

New Applications of Compact Accelerators in Security and Nonproliferation

Igor Jovanovic University of Michigan

ansg.engin.umich.edu

AccelApp'24 – Norfolk, VA March 19, 2024

Overview

- The nuclear security and nonproliferation context
- ▶ **RFQs / cyclotrons** → dual-particle multiple-monoenergetic radiography
- **Compact neutron generators** \rightarrow neutron die-away and delayed neutrons
- ▶ Linacs / laser-driven sources → detection of photofission

Aspects of nuclear security and nonproliferation

Monitoring of nuclear fuel cycle

Monitoring nuclear treaty compliance

Arms control

Aspects of nuclear security and nonproliferation

Cargo screening / detection of concealed SNM

Nuclear forensics

Active interrogation sources based on compact accelerators

Active interrogation sources based on compact accelerators

Ion-driven nuclear reactions can be used to efficiently produce characteristic gamma rays

100 cc U cube in 40 cm Fe block imaged with 15.1 MeV gammas (MCNPX simulation)

Multi-particle multiplemonoenergetic source Multi-particle spectroscopic detectors

Dual-energy gamma transmission radiography \rightarrow effective atomic number and areal density

Measurement 1: Compton dominant (4.4 MeV)

Measurement 2: PP dominant (15.1 MeV)

Dual-energy elemental discrimination

Dual-particle spectroscopic transmission radiography

- One could use two sets of detectors optimized for each particle
- Alternative: use the same detector for both particles
- Basic requirement: neutron-gamma discrimination

Dual-particle transmission radiography

P. Rose, A. Erickson, M. Mayer, J. Nattress, and I. Jovanovic, Sci. Reports 6, 24388 (2016)

Multi-particle, multiple-monoenergetic radiation source

Testing of objects comp

Experimental results: material ID based on photon/photon transmission

$$R = \frac{\ln \left(I^{\alpha}(E_1) / I_0^{\alpha}(E_1) \right)}{\ln \left(I^{\beta}(E_2) / I_0^{\beta}(E_2) \right)}$$

J. Nattress et al., Phys. Rev. Applied 11, 044085 (2019)

Combining gamma and neutron spectroscopic radiography

Mixed-material objects and shielding

Inconsistency in multimodal Z-reconstruction \rightarrow mixed elemental or non-natural isotope composition

Active interrogation sources based on compact accelerators

Detection of delayed neutrons from fission

235 U and 238 U have unique delayed neutron time profiles \rightarrow isotopic discrimination

²³⁸U / ²³⁵U differentiation using buildup and decay of delayed neutrons

J. Nattress, K. Ogren, A. Foster, A. Meddeb, Z. Ounaies, and I. Jovanovic, Phys. Rev. Applied, 10, 024049 (2018)

K. Ogren, J. Nattress, and I. Jovanovic, Phys. Rev. Applied 14, 014033 (2020)

Multi-generation delayed neutron profile from HEU

Safeguarding the thorium fuel cycle

IAEA SQ

- 8 kg for ²³³U vs. 25 kg for ²³⁵U
- Th fuel cycle designs ²³³U/²³⁵U mixtures
- ²³³U & ²³⁵U must be quantified separately

- Typical concentration or ²³²U in ²³³U: 100– 2000 ppm
- Extreme γ environment 6.04 Ci/SQ @ 100 ppm

Experiments with ²³³U₃O₈ Zero Power Reactor Fuel Elements Plates

MC-15 ³He detectors

P211 Neutron Generator

1188 g ²³³U₃O₈

First demonstration of ²³³U delayed neutron and differential die-away measurement with industrial-scale quantity, using active interrogation

O. Searfus, P. Marleau, E. Uribe, H. Reedy, and I. Jovanovic, Phys. Rev. Applied 20, 064038 (2023)

Active interrogation sources based on compact accelerators

Detection of prompt photofission neutrons

- reduced dose
- adjustable fission threshold
- detect fission neutrons

Prompt neutrons

- more abundant than delayed neutrons
- different spectrum from photoneutrons

but: coincident with high gamma flux

Detection of prompt photofission neutrons with a 9 MeV linac and 4He detector

2.7 kg DU 3 kg PbO 3 kg Fe

⁴He detector poor sensitivity to gammas!

Active background: (γ,n) neutrons from collimator

Prompt photofission neutrons isolated via spectroscopy

Optimization of uranium-lead discrimination

Spectral discrimination over time

Using the spectral ratio, Pb and DU are distinguishable with $>3\sigma$ separation within minutes of irradiation.

Conclusion

Nuclear security and nonproliferation continue to be a major challenge that continues to drive technological innovation in nuclear instrumentation and nuclear analytical methods.

Compact accelerators play a critical role in supporting those applications.

dual-particle multiple-monoenergetic radiography

neutron die-away and delayed neutrons

detection of photofission

