Exploring the Origin of the Rarest Stable Isotopes via Photon-Induced Activation Studies at the Madison Accelerator Laboratory

Adriana Banu

Department of Physics and Astronomy, James Madison University, Harrisonburg, Virginia, USA

Association for Research at University Nuclear Accelerators

2024 International Topical Meeting on Nuclear Applications of Accelerators March 17^{th –} 21st, 2024, Norfolk, VA, USA, hosted by Jefferson lab

JAMES MADISON UNIVERSITY.

MAL: History and Mission...briefly

- James Madison University is an R2 university located in Harrisonburg, VA (in the beautiful Shenandoah Valley)
- Dept. of Physics and Astronomy is an undergraduate-only department
 - The department acquired a medical electron linear accelerator (linac) and an X-ray imaging machine from the former Cancer Therapy Center of the Rockingham Memorial Hospital.
 - In March 2018, MAL became officially licensed for operations by the VA Dept. of Health
 - In September 2022, MAL joined ARUNA

MAL mission is two-fold:

- Our research-focused mission is to repurpose and transform an "off-the-shelf" medical electron linear accelerator, originally used for clinical operations, into a multidisciplinary user-research facility available for all JMU faculty and students as well as for other higher-education institutions and research facilities in Virginia and beyond.
- Our education-focused mission is to forge collaborations between the physics, nuclear engineering and health science departments across the state of Virginia and beyond that focus on the development of a broad educational curriculum in applied photon science and accelerator or medical physics.

MAL (medical) electron linac – overview of its capabilities

- Siemens Magnetron-based linac (3 GHz RF frequency)
 - Dual Photon Beam (6 & 15 MV)
 - Multi-Energy Electron Beams (5, 7, 8, 10, 12, and 14 MeV)
- Electron Beam Characteristics:
 - \blacktriangleright Pulsed 3 µs beam at 100-300 Hz pulse repetition frequencies
 - Beam current: 0.1 10 mA avg, 0.15-1.5 A peak
- Bremsstrahlung Target: Tungsten
- **Dose rate:** ~3 Gy/min (photons), ~9 Gy/min (electrons) at isocenter
- Beam profile: up to 40 cm x 40 cm flat field at isocenter (reduceable with collimators)
- Associated Instrumentation:
 - Suite of HPGe detectors w/ rel. efficiencies up to 60%, ultra-low background shielding
 - Suite of NaI(TI) detectors with analog/digital base & LaBr3 detectors with digital base
 - Silicone surface-barrier detectors with fast/slow preamplifiers
 - Standalone DAQ systems (*i.e.*, Genie 2000 (Mirion), CAEN DT5725S digitizer)

Check out MAL website for more details:

https://sites.lib.jmu.edu/mal

See also talk by Dr. T. Pendleton @ Compact Accelerators-1

AccelApp

The *p*-Nuclei - 'nuclear astrophysics *p*-nuts'

B²FH, Rev. Mod. Phys. 29, 547 (1957)

The *p*-process nucleosynthesis

- $\tau \sim 1s \& T \sim 2-3 \ 10^9 K$
- Photodisintegration $(\gamma, n), (\gamma, p), (\gamma, \alpha)$
- Type-II & Ia Supernovae

AccelApp²4

The *p*-process nucleosynthesis is responsible for the origin of 35 proton-rich stable nuclei heavier than iron!

		Abundances of the p-nuclei (Atoms/10 ⁶ Si)					
		p-nucleus	Abundance	p-nucleus	Abundance	p-nuclues	Abundance
The second		^{/4} Se	0.55	¹¹⁴ Sn	0.0252	¹⁵⁶ Dy	0.000221
The second se		⁷⁸ Kr	0.153	¹¹⁵ Sn	0.0129	¹⁵⁸ Dy	0.000378
	THE REPORT OF A CARPENDER	⁸⁴ Sr	0.132	¹²⁰ Te	0.0043	¹⁶² Er	0.000351
		⁹² Mo	0.378	¹²⁴ Xe	0.00571	¹⁶⁴ Er	0.00404
		⁹⁴ Mo	0.236	¹²⁶ Xe	0.00509	¹⁶⁸ Yb	0.000322
		ຶຶRu	0.103	¹³⁰ Ba	0.00476	^{1/4} Hf	0.000249
THE REAL PROPERTY OF THE PROPE	A REAL PROPERTY AND	^{°°} Ru	0.035	¹³² Ba	0.00453	¹⁰⁰ Ta	2.48E-06
74 -		¹⁰² Pd	0.0142	¹⁰⁰ La	0.000409	184 -	0.000173
140		¹⁰⁸ Cd	0.0201	¹³⁸ Ce	0.00216	190 –	0.000122
	CONTRACTOR OF	113,	0.875	¹⁴⁴ Ce	0.00284	¹⁹⁶ ,	0.00017
	A DESCRIPTION OF A DESC	112 112	0.0079	¹⁵² Cd	0.008	Hg	0.00048
	TaoHg	<i>p</i> -Process Nucleosynthesis: an extended network of some 20000 reactions					
the second second	C I I I	in the second second	nking abo	ut 2000 n i	u <mark>clei</mark> in the	$A \leq 210$ I	mass range
			80 70 60	p.			
		Kley	50 40 30				524

N

* Measurements of (γ,n) reaction rates on stable proton-rich nuclei with reaction threshold around 12 MeV!

This work is supported by the National Science Foundation through the Grant No. Phys - 1913258

AccelApp²4

Laboratory vs. Stellar Plasma

Exploring the origin of *p*-nuclei via photon-induced activation studies @ MAL

- Measurements of ground state reaction rates for photo-neutron reactions relevant to the p-process nucleosynthesis
- Our objective is to compare experimental data to calculated ground-state reaction rates and cross sections in Hauser-Feshbach statistical reaction models
- The ultimate goal here is to improve the knowledge of the dipole γ-strength functions

- Developing deuteron breakup measurements similar to ELBE facility
- Irradiate deuteron breakup target with γ and measure proton energy

 $^{2}H(\gamma,p)n$

$$E_p[MeV] = \frac{E_{\gamma} - 2.22}{2}$$

Figure 1. Bremsstrahlung facility and experimental area for photon-scattering and photodissociation experiments at the ELBE accelerator.

Wagner et al. (J. Phys. G 31 (2020))

Silicon detectors

Type Ortec ULTRA (600 mm², 300 μm)

HELMHOLTZ

ELBE.

ZENTRUM DRESDEN

ROSSENDORF

• Have acquired deuteron target and assembling shielded beam line

MAL electron beam time structure

Pulsed 3 us beam at 200±10 Hz, "normal operation"

AccelApp²4

- ~0.06% duty cycle
- ~Time-averaged beam current of ~5 mA

• Detectors installed and calibrated with slow ORTEC preamps

Normal Si Detector Pulse Count (Th-228)

Energy CHigo/15/28; 219

1000

800

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

600

60

AccelApp24

Energy Calibration Spectrum (Th-228)

- Pulse structure saturates charged particle detectors
 - Average γ flux at suitable levels for detectors, but peak pulse current creates peak γ flux that saturates detectors

Detectors installed and calibrated with new CAEN fast preamps (A1425 model)

Normal Si Detector Pulse Count (Th-228)

Energy Calibration Spectrum (Th-228)

Energy measurements attempted with new fast preamp

D-PE Scatter Pulse Count with Linac On

ADC channel 0005 D-PE Scatter Pulse Spectrum after 10 minutes (455 signal counts) 10000 Counts 1 C Underfik Overflov 5000 - Martine (Martine hinter and a second sec 8 O 6 -50000 500 1000 1500 2000 2500 3000 3500 4000 ns 2 0 0 5000 10000 15000 20000 25000 keV

Determination of bremsstrahlung endpoint energy @ MAL (work in progress)

Half-Life Measurements @ MAL (published results)

$$, i \qquad \gamma + {}^{A}X \longrightarrow {}^{A-1}X^{*} + n$$

$$A_{\gamma} = N_{T} \varepsilon_{\gamma} I_{\gamma} p \frac{t_{life}}{t_{real}} \frac{\left(1 - e^{-\lambda t_{irr}}\right)}{\lambda t_{irr}} e^{-\lambda t_{cool}} \left(1 - e^{-\lambda t_{meas}}\right) I_{\sigma(\lambda,n)}$$

High-precision measurements of half-lives for ⁶⁹Ge, ⁷³Se, ⁸³Sr, ^{85m}Sr, and ⁶³Zn radionuclides relevant to the astrophysical *p*-process via photoactivation at the Madison Accelerator Laboratory

T. A. Hain¹ · S. J. Pendleton¹ · J. A. Silano² · A. Banu¹

 $(T) \approx \sum a_i(T) I_a$

Received: 3 September 2020 / Accepted: 31 December 2020 © This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Abstract

The ground state half-lives of ⁶⁹Ge, ⁷³Se, ⁸³Sr, ⁶³Zn, and the half-life of the $1/2^{-1}$ isomer in ⁸⁵Sr have been measured with high precision using the photoactivation technique at an unconventional bremsstrahlung facility that features a repurposed medical electron linear accelerator. The γ -ray activity was counted over about 6 half-lives with a high-purity germanium detector, enclosed into an ultra low-background lead shield. The measured half-lives are: $T_{1/2}(^{69}Ge) = 38.82 \pm 0.07$ (stat) ± 0.06 (sys) h; $T_{1/2}(^{73}Se) = 7.18 \pm 0.02$ (stat) ± 0.004 (sys) h; $T_{1/2}(^{83}Sr) = 31.87 \pm 1.16$ (stat) ± 0.42 (sys) h; $T_{1/2}(^{85m}Sr) = 68.24 \pm 0.84$ (stat) ± 0.11 (sys) min; $T_{1/2}(^{63}Zn) = 38.71 \pm 0.25$ (stat) ± 0.10 (sys) min. These high-precision half-life measurements will contribute to a more accurate determination of corresponding ground-state photoneutron reaction rates, which are part of a broader effort of constraining statistical nuclear models needed to calculate stellar nuclear reaction rates relevant for the astrophysical *p*-process nucleosynthesis.

J. Radioanalytical and Nuclear Chemistry 32, 1113 (2021)

Half-Life Measurements @ MAL (preliminary results)

Acknowledgments

This work is supported by the National Science Foundation through the Grant No. Phys - 1913258

Dr. Tilda Pendleton is *Laboratory Manager at MAL* and has been contributing significantly to the ongoing development of this research project at MAL.

AccelApp

<u>Robert Geissler</u>, <u>Tyler Hain</u>, Theodore Chu, Jessica Mayer, David Purdham, and Evan Witczak are former physics major undergraduates who also contributed to this research project.

Thank you for your attention!