed to disentangle diamagnetic and paramagnetic contributions in the nucleon.

JLab has the unique capability to measure α_{F} and β_M with superb precision and with consistent

systematics across Q^2

Current Landscape and Questions

Electric Polarizability:

- Is the observed structure coincidental?
 - If so: More precise measurements will help inform theory.
 - If not: Strong tension exists in the world data. Additional measurements can help pinpoint possible sources of tension

Spatial Dependence of Induced Polarizations

- - of induced polarization.

• In the same vein of transforming nucleon form-factor data to quark charge density on the light-cone: • Generalized polarizabilities can be transformed to density deformation with respect to the direction

Spatial Dependence of Induced Polarizations

- - of induced polarization.

• In the same vein of transforming nucleon form-factor data to quark charge density on the light-cone: • Generalized polarizabilities can be transformed to density deformation with respect to the direction

> x-y defines the transverse plane with the z-axis being the direction of the fast-moving proton

Polarizability Radii

 $\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2 = 0}$

 $\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \Big|_{Q^2 = 0}$

Polarizability Radii

 $\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2 = 0}$

$$\langle r_{\alpha_E}^2 \rangle = 1.36 \pm 0.29 \text{ fm}^2$$

 $\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \Big|_{Q^2 = 0}$

Proposed Experiment: VCS-II

Experimental Setup

- Standard Hall-C setup:
 - SHMS detects electron
 - HMS detects proton
 - Final state photon identified via missing mass.
 - 10cm LH2 target
 - Beam energies of 1.1 and 2.2 GeV
- Exploit azimuthal asymmetric configurations
 - Suppression of systematic uncertainties
 - Additional handle on spectrometer momentum calibration

Kinematics

	Kinematic	Kinematic	$\theta_{\gamma^*\gamma}^\circ$	θ_e°	$P_e^{\prime}(MeV/c)$	θ_p°	$P_p'(MeV/c)$	$I(\mu A)$	beε
	Group	Setting							(
		Kin I	110	14.3	736.3	54.45	493.93	15	
		Kin II	133	14.3	736.3	44.93	556.10	15	
	GI	Kin IIIa	147	14.3	736.3	11.26	583.05	15	
		Kin IIIb	147	14.3	736.3	39.06	583.05	15	
		Kin IVa	160	14.3	736.3	16.73	599.95	15	
		Kin IVb	160	14.3	736.3	33.59	599.95	15	
		Kin I	115	11.22	1783.0	15.33	615.69	10	
	GII	Kin IIa	125	11.22	1783.0	56.54	647.85	10	
		Kin IIb	125	11.22	1783.0	18.60	647.85	10	
		Kin IIIa	145	11.22	1783.0	49.77	697.99	10	
		Kin IIIb	145	11.22	1783.0	25.37	697.99	10	
		Kin IVa	165	11.22	1783.0	42.82	726.87	10	
		Kin IVb	165	11.22	1783.0	32.32	726.87	10	
		Kin I	115	14.73	1729.7	20.58	706.89	30	
	GIII	Kin IIa	130	14.73	1729.7	54.89	758.24	30	
		Kin IIb	130	14.73	1729.7	24.78	758.24	30	
		Kin IIIa	150	14.73	1729.7	48.99	808.24	30	
		Kin IIIb	150	14.73	1729.7	30.68	808.24	30	
		Kin IVa	170	14.73	1729.7	42.90	834.12	30	
		Kin IVb	170	14.73	1729.7	36.76	834.12	30	
		Kin I	100	16.32	1749.3	23.83	664.52	35	
	GIV	Kin II	120	16.32	1749.3	28.01	738.39	50	
		Kin IIIa	140	16.32	1749.3	32.84	795.37	70	
		Kin IIIb	140	16.32	1749.3	53.80	795.37	70	
		Kin IVa	155	16.32	1749.3	36.69	824.46	70	
		Kin IVb	155	16.32	1749.3	49.95	824.46	70	
		Kin Va	170	16.32	1749.3	40.66	840.48	70	
		Kin Vb	170	16.32	1749.3	45.99	840.48	70	
		Kin I	100	17.72	1676.41	19.75	723.69	35	
		Kin II	120	17.72	1676.41	24.25	808.93	50	
	A 11	Kin IIIa	140	17.72	1676.41	29.34	874.74	70	
	GV	Kin IIIb	140	17.72	1676.41	51.12	874.74	70	
		Kin IVa	155	17.72	1676.41	33.36	908.37	70	
i days		Kin IVb	155	17.72	1676.41	47.10	908.37	70	
davs		Kin Va	170	17.72	1676.41	37.47	926.91	70	
		Kin Vb	170	17.72	1676.41	42.99	926.91	70	
uays	OVI	Km I	120	20.45	1623.1	25.31	886.59	75	
	GVI	Kin Ha	140	20.45	1623.1	29.91	956.82	75	
		Kin IIb	140	20.45	1623.1	49.81	956.82	75	
		Kin IIIa	155	20.45	1623.1	33.58	992.83	75	
		Kin IIIb	155	20.45	1623.1	46.14	992.83	75	

	6	day
	53	day
alibrations):	3	days

10 cm LH2

3 days of optics/ dummy/calibrations are requested.

Kinematic	Kinematic	HMS singles rates	Kinematic	Kinematic	HMS single
Group	Setting	(kHz)	Group	Setting	(kHz)
	Kin I	476		Kin I	43
	Kin II	497		Kin II	53
GIV	Kin IIIa	453	GI	Kin IIIa	119
	Kin IIIb	64		Kin IIIb	65
	Kin IVa	313		Kin IVa	128
	Kin IVb	89		Kin IVb	80
	Kin Va	212		Kin I	159
	Kin Vb	127		Kin IIa	21
	Kin I	483	GII	Kin IIb	155
	Kin II	502		Kin IIIa	28
GV	Kin IIIa	444		Kin IIIb	122
	Kin IIIb	51		Kin IVa	42
	Kin IVa	295		Kin IVb	82
	Kin IVb	72		Kin I	347
	Kin Va	192		Kin IIa	27
	Kin Vb	108	GIII	Kin IIb	330
GVI	Kin I	591		Kin IIIa	47
	Kin Ila	349		Kin IIIb	214
	Kin Ilb	33		Kin IVa	77
	Kin IIIa	527		Kin IVh	120
	Kin IIIb	49		IXIII I V D	129

 Singles rates are well under control (~0.5 MHz or less)

Other Studies

• $p(e, e'p)\pi^0$ channel: • Measured for free within acceptance • Well known cross-section • Provides additional handle for normalization and spectrometer acceptance studies

Projections

VCS-II Primary

High precision measurements

Theory and TAC Reports

• Theory Report:

with the proposed experiment."

• TAC Report:

Standard setup in Hall C will be used for the experiment. No issues or concerns.

• "Summarizing, the proposed experiment is an excellent addition to the ongoing studies of the nucleon structure. Similar experiments have already been performed, with interesting and unexpected results that challenge the current understanding of the nucleon non perturbative QCD dynamics. High precision data is now needed to progress, which may indeed be obtained

• We will measure fundamental properties of the proton:

- Improve precision (\times 2) of world-data combined with a fine mapping in Q^2 of the scalar GPs
- Insight to the response of proton constituents to an external EM field, deformation of the proton densities, interplay of para/dia-magnetism in the proton, polarizability radii, ...
- Understand the dynamical signature of $\alpha_{E}(?)$ or the tension in the world-data (?)
- Precise benchmark data for xPT & LQCD calculations

Facilities Request:

- 62 days of beam-on-target:
- 6 days (1.1 GeV) + 53 days (2.2 GeV) + 3 days (calibrations)
- Standard setup in Hall C: SHMS & HMS / 10 cm LH2

Summary

THANK YOU!

