

Nuclear Charm Production and Short-Range Correlations in Hall D Proposal PR12-23-009

Spokespersons: D. Dutta (MSU), O. Hen (MIT), T. Kolar (TAU), **J. R. Pybus (MIT),** A. Schmidt (GWU), A. Somov (JLab), H. Szumila-Vance (JLab)

SRCs studied with hard breakup reactions

High-Energy Probe

Struck Nucleon

Correlated Spectator

Ground-state interpretation requires establishing factorization!

Reaction

Ground-State

Ground-state interpretation requires establishing factorization!

Ground-State

Reaction

 $\sigma = \sigma_{e.N}(q) \times S(p_i, p_{rec})$

 $S(p_i, p_{rec}) = \sum C_A^{\alpha} \cdot |\phi_{\alpha}(p_{rel})|^2 \cdot n(P_{CM})$

Example: PDF Universality

Deep-Inelastic Scattering

+ Q²-evolution from DGLAP

VS

Drell-Yan

= Universal framework for measuring parton structure of the proton

We need to examine two things: **Probe** Scale

Compare different reactions using different **probes**

Change the resolution **scale** of the reaction Q^2 , |t|

From electrons to photons Outgoing Meson Incident Struck Photon Nucleon Correlated Spectator

From electrons to photons Outgoing Meson Incident Struck Photon Nucleon $\sigma = \sigma_N(q) \times S(p_i, p_{rec})$ Correlated Spectator **Different reactions!** Same ground-state?

8

2021 SRC-CT Experiment

- 10.8 GeV + diamond radiator
- ²H, ⁴He, ¹²C targets: total ~19 days
- Standard Hall D setup

Success of 2021 SRC Hall D Run What have we found? What do we *want* to learn? Resolution/|t|-dependence and First observation in reaction mechanisms photoproduction Precision constraints of NN Probe-Independence and contact with ab-initio calculations interaction at short distance A-dependence and scaling 3N-SRC Gluonic probes/structure of SRC Evolution of isospin structure

First observation of SRCs in photoproduction!

PRL 2007 Back-to-back correlation in (e, e'pp) @ Hall A

First observation of SRCs in photoproduction!

PRL 2007 Back-to-back correlation in (e, e'pp) @ Hall A

Data can constrain ab-initio theory at high momentum

Center-of-mass behavior of pairs

A-dependent properties of SRCs also established

• Center-of-mass behavior of pairs

 Cross-section scaling → universal high-momentum tail

A-dependent properties of SRCs also established

- Center-of-mass behavior of pairs
- Cross-section scaling → universal high-momentum tail
- SRC abundances match electron-scattering

First indications of universal isospin evolution!

Photoproduction works!

What have we found?

First observation in photoproduction

Probe-Independence and contact with ab-initio calcula

A-dependence and scalir

Evolution of isospin struct

	What do we want to learn?
	Resolution/ t -dependence and reaction mechanisms
d ations	Precision constraints of NN interaction at short distance
ng	3N-SRC
ure	Gluonic probes/structure of SRC

Open avenues with photoproduction

What have we found?

First observation in photoproduction

What do we *want* to learn?

Resolution/|t|-dependence and reaction mechanisms

Precision constraints of NN interaction at short distance

3N-SRC

Gluonic probes/structure of SRC

Open avenues with photoproduction

tions

What have we found?

Evolution of isospin structure

What do we want to learn?

Resolution/|t|-dependence and reaction mechanisms

Precision constraints of NN interaction at short distance

3N-SRC

Gluonic probes/structure of SRC

Resolution-dependence of SRC properties

Current data are limited; reach extends to ~3.5 GeV², with limited number of bins

Requested Data: 95 beam days on ⁴He

Detailed scan in |t|!

400 Counts 200

0.5

Only new data reach high-|t|!

Constrain parameter-free ab-initio theory

Since
$$0.6$$
 $(\gamma, \rho^0 pp)/(\gamma, \rho) -t > 2 \text{ GeV}^2$
 0.4 $PR12-23-00$
 0.0 0.2 0.2 0.0 0.5 0.6 k_r

Search for 3N-SRCs

- Significant ongoing theory effort to understand and model 3N-SRCs
- Parallel experimental effort:

Exclusive electron scattering (CLAS12)

Inclusive high-*x_B* electron scattering (Hall C)

<u>arXiv 2023,</u> PRC 2017, PRC 2012

Photoproduction

(This proposal)

Photoproduction addresses many challenges!

- Large energy transfer: sensitive to high virtuality 3N-SRC states!
- Favors parallel kinematics (hard to reach with electrons)
- Neutron probed through charge-exchange reactions (π^-, ρ^-)
- Large acceptance detection in Hall D setup

SRCs are related to medium-modification

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011)

- Structure functions
 potentially modified by short-distance interaction
- Photon beams do not access nuclear structure function
- Photon beams are sensitive to nuclear
 gluons!

J/ψ photoproduction probe nuclear gluons; Successfully observed in current data!

95 days on ⁴He provide energy-dependent measurement at and below J/ψ threshold

Add threshold Add hydrogen

Subthreshold production has increased sensitivity to SRC

Subthreshold cross section provides a unique measure of nuclear structure, including SRCs

0.001

Y. Hatta et al, PLB 2020

Semi-inclusive measurement allows separating mean-field and SRC gluon structure!

~700 events

Can expose exotic behaviors of high-x gluons in nuclei – gluonic EMC, hidden color, etc.

~100 events

Summary

- 100 days: **helium-4** (95 days) and deuterium (5 days)
- Standard Hall D setup, equivalent to 2021 SRC-CT run
- Diamond radiator*, 8 GeV coherent photopeak
- Semi-inclusive photoproduction measurement:
 - SRC breakup from (γ, mN) and (γ, mNN)
 - J/ ψ photoproduction from (γ , e^+e^-p)
- Expands program of previous E12-19-003 experiment

* Amorphous radiator also possible

euterium (5 days 2021 SRC-CT ru ohotopeak surement:

Measured σ_{CM} [MeV/c] 001 007 002 PR12-23-009 2 -t [GeV²] $(\gamma, \rho^0 p p)/(\gamma, \rho^- p p)$ *pp* pairs / *pn* pairs 0.0 0.0 0.0 0.0 $-t > 2 \text{ GeV}^2$ PR12-23-009 2021 Data 0.0 0.5 0.9 0.8 0.6 0.7 *k_{miss}* [GeV] 100 $\sigma(\gamma^4 \text{He} \rightarrow J/\psi \ pX)/4 \text{ [nb]}$ 10⁻¹ PR12-23-009 10⁻² 10⁻³ 10 11 8 9 E_{γ} [GeV]

p

Backup

Analysis on the light-front

Parton in Hadron

Parton momentum fraction

 x_B

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

 z_N z_A

Ĭ

Analysis on the light-front

Parton in Hadron

Parton momentum fraction

 X_B

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

Light-front variables mitigate resolution effects

> Low-momentum nucleon $\alpha_N \sim 1$

Standing nucleon pair $\alpha_1 + \alpha_2 \equiv \alpha_{CM} \sim 2$

Resolution of Light-Cone Variables

Resolution of Missing Momentum

95 days of ⁴He can allow energy-dependent J/ψ measurement at and below threshold

2021 SRC-CT Data

Target	Days of Beam	Luminosity (E _Y > 6 GeV)
Deuterium	4	18.0 nucleus · pb-1
Helium-4	10	16.7 nucleus · pb-1
Carbon-12	14	8.6 nucleus · pb-1

Estimated Rates

	MF	2N-SRC		3N-SRC	
Reaction	$(\gamma, ho^0 p)$	$(\gamma, ho^0 pp)$	$(\gamma, ho^- pp)$	$(\gamma, ho^0 ppp)$	$(\gamma, ho^- ppp)$
# Events Projected ⁴ He ($ t > 1.5 \text{ GeV}^2$)	510k	10k	12k	100	120
# Events Projected ⁴ He ($ t > 2 \text{ GeV}^2$)	110k	$2.5\mathrm{k}$	4.7k	30	50
# Events Projected ⁴ He ($ t > 3 \text{ GeV}^2$)	20k	500	480	5	5

 $\gamma^4 \text{He} \rightarrow J/\psi p(X)$

Challenges in 3N-SRC detection with electrons

Where electron-scattering wants to search for 3N

Open Questions and Worldwide SRC Program

CLAS12/RGM GSI/JINR **SRC@HallD**

e

Pair Abundance CLAS12/RGM CaFe@HallC Inclusive@HallC GSI

Gluon Modification in SRCs

*Under peer review with Nature Physics

Electrons vs. Photons

<u>(e,e'NN) @ x > 1:</u>

<u>(γ,ΝNπ):</u>

<u>(γ,NNπ):</u>

<u>FSI:</u>

Similar to elastic NN scattering off a mean-field nucleon.

The (γ ,NN π) recoil nucleon goes backwards in the lab.

→ Cannot be produced by elastic FSI.

Also study using event generators w/ FSI and SRC

(e,e'NN) @ x > 1:

<u>(γ,ΝNπ):</u>

<u>MEC:</u> Sensitive to different processes.

(γ,NNπ) requires much higher meson virtuality than (e,e'NN) which suppresses MEC contributions

<u>(γ,ΝΝπ):</u>

Relativistic Effects:

The effective nucleon 'boost' is very different.

Forward α>1 boost for the electron case; Backward α<1 boost for the γ case

Comparing reactions with light-cone fractions >1 (e) and <1 (γ) is a stringent test or relativistic treatment.

What about other reaction channels?

What about other reaction channels?

- Hall D setup capable of measuring many final states.
- Focus on the high cross-section ρ^0 and **p**⁻ channels, as planned
- ρ results are mature, stable, and enough to establish what can be learned from existing data and why a deep-dive into photon measurements is needed
- We are analyzing other channels as well. Less relevant for SRC physics

Proton Reactions	Neutron Reactions
$\gamma + p \rightarrow \pi^0 + p$	γ + n → π⁻ + p
$\gamma + p \rightarrow \pi^- + \Delta^{++}$	$\gamma + n \rightarrow \pi^- + \Delta^+$
<mark>γ + ρ → ρ⁰ + ρ</mark>	<mark>γ + n → ρ[.] + p</mark>
$\gamma + p \rightarrow K^+ + \Lambda^0$	$\gamma + n \rightarrow K^0 + \Lambda^0$
$\gamma + p \rightarrow K^+ + \Sigma^0$	$\gamma + n \rightarrow K^0 + \Sigma^0$
$\gamma + p \rightarrow \omega + p$	X
γ+p → φ+p	X

