Validating Thermal Neutron Capture γ-Ray Data using the RPI Gaerttner LINAC Center

Katelyn Cook¹, Yaron Danon¹, Amanda Lewis², Michael Rapp², Adam Daskalakis², Devin Barry², Peter Brain¹, Dominik Fritz¹, Alec Golas¹, Adam Ney¹, Gregory Siemers¹, Sukhjinder Singh¹, and Benjamin Wang¹

¹Gaerttner LINAC Center, Rensselaer Polytechnic Institute, Troy, NY ²Naval Nuclear Laboratory, Schenectady, NY

2024 International Topical Meeting on Nuclear Applications of Accelerators (AccelApp24) Jefferson Lab in Norfolk, Virginia March 17-21

Outline

- Introduction: RPI Gaerttner LINAC Center, Neutron Capture Reactions, Project Goals & Motivation
- Experimental Methods: RPI Capture γ-Ray Multiplicity Detector
- Simulation Methods: Current Status & Modifications
- •**Validation**: ⁵⁶Fe γ-ray Spectra Measurements
- Conclusions & Future Work

RPI Gaerttner Linear Accelerator (LINAC) Center

What do we measure?

Results of various neutron interactions

Thermal Neutron Capture Reactions

Project Goals

Develop **experimental methods** to measure **γ-ray cascades** produced by thermal neutron capture reactions

Update **simulation methods** to:

- Accurately model γ-ray cascades emitted during compound nucleus de-excitation
- Simulate γ-ray cascades travelling through detection systems

Use both methods to **assess the accuracy of thermal neutron capture induced γray data** stored in nuclear data libraries

Kensselaer LABORATOR

Why do we want to measure and simulate neutron capture γ-ray cascades?

Research Areas

- Nuclear structure studies
 - Energy levels, spins and parities
- Improving γ-ray de-excitation models

= tumor cell w/ neutron capturing isotope

= Auger electron

*figure not to scale

🔵 = IC electron

Applications

- -γ-ray heating
- Radiation shielding
- Nuclear medicine
- Neutrino & particle physics
- Active neutron interrogation
 - Industry (coal, oil-well logging)
 - Controlled substance detection
 - Non-proliferation
 - Space exploration

<u>Measurement Types</u>

- Single Detector
- Coincidence Measurements
 - $\begin{array}{c} \bullet \mbox{ Multiple detectors to measure} \\ many \ensure \ \gamma \mbox{ rays emitted in a cascade} \end{array}$
- RPI capture γ-ray data can be used to test *both*

ISSE APT LABORATOR

Experimental Methods

RPI Capture γ-Ray Multiplicity Detector

• 16 segment NaI(Tl) capture γ-ray multiplicity detector

- 20 L of NaI(Tl) surrounding the sample
- A 1 cm thick B_4C ceramic sleeve (enriched to 99.5 atom% in ^{10}B) is used inside the detector to absorb neutrons scattering from the sample
- Up to 96% efficiency for detecting γ -ray cascades
- Located 25 m from the neutron-producing target
- Time-of-flight (TOF) method used to determine incident neutron energy
- \bullet Used for neutron capture yield and $\gamma\text{-ray}$ spectra measurements
 - Incident neutron energies: 0.001 eV 3 keV

Simulation Methods

Step 1: Model Neutron Capture γ-Ray Cascades using DICEBOX

DICEBOX/ENSDF (+Firestone)

Models full γ -ray cascades using evaluated nuclear data (ENSDF + RIPL-3)

Input tuned to R. B. Firestone et. al., Phys. Rev. C **95**, 014328 (2017)

EGAF

Shows experimentally measured primary γ -ray lines (does not necessarily represent the full cascade)

Simulation Methods

Step 2: Transport γ-ray cascades through the RPI Capture Detector System

MCNP-6.2/ACE

- Extracts γ-ray data from ACE files (ENDF/B-VIII.0)
- Total energy deposition spectra is expected to disagree with experimental data because the simulation does not include coincidence events

MCNP-6.2/CGM

- **C**ascading **γ**-Ray **M**ultiplicity
- Produces correlated secondary γ-ray emissions (cascades)
- γ rays transported through the detector geometry using MCNP-6.2

mod-MCNP-6.2/DICEBOX

- γ-ray cascades generated using DICEBOX
- γ-ray cascades transported through the detector geometry using a modified version of MCNP-6.2
- Generates an output file to tally γ-ray energy deposition in detector segments (enables event-by-event analysis including coincidence)

Validation of Experimental + Simulation Methods Compare Experimental γ-ray Spectra to Simulated Results

Further Validation ⁵⁹Co Thermal Neutron Capture

DICEBOX/ENSDF

Models full γ -ray cascades using evaluated nuclear data (ENSDF)

EGAF

Experimentally measured γ -ray intensities

⁵⁹Co(n,γ) Single Detector Black data points = average single detector response Gray band indicates the range of the 16 detectors 10⁵ mod-MCNP-6.2/DICEBOX: Single Detector **RPI Experiment 2022: Single Detector** Normalized Counts 10⁴ 10² 2 6 8 10 γ-Ray Energy [MeV] ⁵⁹Co(n,γ) Total Energy Deposition (all 16 detectors) 10^{6} mod-MCNP-6.2/DICEBOX/ENSDF: Total Energy Size of error bars are on the RPI Experiment 2022: Total Energy order of the data points Normalized Counts 10⁴

10

The Gaerttner LINAC Center

11/14

9

18C

10³

3

5

Rensselaer LABORATORY

6

γ-Ray Energy [MeV]

7

8

Further Validation ⁵⁵Mn Thermal Neutron Capture

DICEBOX/ENSDF

Models full γ -ray cascades using evaluated nuclear data (ENSDF)

DICEBOX/ENSDF+levels

Models full γ-ray cascades using evaluated nuclear data (ENSDF) + additional levels that DICEBOX previously excluded

EGAF

Experimentally measured γ -ray intensities

Conclusions

- The experimental and simulation methods have been developed to test the accuracy of thermal neutron capture γ-ray data in nuclear data libraries.
- Measuring capture γ -ray spectra with the RPI Capture γ -Ray Multiplicity Detector system has been validated using the ⁵⁶Fe(n, γ) measurement.
 - When the neutron capture γ -ray cascade data is well-known, the experimental γ -ray energy spectra can be accurately simulated using mod-MCNP-6.2/DICEBOX.
- Validation of the system has been extended with ⁵⁵Mn and ⁵⁹Co thermal neutron capture measurements

Future Work

Complete the analysis of experimental capture γ -ray spectra for ^{nat,235}U and compare to **mod-MCNP-6.2/DICEBOX** simulations

– Challenge: separate fission-induced γ rays from capture

Thank you! Questions?

This research was performed under appointment to the Rickover Fellowship Program in Nuclear Engineering sponsored by Naval Reactors (NR) Division of the National Nuclear Security Administration (NNSA).

