JLab Positrons & 22 GeV

Patrizia Rossi

PAC51 Jefferson Lab, July 24-28, 2023

TJNAF is managed by Jefferson Science Associates for the US Department of Energy

Science at the Luminosity Frontier: JLab Upgrade Development

Broad community interest in this science

Trento, 26 - 30 September 2022

What a Positron Beam will bring?

- Positron beams, both polarized and unpolarized, open the door to understanding a range of physics that can't be accessed with electrons alone
 - E.M. processes (BCA)
 - Two-photon exchange
 - DVCS
 - Annihilation processes
 - Light dark matter searches
 - Charged-current processes
 - Inverse beta-decay
 - Strangeness with charmtagging
 - Charged lepton flavor violation
 - Axial Form Factor

6 Proposals and **5 LOI** submitted to this PAC

Two-photon exchange

- A challenge to calculate
- Leading contribution has opposite effect for e⁺
- Measurements of $\sigma_{e^+}/\sigma_{e^-}$ isolate TPE

 $R_{2\gamma} \equiv \frac{\sigma_{e^+p}}{\sigma_{e^-p}} = 1 + 4 \frac{\operatorname{Re}\left[\mathcal{M}_{1\gamma}\mathcal{M}_{2\gamma}\right]}{|\mathcal{M}_{1\gamma}|^2} + \dots$ tion Beam Parameters

	Experiment			Measurement Configuration			Beam Parameters			
Short Name	Label	Contact	Hall	Detector	Target	Polarity	$p \over ({ m GeV}/c)$	P (%)	I (μA)	Time (d)
			Two 1	Photon Exchan	ge Physics					
Coulomb Distorsion TPE@CLAS12 Super-Rosenbuth Polarization Transfort	PR12+23-003 PR12+23-008 PR12+23-012 LOI12+23-008	D. Gaskell A. Schmidt M. Nycz A. Puckatt		HMS CLAS12 HMS SBS+BigCal	LD_2,Au LH_2 LH_2 LH_2	+ +/-s +/-	4.4/11. 2.2/4.4/6.6 0.65-11. 2.2/4.4	0 0 0 60	1.0 0.075/0.075 1.0/20. 0.200	10 55 56 120
Dispersive Effects	LOI12+23-008 LOI12+23-015	P. Gueye	A A,C	HRS or HMS	C,Al,Cu,Ca,Fe,Pb	+	0.6-4.4	0	0.200	120
Invactear Structure Physics										
DVCS BCAs DVCS XSection Polarizabilities Axial Form Factor	PR12+23-002 PR12+23-006 LOI12+23-001 LOI12+23-002	E. Voutier C. Muñoz Camacho N. Sparveris D. Dutta	B C C A,C	CLAS12 SHMS+NPS SHMS+HMS mTPC+SBS	$ m LH_2$ $ m LH_2$ $ m LH_2$ $ m ^2H$	$+/{s}$ + +/- +	$2.2/11. \\ 6.6/8.8/11. \\ 2.2 \\ 2.0-6.0$	60/60 0 0 60	0.050/0.050 1.0 5.0/50. 0.200	100 135 77 60
Beyond the Standard Model Physics										
Dark Photon Search Dark Bhabha	PR12+23-005 LOI12+23-005	B. Wojtsekhowski D. Mack	B C	PRad Pair Spec.	${}^{ m LH_2}_{e^-}$	+++++	2.2/4.4/11. 0.50-11.	0	0.050	60

What a 22 GeV Upgrade will bring?

- A NEW territory to explore → cross the critical threshold into the region where cc states can be produced in large quantities, and with additional light quark degrees of freedom.
- A BETTER (and needed) insight into our current program → enhancement of the phase space
- A BRIDGE between JLab @ 12 GeV and EIC → test and validation of our theory from lower to higher energy and with high precision

The physics program will:

- Leverage on the <u>uniqueness of CEBAF HIGH LUMINOSITY</u>
- Utilize largely existing or already-planned Hall equipment
- Take advantage of recent novel advances in accelerator technology

Jefferson Lab

Photoproduction of Hadrons with Charm Quarks

Potentially decisive information about the nature of some 5-quark and XYZ candidates

Nucleon 3D Structure

SIDIS - TMD

ALL SF measurement possible

GPDs

One of the most stringent tests of factorization : xsection Q² dependence

- σ_L scales to LO as Q⁻⁶
- σ_{T} expectation as Q⁻⁸
- As Q² becomes large: σ_L >> σ_T

Pion FF

σL/σ_T separation **only** possible at Jlab

...and More

• D(t) term and the determination of the pressure distribution inside the proton

insight into hadron mass generation & the emergence of the N* structure through the Q² evolution of the γ_vpN* electrocouplings (CSM approach)

 Access the anti-shadowing region (small effect!) (x~0.1-0.3) at moderate Q² using multiples exp. techniques

pQCD

sQCD to pQCD

ressed

gluo

Feasible, Cost effective, Innovative Path from e⁺ to 22 GeV

Capitalize on recent science insights and US-led accelerator science and technology innovations to develop a staged program at the luminosity frontier

Summary

- Understanding the different facets of the dynamics of non-pQCD that manifest in hadron/nuclei structures is a complex problem which requires multiple observables using different approaches and measurements
 - Positron beams, both polarized and unpolarized, are essential tools for a precise understanding of the electromagnetic structure of the nucleon and nuclei, in both the elastic and the deep-inelastic regimes (form factors, PDFs, GPDs,...), but also for search for physics beyond the standard model.
 - With CEBAF at higher energy: a) some important thresholds will be crossed providing new territories to explore, b) a
 better insight into our current program will be possible, and c) a bridge between JLab @ 12 GeV and EIC will be
 established. This will be critical to elucidate the properties of QCD in the valence regime.
- A rich scientific program to leverage existing infrastructure and the uniqueness of CEBAF HIGH LUMINOSITY is being developed and it has been presented at the Long Range Plan of NP

Jefferson Lab