Commissioning of SuperKEKB the world's highest luminosity collider

Mika Masuzawa (KEK)

2024/3/18

Contents

- 1. Introduction
- 2. History of e^+e^- colliders in Japan
- 3. SuperKEKB
- 4. Challenges as a luminosity frontier
- 5. Summary

2.History of e⁺e⁻colliders in Japan
3.SuperKEKB
4.Challenges as a luminosity frontier
5.Summary

KEK Tsukuba campus since 1971

Tokai campus

2024/3/18

2.History of e⁺e⁻colliders in Japan
3.SuperKEKB
4.Challenges as a luminosity frontier
5.Summary

Three generations of e⁺e⁻ colliders at KEK

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

TRISTAN (1986-1995)

Transposable Ring Intersecting STorage Accelerators in Nippon

"There has been a longstanding desire in Japan to build a high energy accelerator so that Japan can join a forefront physics program at home. After thorough discussion it was decided that TRISTAN should be an e^+e^- collider, reaching 30 GeV × 30 GeV and aim at finding top quark. . .'

- superconducting rf
 superconducting magnet
- beam operation
- physics detectors

5

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

Motivation for B-factory

Development of the theory of CP violations in B meson decays gave a strong motivation for building a B-Factory machine.

> 8 GeV electron and 3.5 GeV positron beam, asymmetry in energy

High yield

Founding Fathers of the B Factory Experiments (Drs. Fumihiko Takasaki, Stephen Olsen, Jonathan Dorfan and David Hitlin) Awarded Panofsky Prize, 2016

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

> yield = $L\sigma$ We don't have any control over σ

High yield \rightarrow High luminosity (L) is required

$$L = \frac{N_{e+}N_{e-}f}{A}$$

of particles per unit area per unit time

KEKB'S Target Peak luminosity $1 \times 10^{34} cm^{-2} s^{-1}$ an order of magnitude higher than the existing colliders

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

1.Introduction 2.History of e^+e^- colliders in Japan 3.SuperKEKB 4.Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

	TRISTAN	KEKB (LER/HER)
Beam Energy (GeV)	25-32	3.5/8.0
Beam Current (A)	0.014	1.64/1.19
# of bunches	2/2	1584/1584
β_x^* / β_y^* (mm)	1000/40	1200/5.9, 1200/5.9
σ_x^* / σ_y^* (µm)	250/8	147/0.94, 170/0.94
Luminosity (× 10^{34} cm ⁻² s ⁻¹)	0.0045	2.1

- Higher beam current (from TRISTAN's mA to Amperes !)
- Smaller beam size
 - ~250 times higher peak luminosity than TRISTAN achieved!

AccelAp

2. History of e^+e^- colliders in Japan 3. SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

2024/3/18

0.5

-7.5

-5

-2.5

0

-ξ_fΔt(ps)

2.5

5

75

Asymmetry

AccelApp

2. History of e^+e^- colliders in Japan

3.SuperKEKB 4. Challenges as a luminosity frontier 5.Summary

2. History of e^+e^- colliders in Japan 3. SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

AccelApp

5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

The world's first practical application of the nano-beam scheme

2. History of e^+e^- colliders in Japan

3.SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

SuperKEKB Design concepts, strategy

Low emittance ("nano-beam") scheme \Rightarrow first proposed by P. Raimondi. Collision with very small spot-size beam. SuperKEKB is the first collider in the world to realize the nano-beam scheme

2. History of e^+e^- colliders in Japan

3.SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

SuperKEKB Design concepts, strategy

	TRISTAN	KEKB (LER/HER)	SuperKEKB(LER/HER)
Beam Energy (GeV)	25-32	3.5/8.0	4.0/7.0
Beam Current (A)	0.014	1.64/1.19	3.6/2.6
# of bunches	2/2	1584/1584	2500/2500
β_x^* / β_y^* (mm)	1000/40	1200/5.9, 1200/5.9	32/027, 25/0.3
σ_x^* / σ_y^* (μm)	250/8	147/0.94, 170/0.94	10.1/0.048, 10.7/0.062
Luminosity (× $10^{34} cm^{-2} s^{-1}$)	0.0045	2.1	60

SuperKEKB Design vertical beam size ~ COVID19 virus

"bunch" the particles get "clumped" around the synchronous particle in a BUNCH.

SuperKEKB

- Bunch size
 - ~ 12 mm in length
 - ~ several 100 μm in width
- There are 60~900 billion electrons/positrons in a bunch
- There are 1500~2500 such bunches in a ring
- And they collide at the IP (Interaction Point)

AccelApp²⁴

1. Introduction 2. History of e^+e^- colliders in Japan 3. SuperKEKB 4. Challenges as a luminosity frontier

4.Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

SuperKEKB : Luminosity frontier e⁺e⁻ collider with innovative "nano-beam" scheme

17

Accel App

5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

Superconducting final focusing magnet system (QCS) provides strong focusing to the HER/LER beams.

1.Introduction 2. History of e^+e^- colliders in Japan 3. SuperKEKB

4. Challenges as a luminosity frontier 5.Summary

SuperKEKB: tour

2024/3/18

4.Challenges as a luminosity frontier 5.Summary

SuperKEKB: tour

Beam transport

と Belle 測定器

加速空洞

陽電子源

AccelApp²⁴

Slope section From 5m below GL to 11m below GL (MR)

2024/3/18

SuperKEKB: tour

Where the electron beam meets the electron ring of the main ring (HER)

SuperKEKB: tour

Main Ring arc section LER and HER are side by side. Distance between both rings averages roughly 1.1 m

1.Introduction 2. History of e^+e^- colliders in Japan 3.SuperKEKB 4. Challenges as a luminosity frontier 5.Summary

SuperKEKB: tour

Superconducting RF cavity (HER)

Wigglers (LER)

16

37

SuperKEKB: tour

Interaction Region

Belle 測定器

加速空洞

電子源

1.Introduction
 2.History of e⁺e⁻colliders in Japan
 3.SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

SuperKEKB: tour

Control room

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

SuperKEKB construction started in 2010

Great East Japan earthquake in 2011 First beam circulation in 2016 without final focusing superconducting magnets (QCS) Commissioning with QCS/Belle II detector started in March, 2018 and 1st hadron event on April 26, 2018

AccelAp

Visit YouTube channel "A search for new Physics - The Belle II Experiment"

1.Introduction 2. History of e^+e^- colliders in Japan 3.SuperKEKB

4. Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN→KEKB B-factory→SuperKEKB

↔COVID-19 State emergency (Tokyo)

2024/3/18

1.Introduction 2.History of e^+e^- colliders in Japan

3.SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

 $\epsilon\beta$

 $\sigma =$

1.Introduction 2.History of e^+e^- colliders in Japan 3.SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

Machine parameters as of June 8^{th} 2022, with the design values in ()

Papameter	LER	HER	unit
Beam current	1321 (3600)	1099 (2600)	mA
# of bunches	2249 (2		
Bunch current	0.587	0.489	mA
β_x^*/β_y^*	80/1.0 (32/0.27)	60/1.0 (25/0.30)	mm
Beam-Beam Parameter ξ_v	0.0407 (0.088)	0.0279 (0.081)	
σ_{y}^{*}	0.215 (0.048)	0.215 (0.062)	μm
tunes (x/y)	44.525/46.589	45.532/43.573	
Specific luminosity(×10 ³¹)	7.2	$cm^{-2}s^{-1}/mA^{2}$	
Luminosity(×10 ³⁴)	4.65		

Challenges

We need to double (or more) bunch currents

We need to shrink the beam size by about 3 times

instability injector beam lifetime detector background collimator control

2024/3/18

https://scienceexchange.caltech.edu/topics/covid-19-coronavirus-sars-cov-2/what-is-a-virus

1.Introduction 2.History of e^+e^- colliders in Japan 3.SuperKEKB

4.Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

Collimators must efficiently remove stray particles and provide protection against uncontrolled losses.

- protection against detector and machine components
- detector background reduction

SuperKEKB collimators

Horizontal direction

Vertical direction

1.Introduction 2. History of e^+e^- colliders in Japan 3.SuperKEKB 4. Challenges as a luminosity frontier 5.Summary

History of e^+e^- colliders TRISTAN→KEKB B-factory→SuperKEKB

Difficulties of increasing beam currents

Damaged collimators

D02V1 top side (95 µSv/h)

D02V1 bottom side (38 µSv/h)

Replacing the damaged and radiated collimator

Accel Ap

Due to "sudden beam loss (SBL)" SBL issue is still a mystery. A major obstacle for increasing beam currents, i.e., luminosity increase.

2024/3/18

5.Summary

History of e^+e^- colliders TRISTAN \rightarrow KEKB B-factory \rightarrow SuperKEKB

Injection efficiency becomes lower at higher bunch current and lower β_{γ}^*

We tried squeezing β_y^* down to 0.8 mm for a short while. Beam lifetime reduction > injection at 0.8 mm

Better beam injection is needed to lowering β_y^* further.

AccelApp

- Technologies and expertise have been handed down from TRISTAN to KEKB B-Factory and SuperKEKB.
- SuperKEKB has achieved and been updating world records in the peak luminosity.
- We face challenges as a luminosity frontier machine
 - Difficulty in increasing bunch current
 - Sudden Beam Loss
 - Detector background, collimator damage
 - Squeezing the beam size down
 - Balance among injection charge, injection efficiency, beam quality (emittance) of the injected beam, MR beam lifetime and detector background.
- Solving the problems and aim at the peak luminosity of $1 \times 10^{35} cm^{-2} s^{-1}$ and higher.
- Our passion and dedication continue, from TRISTAN to SuperKEKB and to the future accelerator.

Three generations of e⁺e⁻ colliders at KEK

Parameters	Unit	KEKB (achieved) LER HER		S Ll	uperKl ER	EKB (des H	sign) ER		
Beam energy	GeV	3.5		8.0		4	.0	7	7.0
Beam current	Α	2.0		1.4		3	.6	2	2.6
Bunch length	mm	6–7		6–7			6		5
Number of bunch		1585		1585		25	00	2	500
Total RF voltage	MV	8		13-15		10-	-11		15
Energy loss/turn	MV	1.6	3.5		3.5 1.70		76	2	.43
Total beam power	MW	3.3	5.0		~8		~8		
RF frequency	MHz	508.9			50		508.9		
Revolution frequency	kHz	99.4					99.4		
Cavity type		ARES	AF	RES	SCC	AF	RES	ARES	SCC
No. of cavities		20	10	2	8	8	14	8	8
Klystron : cavities		1:2	1:2	1:1	1:1	1:2	1:1	1:1	1:1
No. of klystron stations		10	5	2	8	4	14	8	8
RF voltage/cavity	MV	0.4	0.31	0.31	1.24	~0.5	~0.5	~0.5	1.3-1.5
Beam poser/cavity	kW	200	200	550	400	200	600	600	400
R/Q of cavity	Ω	15	15	15	93	15	15	15	93
Loaded $Q(Q_L)$	$\times 10^{4}$	3	3	1.7	~5	3	1.7	1.7	~5

Machine parameters (June, 2022)

	LER	HER	
Beam Energy	4.0	7.0	GeV
Circumference	30	m	
Crossing angle	8	mrad	
Crab waist ratio	80	40	%
Beam current @Maximum Luminosity	1.321	1.099	А
Number of bunches	22		
Bunch current @Maximum Luminosity	0.5873	0.4887	mA
Total RF voltage V _c	9.12	14.2	MV
Synchrotron tune ν_s	-0.0233	-0.0258	
Bunch length σ_z	5.69	6.03	mm
Momentum compaction α_c	2.98E-4	4.54E-4	
Betatron tune v_x / v_y	44.524/46.592	45.532/43.575	
Beta function at IP β_x^* / β_y^*	80/1	60/1	mm
Measured vertical beam size (XRM) @IP ${\sigma_v}^{*}$	0.224	0.224	μm
Vertical beam-beam parameters ξ_y	0.0407	0.0279	
Beam lifetime	8	24	min.
Luminosity (Belle 2 Csl)	4.	10 ³⁴ cm ⁻² s ⁻¹	

