

Douglas Higinbotham Physics Division

TJNAF is managed by Jefferson Science Associates for the US Department of Energy

CEBAF Improvement Plan Is Proceeding

- Last run period, we pushed the CEBAF accelerator to 1047 MeV/linac
 - A good energy for delivering high polarization to Halls A, B and C
 - This equates to 10.5 GeV for A, B, C and 11.6 GeV for Hall D
- We ran at that energy the entire 32 weeks of physics beam!
 - Down side was limited beam current and high trip rates
- During this SAD (scheduling accelerator down) we have added a C100 to the north linac and replaced one in the south linac.
 - We are planning to continue with the 1047 MeV/linac with what should be more stable beam.
 - We have had a series of safety pauses which have caused a short term delay, but hopefully will mean smoother & safer long term running.
- Looking ahead the goal is to get CEBAF well into the operational energy range needed for the MOLLER experiment (10.6 to 11 GeV for Hall A)

EXTENDED EXPERIMENTAL SCHEDULE

Hall A/C Status

Hall A: Past Year's Experiments (July 2022- March 2023)

<u>Neutron G_E/G_M by Beam-target Asymmetry on polarized 3He</u>

- Started in Oct 2022
 - Completed Q²= 2.9 and 6.6 GeV²
 - $Q^2 = 9.9 \text{ GeV}^2$ is partially done.
 - Complete final 6 weeks running from Sept 2023-Nov 2023

- Polarized 3He target
 - First time running with 60cm long 3He cell
 - 50-55% polarization in beam!

45% viter buring Gen Kinematics 2,3, and 4 viet by the shutdown buring of the shutdown buri

Hall A : Plan for coming years (Jan 2024 – July 2025)

<u>Neutron G_E/G_M by recoil polarization</u>

- Switch from 3He to LH2/LD2
- Plan to start in Spring 2024, $Q^2 = 4.5$

Test of SBS GEMs during 3He GEn.

Polarimeter layout

Pion photo-production on neutron

Short experiments

- Beam-target asymmetry, A_{LL}
- Recoil polarization, K_{LL}

<u>Proton G_E/G_M by recoil polarization</u>

- ECAL platform is in Hall A and plan to start stacking in August.
- After Neutron Recoil Polarization is completed
 - Need about 6 months for installation
- Experiment will run in late 2024 to spring 2025.

Hall A : Plans beyond July 2025

MOLLER

- Inflation Reduction Act provided full funding.
- In Jan 2023, passed CD-3A review and spending CD-3A funds.
- CD2 /CD3 review in October 2023.
- Aggressive installation schedule of 18 months after GEp run ends
- 3 years of running. Starting in Fall 2026
- Reuben Fair is new PM, Klaus Dehmelt is new DPM (Sept 1).

<u>SoLID</u>

- CLEO magnet cold test at 120A completed.
- High rate test of SoLID detector. Set at 8^0 and 17^0 in Hall C.
- SoLID mentioned in Recommendation 1 in the Hot/Cold QCD and the recommendations of FSNN LRP town meetings

High rate test

Hall C: Past Year's Running (July 2022-March 2023)

Hall C : Plan for next year (July 2023-July 2024)

Neutral Particle Spectrometer

- Sweeping Magnet with calorimeter.
 - •Magnet and power supply have been tested.
- NPS attached to SHMS carriage to allow easy angle change.
 The calorimeter is on rails, cabled and taking cosmics.
- 1080 Lead-Tungstate blocks in calorimeter to detect γ and $\pi^{\scriptscriptstyle 0}$

Two experiments using the NPS

- E12-13-010 is two concurrent experiments
 - Exclusive Deeply Virtual Compton on proton
 - SIDIS (e,e',π⁰) cross section.
 - Map the transverse momentum dependence.

•<u>E12-22-006</u>

- Exclusive Deeply Virtual Compton on deuteron
- Subtract the proton data from deuteron data to get neutron.
- Proposal PR12-23-014 would be a new run group that measures $R=\sigma_L/\sigma_T$ in SIDIS (e,e', π^0) cross section.

Students putting fiducial marks on Calo

NPS Calo craned onto the NPS platform

Cabling crew with Simona Malace who has led the installation of NPS Calo

Hall C: Plans beyond July 2024

Experiments to run in Fall 2024- Spring 2025

- Standard SHMS/HMS
 - E12-06-104 $R=\sigma_L/\sigma_T$ in SIDIS on 1H and 2H
 - E12-06-107 Complete CT experiment
 - <u>E12-11-107</u> Spectator tagged DIS d(e,e'p_s) Install Large Angle Detector HMS/SHMS detect electron

Fall 2025 and beyond

- Depends on PAC recommendations
- Starting in Fall 2025
 - Standard SHMS/HMS experiments.
 - Experiments with non-standard beam energies
 - New proposals
- Running during MOLLER and after:
- During MOLLER, limits on total target power and beam current in the two halls
 - Hypernuclear experiments in 2026
 - Polarized deuteron experiments
 - WACS and other experiments using the NPS
 - Experiments using the Compact Photon Source
 Capital project is ongoing
 - SBS/BB experiments that did not run in Hall A
 - Exciting new letters of intent
- Future plans will incorporate needs of the other halls and target group resources.

Hall B Status Report

- 1. Status of Hall B Group
- 2. Status of CLAS12 Detector and Experimental Hall
- 3. Status of Run Groups, Data Processing & Analyses
- 4. Status of Experiment Schedule

With Backup Slides for more Details

Patrick Achenbach July 2o23

Hall B Experimental Setup 2022–23

Longitudinally polarized cryo-target inside solenoid Multiple configurations: NH₃, ND₃, C, CH₂, CD₂, ...

Thermoluminescence of target material

Testing in Target Lab, March 2022

Proton	Deuteron
Polarization	Polarization
78.87%	47.17%
Signal Area	g Signal Area
-0.485024	o) /Juan -0.300473

Installation in Hall B, June 2022

Rapid exchange of target samples

< ~ 80% H polarization < ~ 45% D polarization DNP by 140 GHz µwaves 1 K with *l*He refrigerator Forward Tagger Replaced with Møller shield

Additional 2nd sector **RICH** coverage with 50,048 channels

July 2023 Patrick Achenbach

Solenoid Power Supply Failure in Fall 2022

Team from Danfysik, DC Power, Hall B, DSG

Repair completed 30 Jan 23

July 2023 Patrick Achenbach

Hall B was down for 80 days from Nov 22 to Feb 23 \rightarrow Scheduled run for RG-C (240 cal. days) could not get completed

Unpolarized Cryo-Target for Runs Starting 2023

New Modular Design Conventional 1 K refrigerator Compatibility with existing cells and RG-D/E foil targets Solid targets cooling decoupled from cryo-target and cooled by heat shield Solid foils Scattering Vacuum Chamber Solenoid LD2 Cell Nesting conical mount of condenser to He coolant evaporator: Target cell easily removable z

July 2023 Patrick Achenbach

µRWELL Development for Luminosity Upgrade

- **µRWELL** with capacitive sharing readout will provide 2D points in front of DC for luminosity upgrade to $L = 2 \times 10^{35} \text{ cm}^{-2} \text{sec}^{-1}$
- Simulation studies with background merging and µRWELL + DC + AI result in improved inefficiency of better than 0.1 % per nA, better than upgrade design goal
- Inconclusive beam-tests of a large-area µRWELL during the last days of RG-C run
- Largest-ever prototype now at CERN for repairs

CLAS12 readiness for higher luminosities is key for future success

July 2023 Patrick Achenbach

µRWELL module

Data Processing Status

With use of latest software including improvements in tracking and reconstruction:

- RG-A: Spr19 pass-2 cooking completed (23 June 13 July)
- RG-B: Spr19 pass-2 cooking completed (26 May 27 June)
- RG-M: pass-1 (with pass-2 software) cooking in progress (at 85% since 27 June)
- RG-K pass-2 cooking will come next
- RG-A F18 pass-2 cooking following

Machine Learning Implementations

- Track identification in Drift Chambers
- Drift Chamber Data De-Noising
- RICH Particle Identification

July 2023 Patrick Achenbach

Hall B High-Impact Publications 2022–23

PHYSICAL REVIEW C 105, 065201 (2022)

> 10 CLAS papers published

• 1 HPS paper published

Several other papers published

PHYSICAL REVIEW D 108, 012015 (2023)

Searching for prompt and long-lived dark photons in electroproduced e^+e^- pairs with the heavy photon search experiment at JLab

P. H. Adrian,¹ N. A. Baltzell,² M. Battaglieri,³ M. Bondí,⁴ S. Boyarinov,² C. Bravoo,^{1,*} S. Bueltmann,⁵ P. Butti,¹

PHYSICAL REVIEW LETTERS 131, 021901 (2023)

First Measurement of Hard Exclusive $\pi^- \Delta^{++}$ Electroproduction Beam-Spin Asymmetries off the Proton

S. Diehl⁰, ^{34,6} N. Trotta, ⁶ K. Joo, ⁶ P. Achenbach, ³⁹ Z. Akbar, ^{46,12} W. R. Armstrong, ¹ H. Atac, ³⁸ H. Avakian, ³⁹ L. Baashen, ¹

Beam-recoil transferred polarization in K^+Y electroproduction in the nucleon resonance region with CLAS12

D. S. Carman[®],^{40,*} A. D'Angelo,^{19,34} L. Lanza,¹⁹ V. I. Mokeev,⁴⁰ K. P. Adhikari,¹⁴ M. J. Amaryan,³¹ W. R. Armstrong,¹

Physics Letters B 827 (2022) 136985

Beam-spin asymmetry Σ for Σ^- hyperon photoproduction off the neutron

CLAS Collaboration

N. Zachariou^{bc,*}, E. Munevar^{ar}, B.L. Berman^{o,1}, P. Bydžovský^{ae}, A. Cieplý^{ae}, G. Feldman^o,

Physics Letters B 839 (2023) 137761

A multidimensional study of the structure function ratio $\sigma_{LT'}/\sigma_0$ from hard exclusive π^+ electro-production off protons in the GPD regime S. Diehl^{ah,f,*}, A. Kim^f, K. Joo^f, P. Achenbach^{an}, Z. Akbar^{at,I}, M.J. Amaryan³⁶, H. Atac^{am},

eni anto, A. Kim', K. Joo', P. Achendacha, Z. Akdaran, M.J. Amaryana, H. Alaca

PHYSICAL REVIEW LETTERS 130, 142301 (2023)

First Measurement of A Electroproduction off Nuclei in the Current and Target Fragmentation Regions

T. Chetry,^{29,13} L. El Fassi⁽⁰⁾,^{29,*} W. K. Brooks,^{44,45,46,43} R. Dupré,²³ A. El Alaoui,⁴⁴ K. Hafidi,¹ P. Achenbach,⁴³

PHYSICAL REVIEW LETTERS 130, 211902 (2023)

First CLAS12 Measurement of Deeply Virtual Compton Scattering Beam-Spin Asymmetries in the Extended Valence Region

G. Christiaens,^{1,2} M. Defurne[®],^{1,*} D. Sokhan,^{1,2} P. Achenbach,³ Z. Akbar,⁴ M. J. Amaryan,⁵ H. Atac,⁶ H. Avakian,³

PHYSICAL REVIEW C 107, L061301 (2023)

Letter

Observation of large missing-momentum (e, e'p) cross-section scaling and the onset of correlated-pair dominance in nuclei

I. Korover,^{1,*} A. W. Denniston,^{1,*} A. Kiral,¹ A. Schmidt,³ A. Lovato,⁶ N. Rocco,⁷ A. Nikolakopoulos,⁷ L. B. Weinstein,⁴

PHYSICAL REVIEW C 105, 015201 (2022)

Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector

S. Morán,^{1,3} R. Dupre,² H. Hakobyan⁰,^{1,52} M. Arratia,³ W. K. Brooks,¹ A. Bórquez,¹ A. El Alaoui,¹ L. El Fassi,^{4,5} K. Hafidi,⁵

PHYSICAL REVIEW LETTERS 128, 062005 (2022)

Multidimensional, High Precision Measurements of Beam Single Spin Asymmetries in Semi-inclusive π^+ Electroproduction off Protons in the Valence Region

S. Diehlo, 356 A. Kim, 6 G. Angelini, 13 K. Joo, 6 S. Adhikari, 11 M. Amaryan, 33 M. Arratia, 5 H. Atac, 44 H. Avakian, 45

Letter

PHYSICAL REVIEW C 105, L022201 (2022)

Polarized structure function $\sigma_{LT'}$ from $\pi^0 p$ electroproduction data in the resonance region at 0.4 GeV² < Q^2 < 1.0 GeV²

E. L. Isupov⁰, ^{36,7} V. D. Burkert, ³⁹ A. A. Golubenko, ³⁶ K. Joo, ⁷ N. S. Markov, ^{39,7} V. I. Mokeev, ³⁹ L. C. Smith, ⁴⁶

PHYSICAL REVIEW LETTERS 129, 182501 (2022)

Observation of Azimuth-Dependent Suppression of Hadron Pairs in Electron Scattering off Nuclei

S. J. Paulo, ⁴⁶ S. Morán, ⁴⁶ M. Arratia, ^{46,42} A. El Alaoui, ⁴³ H. Hakobyan, ⁴³ W. Brooks, ⁴³ M. J. Amaryan, ³⁴ W. R. Armstrong, ¹

PHYSICAL REVIEW C 107, 015201 (2023)

Exclusive π^- electroproduction off the neutron in deuterium in the resonance region

Y. Tian⁰,^{1,2,*} R. W. Gothe,¹ V. I. Mokeev,³ G. Hollis,¹ M. J. Amaryan,⁴ W. R. Armstrong,⁵ H. Atac,⁶ H. Avakian,³ L. Barion,⁷

PHYSICAL REVIEW LETTERS 130, 022501 (2023)

Observation of Correlations between Spin and Transverse Momenta in Back-to-Back Dihadron Production at CLAS12

H. Avakian,¹ T. B. Hayward⁰,² A. Kotzinian,³⁴ W. R. Armstrong,⁵ H. Atac,⁶ C. Ayerbe Gayoso,⁷ L. Baashen,⁸

A few recent research highlights ...

July 2o23

Patrick Achenbach

First Displaced Vertex Analysis in Heavy Photon Search

- Including both, bump hunt and displaced vertex search
- Results from 2.3 GeV 2016 engineering run
- Excludes A' production over mass range 40 180 MeV down to ϵ^2 = 10⁻⁵

[P. H. Adrian et al. (HPS Collab.), Phys. Rev. D 108, 012015, 21 July 2023]

July 2023 Patrick Achenbach

Hard Exclusive $\pi^-\Delta^{++}$ Electro-Production off Protons

Transition GPDs

July 2o23

Patrick Achenbach

DVCS Beam-Spin Asymmetries

DVCS

Addressing Compton Form Factors, constraints on GPDs, and mechanical properties of the proton such as pressure and force distributions

$$A_{LU} \propto Im \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

1600 new BSA data points

data - 10.6 GeV

300 360

(deg)

- - • VGG

GK

111 KM15

BSA

0.5

-0.5

t ≈ -0.17 GeV

 $Q^2 \approx 2.0 \text{ GeV}^2$

120 180 240

 $x_B \approx 0.14$

60

- 25% of total beam time for CLAS12 DVCS experiment on unpolarized proton
- First measurement of the DVCS beam-spin asymmetry using CLAS12

60 120 180 240

0

(GeV²)

Extending Q^2 and Bjorken-x phase space

BSA

-0.5

0

t ≈ -0.21 Ge

 $Q^2 \approx 2.8 \text{ GeV}^2$

120 180 240

 $X_{\rm B} \approx 0.26$

60

300 360

(deg)

- VGG

July 2023 Patrick Achenbach

300 360

(deg)

First Determination of Distribution of Forces in the Proton

$$\langle p_2 | \hat{T}^q_{\mu\nu} | p_1 \rangle = \bar{U}(p_2) \left[\frac{M_2^q(t)}{M} \frac{P_\mu P_\nu}{M} + J^q(t) \frac{i(P_\mu \sigma_{\nu\rho} + P_\nu \sigma_{\mu\rho})\Delta^\rho}{2M} + d_1^q(t) \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu}\Delta^2}{5M} \right] U(p_1)$$

[[]V. D. Burkert et al., submitted to Rev. Mod. Phys. (2023)]

July 2023 Patrick Achenbach

Updated Tentative Run Group Scheduling

Disentangling Color Transparency Effects and Hadronization in the Nuclear Medium

- Data-taking 2023: Experiments with CLAS12 probing incoherent ρ meson electroproduction off nuclei
- Data-taking **2024**: Study of quark propagation and hadron formation in the nuclear medium

- RG-D: Sep to Nov 2023, ~30 PAC days to complete
- RG-K: Nov to Dec 2023, and Jan to Mar 2024 to reach ~50% PAC days
- **RG-E**: Mar to May 2024, to reach ~ 50% PAC days
- 2024 SAD for installation of ALERT
- RG-L: Sep to Dec 2024, ~55 PAC days to complete
- Spring 2025 to be discussed
- 2025 SAD for setup/target change

Remaining PAC days for run groups

- RG-A: >70 PAC days
- RG-B: +/- 40 PAC days
- RG-C: +/- 25 PAC days
- RG-E: 30 PAC days
- RG-M: 10 PAC days

Not scheduled

- Non-CLAS12 expts: PRad-II, π⁰TFF, X17
- CLAS12 expts: Polarized He-3, H-3 and He-3, transverse polarized H/D, long. polarized LiH/LiD

Final Remarks

- First polarized target experiment with CLAS12 was successfully performed in Run Group C
- Run Group D to start in September with a completely refurbished unpolarized cryo-target
- Pass-2 cooking started with AI-assisted software upgrades and is progressing well
- CLAS and HPS published several papers in high-impact journals
- Four Hall B proposals to PAC51:

Two proposals for CLAS12 setup: – RG-K addítion and RG-L extension

One proposal for PRad setup: – Deuteron radius and form factor Two proposals for CLAS12+ setup: – 2y-exchange and pDVCS

One proposal for PRad+ setup: – Dark photon search

Hall D Report

- Experiments in Hall D, accelerator Schedule for 2023-2025 and outlook
- Publications
- Results close to publication
- Preparations for future experiments

Hall D Report

Physics Program in Hall D

Experiment	name	Title	PAC	PAC	data		
			rating	days	taken		
E12-06-102	GlueX-I	Mapping the Spectrum of Light Quark Mesons and Gluonic	A	120	100%		
		Excitations with Linearly Polarized Photons					
E12-12-002	GlueX-II	A study of meson and baryon decays to strange final states	A	220	46%		
		with GlueX in Hall D					
A	JEF	Eta Decays with Emphasis on Rare Neutral Modes: The JLab	Grp	100	0%		
		Eta Factory(JEF) Experiment					
E12-10-011	PrimeX- <i>η</i>	A Precision Measurement of the eta Radiative Decay Width	A-	79	100%		
		via the Primakoff Effect					
E12-13-008	CPP/NPP	Measuring the Pion Polarizability in the $\gamma\gamma \rightarrow \pi\pi$ Reaction	A-	25	100%		
E12-19-003	SRC/CT	Studying Short-Range Correlations with Real Photon Beams	B+	15	100%		
		at GlueX					
Not yet scheduled							
E12-19-001	KLF	Strange Hadron Spectroscopy with Secondary KL Beam in	A-	200			
		Hall D					
E12-20-011	REGGE	Measurement of the high-energy contribution to the	A-	33			
		Gerasimov-Drell-Hearn sum rule					

- considerable installation / new equipment required

- data taking complete

E.Chudakov

PAC51, Jul 2023

Hall D Report

2/8

Jefferson Lab

Physics Program in Hall D

Experiment	LOI/prop	osals to PAC51		PAC	data		
E12-06-102	102 Proposal: SBC/CT						
E12-12-002	LOI: Glu	leX+TRD Spectroscopy + charmonia		220	46%		
	 LOI: Glu 	eX GDH on nuclei					
Α			4.14	100	0%		
		Eta Factory(JEF) Experiment					
E12-10-011	PrimeX- η	A Precision Measurement of the eta Radiative Decay Width	A-	79	100%		
	,	via the Primakoff Effect					
E12-13-008	CPP/NPP	Measuring the Pion Polarizability in the $\gamma \gamma \rightarrow \pi \pi$ Reaction	Δ_	25	100%		
			25	10070			
E12-19-003	SRC/CT	Studying Short-Range Correlations with Real Photon Beams	15	100%			
		at GlueX					
Not yet scheduled							
E12-19-001	KLF	Strange Hadron Spectroscopy with Secondary KL Beam in	200				
		Hall D					
			•				
E12-20-011	REGGE	Measurement of the high-energy contribution to the	A-	33			
		Gerasimov-Drell-Hearn sum rule					
- consideral	ole installatior	n / new equipment required - data taking complete					

PAC51, Jul 2023

Hall D Report

2/8

Hall D running schedule: outlook

- Assuming 31 weeks/year for Hall D running in 2024/07-2025/03 and 30 weeks afterwards
- Assuming KLF compatibility with MOLLER, and timing budgeting for KLF and REGGE
- Assuming timely construction of JEF,KLF,REGGE

E.Chudakov	PAC51, Jul 2023	Hall D Report	3/8

PRL 123 (2019) 7, 072001 25% of data, >160 citations; new arXiv 2304.04924 (2023) accepted at PRC full GlueX-I data

Interpretation is based on the production mechanism

- 2-gluon exchange, factorization
 - Relation to gravitational formfactors, EMT trace anomaly - nucleon mass
 - Relation to nucleon mass radius
- Other possible mechanisms: open charm exchange

E.Chudakov	PAC51, Jul 2023
------------	-----------------

Hall D Report

PRL 123 (2019) 7, 072001 25% of data, >160 citations; new arXiv 2304.04924 (2023) accepted at PRC full GlueX-I data

Interpretation is based on the production mechanism

- 2-gluon exchange, factorization
 - Relation to gravitational formfactors, EMT trace anomaly - nucleon mass
 - Relation to nucleon mass radius
- Other possible mechanisms: open charm exchange

Hall D Report

New GlueX results are used:

More data are needed, in particular around the "cusps" at \sim 9 GeV in order to disentangle different production mechanisms

4/8

PRL 123 (2019) 7, 072001 25% of data, >160 citations; new arXiv 2304.04924 (2023) accepted at PRC full GlueX-I data

Interpretation is based on the production mechanism

- 2-gluon exchange, factorization
 - Relation to gravitational formfactors, EMT trace anomaly - nucleon mass
 - Relation to nucleon mass radius
- Other possible mechanisms: open charm exchange

E.Chudakov	
------------	--

PAC51, Jul 2023 Hall D Report

New GlueX results are used:

Gravitation formfactors were calculated using $d\sigma/dt$ More quality data at high |t| and high "skewness" are needed

 PRL 123 (2019) 7, 072001 25% of data, >160 citations; new
 arXiv 2304.04924 (2023) accepted at PRC
 full GlueX-I data

Interpretation is based on the production mechanism

- 2-gluon exchange, factorization
 - Relation to gravitational formfactors, EMT trace anomaly - nucleon mass
 - Relation to nucleon mass radius
- Other possible mechanisms: open charm exchange

Hall D Report

New GlueX results are used:

The structure can be caused by destructive interference between the continuum and a LHCb P_C pentaquark. More statistics is needed!

GlueX E12-06-102: Recent results on SDMEs

- Greatly supersedes the old data in this energy range
- Good matching of the SDME analysis results and amplitude analysis results: foundation for hybrid meson search
- Enables modeling of production of known resonances
 E.Chudakov PAC51, Jul 2023 Hall D Report

GlueX E12-06-102: Results close to publication

Search for $1^{-+} \pi_1(1600)$ Photoproduction at 8.2-8.8 GeV

cos0_{GJ.}

0.5

$\gamma p \rightarrow \omega \pi^{-} \pi^{0} \Delta^{++}$

- LQCD-dominant decay •
- Upper limit on $\sigma(\pi_1)$ •

$\gamma p \rightarrow \eta' \pi^- \Delta^{++}$

- $\cos \theta_{GJ}$ large asymmetry similar to COMPASS: odd wave interference
- Next step: amplitude analysis

Jefferson Lab

Ongoing projects for future experiments

FCAL2 PbWO₄ insert: Installation

- Replacement of 400 lead glass blocks (out of 2800) with 1600 PbWO₄ crystals
- Twice better energy and spacial resolution, much better radiation hardness
- Required for the JEF experiment (to run with GlueX-II in 2024-2025)
- Installation in progress

Re-stacking LG blocks into a new frame

GEM TRD: prototyping and testing

- Goal: additional PID for electrons and positrons, pion suppression \sim 10 at \sim 90% electron efficiency
- Prototype of 25% of area has been built
- Prototypes testes in test beams (JLab and FNAL)

KLF: designing the components

- Be target and the "collimator cave" design is complete
- Conceptual design of the Compact Photon Source (CPS) in progress
- A pre-readiness review by ENP (ERR-1) on Aug 2, 2023

E.Chudakov

PAC51, Jul 2023

Hall D Report

8/8

JLab Positrons & 22 GeV

Patrizia Rossi PAC51 Jefferson Lab, July 24-28, 2023

TJNAF is managed by Jefferson Science Associates for the US Department of Energy

Science at the Luminosity Frontier: JLab Upgrade Development

Broad community interest in this science

Mar 2023

Trento, 26 - 30 September 2022

What a Positron Beam will bring?

- Positron beams, both polarized and unpolarized, open the door to understanding a range of physics that can't be accessed with electrons alone
 - E.M. processes (BCA)
 - -Two-photon exchange
 - -DVCS
 - Annihilation processes
 - Light dark matter searches
 - Charged-current processes
 - Inverse beta-decay
 - Strangeness with charmtagging
 - Charged lepton flavor violation
 - Axial Form Factor

6 Proposals and **5 LOI** submitted to this PAC

Two-photon exchange

- A challenge to calculate
- Leading contribution has opposite effect for e^+
- Measurements of $\sigma_{e^+}/\sigma_{e^-}$ isolate TPE

$P_{n} =$	$\sigma_{e^+p} = 1$	$\operatorname{Re}\left[\mathcal{M}_{1\gamma}\mathcal{M}_{2\gamma}\right]$			
$n_{2\gamma} \equiv$	$\overline{\sigma_{e^-p}} = 1$	$+ 4 - M_{1\gamma} ^2$	Ŧ	•	•••

Short Name	Label	Contact	Hall	Detector	Target	Polarity	$p \\ (GeV/c)$	P (%)	I (μA)	Time (d)
			Two 1	Photon Exchan	ge Physics					
Coulomb Distorsion TPE@CLAS12 Super-Rosenbuth Polarization Transfort	PR12+23-003 PR12+23-008 PR12+23-012 LOI12+23-008	D. Gaskell A. Schmidt M. Nycz A. Puckett		HMS CLAS12 HMS SBS+BigCal	LD ₂ ,Au LH ₂ LH ₂ LH ₂	+ +/-s +/-	4.4/11. 2.2/4.4/6.6 0.65-11. 2.2/4.4	0 0 0 60	1.0 0.075/0.075 1.0/20. 0.200	10 55 56 120
Dispersive Effects	LOI12+23-015	P. Gueye	A,C	HRS or HMS	C,Al,Cu,Ca,Fe,Pb	+	0.6-4.4	0	0.200	120
			Nuc	clear Structure	Physics					
DVCS BCAs DVCS XSection Polarizabilities Axial Form Factor	PR12+23-002 PR12+23-006 LOI12+23-001 LOI12+23-002	E. Voutier C. Muñoz Camacho N. Sparveris D. Dutta	B C C A,C	CLAS12 SHMS+NPS SHMS+HMS mTPC+SBS	$egin{array}{c} { m LH}_2 \ { m LH}_2 \ { m LH}_2 \ { m LH}_2 \ { m 2H} \end{array}$	+/-s + +/- +	2.2/11.6.6/8.8/11.2.22.0-6.0	60/60 0 0 60	0.050/0.050 1.0 5.0/50. 0.200	$ \begin{array}{r} 100 \\ 135 \\ 77 \\ 60 \end{array} $
Beyond the Standard Model Physics										
Dark Photon Search Dark Bhabha	PR12+23-005 LOI12+23-005	B. Wojtsekhowski D. Mack	B C	PRad Pair Spec.	$\begin{array}{c} \mathrm{LH_2} \\ e^- \end{array}$	+ +	2.2/4.4/11. 0.50-11.	0	0.050	60

What a 22 GeV Upgrade will bring?

- A NEW territory to explore → cross the critical threshold into the region where cc states can be produced in large quantities, and with additional light quark degrees of freedom.
- A BETTER (and needed) insight into our current program → enhancement of the phase space
- A BRIDGE between JLab @ 12 GeV and EIC → test and validation of our theory from lower to higher energy and with high precision

The physics program will:

- Leverage on the <u>uniqueness of CEBAF HIGH LUMINOSITY</u>
- Utilize largely existing or already-planned Hall equipment
- Take advantage of recent novel advances in accelerator technology

40

Jefferson Lab

Photoproduction of Hadrons with Charm Quarks

• Potentially decisive information about the nature of some 5-quark and XYZ candidates

8

10

12

2000 E

- Many "XYZ" states observed in B decays, e⁺e- but scarce consistency between various production mech. \rightarrow internal structure not understood yet
- Never directly produced using γ /lepton beam \rightarrow possibility to study the reaction mechanism without re-scattering effects
- Near-threshold J/ ψ photoproduction: a unique method to probe the proton's gluonic structure
- gluon GPD
- mass radius of the proton
- anomalous contr. to p mass

Thresholds crossed and t range opens up at higher energy

14

16

18

 $Z_{c}^{+}(3900)$

 E_{γ} / GeV

Nucleon 3D Structure

SIDIS - TMD

Complementarity with EIC

GPDs

One of the most stringent tests of factorization : xsection Q² dependence

- σ_L scales to LO as Q⁻⁶
- σ_T expectation as Q⁻⁸
- As Q^2 becomes large: $\sigma_1 >> \sigma_T$

Pion FF

 $\sigma L/\sigma_T$ separation only possible at Jlab

...and More

D(t) term and the determination of the • pressure distribution inside the proton $D_q(t)$ -0.5 22 GeV -1.5 11 GeV 6 GeV 2 2.2 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 -t(GeV²) Reach to the nuclear forces dominated by nuclear repulsion 100 $\frac{F_2^{QE}}{F_2^{IN}}$ 10 JLAB22 0.10 0.01 40 20 10 30 5(JLab12 Q², GeV²

• insight into hadron mass generation & the emergence of the N* structure through the Q² evolution of the γ_v pN* electrocouplings (CSM approach)

 $d\sigma/d\theta_{\pi^0}^{\text{lab}}$ [nb/0.00 $^{\circ}$]

 Access the anti-shadowing region (small effect!) (x~0.1-0.3) at moderate Q² using multiples exp. techniques

• π^0 Primakoff production off an electron target

Feasible, Cost effective, Innovative Path from e⁺ to 22 GeV

Capitalize on recent science insights and US-led accelerator science and technology innovations to develop a staged program at the luminosity frontier

to **CEBAF**

- 650 MeV
- A prototype magnet built and evaluated

for mechanical

integrity

R&D developments on-going ٠ supported by Laboratory **Directed (LDRD) funds**

Summary

- Understanding the different facets of the dynamics of non-pQCD that manifest in hadron/nuclei structures is a complex problem which requires multiple observables using different approaches and measurements
 - Positron beams, both polarized and unpolarized, are essential tools for a precise understanding of the electromagnetic structure of the nucleon and nuclei, in both the elastic and the deep-inelastic regimes (form factors, PDFs, GPDs,...), but also for search for physics beyond the standard model.
 - With CEBAF at higher energy: a) some important thresholds will be crossed providing new territories to explore, b) a
 better insight into our current program will be possible, and c) a bridge between JLab @ 12 GeV and EIC will be
 established. This will be critical to elucidate the properties of QCD in the valence regime.
- A rich scientific program to leverage existing infrastructure and the uniqueness of CEBAF HIGH LUMINOSITY is being developed and it has been presented at the Long Range Plan of NP

⁴Jefferson Lab