2024 International Topical Meeting on Nuclear Applications of Accelerators

EFFECT OF RADIATION ON NATURAL RUBBER AND SILICONE RUBBER COMMONLY USED IN MEDICAL DEVICES AND APPLICATIONS

Tonguç ÖZDEMİR, Mersin University, Department of Chemical Engineering, Mersin, TURKEY <u>Ceren KURTULUŞ</u>, Mersin University, Department of Chemical Engineering, Mersin, TURKEY Ahmet GÜNGÖR, Sabancı University, Faculty of Engineering and Natural Sciences, Istanbul, TURKEY

Norfolk, March 2024

Outline

- Project Objectives
- Project Background
 - Radiation Sterilization of Medical Devices
 - Radiation Effects on Polymers
 - Materials
 - Natural Rubber (NR) and Medical Applications
 - Silicone Rubber (SR) and Medical Applications
- Manufacturing Process & Methodology
- Results
 - Mechanical Tests
 - Characterization Analysis (FTIR, TGA, DSC, and SEM)
 - Swelling Ratio, Gel Content and Crosslink Density Calculations

Conclusions

Investigate radiation effects on natural rubber and silicone rubber by comparing gamma and e-beam irradiations

Analyze the change in the mechanical, thermal, structural and

morphological characteristics of the non-irradiated and irradiated polymers used in medical applications

Compare gamma and e-beam irradiations to determine the degradation and modification pathways

Radiation Sterilization of Medical Devices

Sterilization is defined as the process by which all-living cells, viable pores, viri and viriods are either destroyed or removed from an object.

AccelApp 2^{I}

Fig.1^{*}. Sterilization Methods for polymer-based medical devices Fig.2.^{**} Comparison of radiation sources for radiation sterilization

* Int. J. Pharm,455-460.doi: 10.1016/j.ijpharm.2017.12.003, 2017. "Sterilization of implantable polymer-based medical devices: A review" ** B. P. Fairand, Radiation Sterilization for Health Care Products: X-Ray, Gamma, and Electron Beam (CRC Press, 2001).

Radiation Effects on Polymers

The radiation-induced changes depends on:

- Type of the polymer,
- Additives used to compound the polymer,
- Processing of the polymers,
- Irradiation conditions (absorbed dose, dose rate and irradiation atmosphere)

Fig 3. Effect of radiation on polymer chains

The major chemical changes by ionizing radiation:

- Cross-linking and scission of the polymeric chains,
- Formation of gases, LMW radiolysis products, unsaturated bonds,
- Oxidation of the polymer,
- post-irradiation "ageing"

Norfolk. Virginia AccelApp⁶24

Materials

Natural Rubber (NR) and

Its Medical Applications

Fig.4. The molecular structure of natural rubber

Medical Applications of NR

- Membranes
- Diaphragms
- Urinary Catheters
- Gaskets, caps, tubes
- Gloves, ballons, pacifiers

Silicone Rubber (SR) and

Its Medical Applications

Fig.5. The molecular structure of silicone rubber

Medical Applications of SR

- Catheter and drainge tubing
- Respiratory Care Products
- Ear plugs and hearing aids
- Gasketing material
- Drug Delivery Systems
- Seals, stoppers, valves and clips

Determination of the Vulcanization Parameters for NR and SR

Manufacturing Process of NR Test Samples

Manufacturing Process of SR Test Samples

Thermal Hydraulic Press

180°C / 15 min

Die Cutter

ASTM D412 ASTM D624

SR Test Samples

9

SR compounding process

Fig.9. Curing of silicone rubber and preparation of test specimens

Methodology (Gamma and E-beam Irradiations)

Test & Methods

Mechanical Tests

- Universal Testing Machine Schimadzu-AGS X
- 10 kN load cell
- Crosshead speed 50 mm/min
- Average of 3 samples

FTIR Analysis

- Perkin Elmer Spectrum
 400
- Resolution: 4 cm⁻¹
- Scans:16
- Range: 4000-400 cm⁻¹
- 6 samples for each irrad.

TGA Analysis

- Perkin Elmer STA 6000
- T: 30-700°C
- Heating rate:10°C/min
- 7 samples for each irrad.

DSC Analysis

- Thermosystem DSC 250,
- T: -90°C- 0°C
- Heating rate:10°C/min
- 6 samples for each irrad.

SEM Analysis

- Quanta-400F Model
- Various magnific.
- 3 nm Au-Pd coated

Swelling Ratio

Equilibrium solvent - swelling measurements in toluene.

Swelling Ratio (%) = $\frac{\mathbf{w}_{f} - \mathbf{w}_{i}}{\mathbf{w}_{i}} * 100$

- 6 sets for each irrad.
- ASTM D471

Gel Content

 Soxhlet Extraction Method

Gel Content (%) =
$$\frac{wf}{wi}$$
. 100

• 6 sets for each irrad.

Crosslink Density

• Flory-Rehner Eqn. used

$$v = \frac{-\left[\ln\left(1 - V_{\rm r}\right) + V_{\rm r} + xV_{\rm r}^2\right]}{V_{\rm s}\left(V_{\rm r}^{\frac{1}{3}} - V_{\rm r}/2\right)}$$

Results (Mechanical Tests for NR)

Gamma Irradiated NR

E-beam Irradiated NR

Fig.12. Tensile strength values of gamma and e-beam irradiated NR samples at different doses

Gamma Irradiated NR

E-beam Irradiated NR

Fig.13. Elongation at break values of gamma and e-beam irradiated NR samples at different doses

12

D1

EB

Results (Mechanical Tests for SR)

E-beam Irradiated SR

Fig.15. Elongation at break values of gamma and e-beam irradiated NR samples at different doses

13

AccelApp 24

Results (Fourier Transform Infrared Spectroscopy (FTIR) Analysis for NR)

Figure 16. FTIR spectra of gamma and e-beam irradiated NR samples at different doses

For both modalities, changes in the transmittance peaks were observed at 1520-1531 cm⁻¹ N-O ring stretching vibrations, at 1235 cm⁻¹ and C-H stretching below 1000 cm⁻¹.

Both gamma and e-beam irradiated NR samples show their characteristic peaks at around 1385 cm⁻¹ for O-H bending, 1745 cm⁻¹ C=O stretching, 2921cm⁻¹ –CH₂ asymmetrical stretching, 2850 cm⁻¹ -CH₂ symmetrical stretching vibrations.

ACCOUNT

Results (Fourier Transform Infrared Spectroscopy (FTIR) Analysis for SR)

Figure 17. FTIR spectra of gamma and e-beam irradiated SR samples at different doses

Analysis of the spectrum of non-irradiated SR shows its characteristic peaks at around 2962 cm⁻¹ for CH₃ stretching, 1400 cm⁻¹ for –CH₂- rocking, 864 cm⁻¹ rocking of Si-CH₃, and at 1002 cm⁻¹ for Si-O-Si vibration.

FTIR spectra of the samples show that the chemical structure of the SR samples remained unchanged after irradiation.

15

AccelApp²⁴

Results (Differential Scanning Calorimetry (DSC) Analysis for NR)

Figure 18. DSC plots of gamma and e-beam irradiated NR samples at different doses by heating from -90°C to 0°C

Gamma Irradiated NR Samples	T _g (°C)	E-beam Irradiated NR Samples	T _g (°C)
NR-0 kGy	-60,62	NR-0 kGy	-60,84
NR-H-20 kGy	-59,97	NR-10 kGy	-61,50
NR-H-40 kGy	-59,99	NR-30 kGy	-61,72
NR-H-80 kGy	-59,64	NR-60 kGy	-60,91
NR-L-20 kGy	-60,89	NR-80 kGy	-60,53
NR-L-40 kGy	-61,79	NR-120 kGv	-60.92

Results (Differential Scanning Calorimetry (DSC) Analysis for SR)

Figure 19. DSC plots of gamma and e-beam irradiated SR samples at different doses by heating from -90°C to 0°C

Gamma Irradiated SR Samples	T _g (°C)	E-beam Irradiated SR Samples	T _g (°C)
SR-0 kGy	-42.22	SR-0 kGy	-41,27
SR-H-20 kGy	-41.07	SR-10 kGy	-40,15
SR-H-40 kGy	-43.50	SR-30 kGy	-41,76
SR-H-80 kGy	-44.31	SR-60 kGy	-43,08
SR-L-20 kGy	-42.27	SR-80 kGy	-41,53
SR-L-40 kGy	-42.81	SR-120 kGy	-42.31

AccelApp²⁴

Results (Thermogravimetric Analysis (TGA - DTG for NR)

Figure 20. TGA and DTG thermograms of gamma and e-beam irradiated NR samples at different doses

AccelApp²⁴

Results (Thermogravimetric Analysis (TGA - DTG) for SR)

Results (Swelling Ratio (%) for NR and SR)

Swelling Tests were performed according to ASTM D471

Equilibrium solvent - swelling measurements in toluene

Swelling Ratio (%) = $\frac{\mathbf{w}_{\mathrm{f}} - \mathbf{w}_{\mathrm{i}}}{\mathbf{w}_{\mathrm{i}}} * 100$

Swelling Ratio for Gamma and E-beam Irradiated NR

Swelling Ratio for Gamma and E-beam Irradiated SR

Figure 24. Swelling Ratio graphs of gamma and e-beam irradiated NR and SR samples at different doses

AccelApp²

Results (Gel Content (%) for NR and SR)

The gel content of the samples were estimated by Soxhlet extraction method (75°C - 8 h. in hexane)

Gel Content (%) =
$$\frac{wf}{wi}$$
. 100

Fig.26. Soxhlet Extraction Appatarus

Figure 25. Gel content graphs of gamma and e-beam irradiated NR and SR samples at different doses

Gel Content for Gamma and E-beam Irradiated NR

AccelApp²

Results (Crosslink Density Calculations for NR and SR)

Crosslink density of the samples were obtained by substituting the swelling data in Flory-Rehner Eqn.

$$\nu = \frac{-\left[\ln\left(1 - V_{\rm r}\right) + V_{\rm r} + xV_{\rm r}^2\right]}{V_{\rm s}\left(V_{\rm r}^{\frac{1}{3}} - V_{\rm r}/2\right)}$$

Figure 27. Crosslink density graphs of gamma and e-beam irradiated NR and SR samples at different doses

AccelApp

Conclusions

- There is no critical differences in gamma and e-beam irradiations for 25 kGy, which is a sufficient dose commonly employed for sterilization.
- Gamma and e-beam irradiations produced no observable changes in the FTIR spectra of SR whereas the chemical structure of the gamma and e-beam irradiated NR samples changed with the increasing dose.
- Thermal properties of NR and SR didn't show significant changes with the increasing dose. They can be sterilized under applied conditions without any change in thermal behavior.
- LD-20 kGy of gamma and 30 kGy of e-beam irradiations have the potential to be used safely as a radiation sterilization dose for NR.
- LD-20 kGy of gamma and 20 kGy of e-beam irradiations have the potential to be used safely as a radiation sterilization dose for SR.

I would like to acknowledge International Atomic Energy Agency (IAEA) for their support to this Coordinated Research Project (CRP)

(Project # F24701)

THANK YOU

Ceren KURTULUŞ

ccamliyurt@hotmail.com ceren.kurtulus@csb.gov.tr Norfolk, Virginia AccelApp '24