The 2024 International Topical Meeting on Nuclear Applications of Accelerators Norfolk, VA, USA | March 17-21, 2024

Design of a compact accelerator-driven neutron source at the HZDR ion beam center

R. Rachamin, Sh. Akhmadaliev, C. Bischoff, U. Kentsch, S. Facsko

Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf

Helmholtz Innovation Platform for Accelerator-based Technologies and Solutions

Reuven Rachamin | Institute FWIZ-B | www.hzdr.de

Introduction

- Neutron beams are used in a wide range of applications
 - to understand matter at the atomic and molecular levels
- Neutron production
 - nuclear research reactors
 - large accelerator-driven spallation neutron source facilities
 - Compact Accelerator-driven Neutron Sources (CANS)
- CANS produce neutrons by low-energy nuclear reactions
 - can be built at low cost with low maintenance efforts
 - offers neutrons more easily for science, training, and industrial applications
- A CANS is planned to be constructed at the HZDR ion beam center
 - in the framework of the innovation platform Hi-Acts

The Ion Beam Center (IBC) at HZDR

Leading European user facility for physics and materials research using ion beams

Applications:

- Ion implantation and materials modification
- Ion beam analysis
 - Rutherford Backscattering Spectrometry (RBS)
 - Elastic Recoil Detection (ERD)
 - Nuclear Reaction Analysis (NRA)
 - Particle induced X-Ray and Y- Emission (PIXE/PIGE)
- Accelerator mass spectrometry (AMS)

Ion Beam Modification

Member of the Helmholtz Association Reuven Rachamin I Institute FWIZ-B I www.hzdr.de

A Schematic Overview of the IBC

6 MV Tandetron

3 MV Tandetron

- The CANS design will take advantage of the 6 MV Tandetron properties
 - <u>lons</u> of almost all stable elements (H,..., Au, except Ne, Ar, Kr, Xe)
 - Energies: 12 MeV (H), 18 MeV (He), heavy ions 60 MeV
 - <u>Current</u>: max. 10 μA / typ. 6μA (H), 3 μA (He), 100-150 μA (O, C, Si, Au)
- Two options for neutron production are considered
 - interaction of a proton or helium beam with a beryllium target
 - interaction of a heavy ion beam with a hydrogen-rich material as a target

Proton Target (hydrogen-rich target, such as TiH₂)

Alternative Option Inverse Kinematic Reaction Scheme

• The neutron source will be constructed in R 005 (Building 710)

 The ion beam will be delivered to R 005 via a new <u>beamline with a 30°</u> <u>deflection magnet</u> (to be installed in the following months)

- A thin disc target will be installed at the end of the 30° ion beamline
- The target will be surrounded by a vacuum chamber (sphere with a radius of 10 cm)
- The target chamber will be surrounded by shielding structured in an octagon shape
- Three channels will pass along the shielding to form <u>Three Neutron Beamlines</u>

1 Production of Radionuclides for Nuclear Medicine (e.g. ^{99m}Tc)

Production of radionuclides via neutron activation technique

② Neutron Imaging

Nondestructive technique for analyzing the structure of a sample

③ Prompt Gamma Neutron Activation Analysis (PGNAA)

A measurement technique for nondestructive elemental analysis

- Radionuclide Production will be performed in R 005
 - channel 1 will lead to a neutron chamber of 10x10x10 cm surrounded by borated polyethylene and lead

- Neutron Imaging and PGNAA will be performed in R 004
 - channel 2 & 3 will lead to a neutron guide (SS cylindrical tube) ending in R 004
 - up to the wall, the neutron guides will be shielded by borated polyethylene and lead

Evaluation of the CANS Design (Monte Carlo Calculations)

- Monte Carlo (MC) simulations were performed to evaluate the CANS design
 using the FLUKA MC code (version 2023.3.1)
- The main simulations were performed for a 12 MeV proton beam hitting a thin beryllium target (a cylindrical disc with a radius of 5 cm)
- Evaluated parameters
 - target thickness and neutronic properties of the ⁹Be(p,n)⁹B reaction
 - via a simple beam-target model
 - neutronic and radiation protection parameters of the CANS design
 - via a full 3D model of the IBC rooms with the CANS design
- Additional simulations were performed to evaluate the neutron production from several heavy ion beams hitting a thin TiH₂ target
 - via a simple beam-target model

Neutron Production Evaluation - ⁹Be(p,n)⁹B

Target Thickness

- When the protons stop inside the target, they become hydrogen gas and cause blistering in the target
 - blistering occurs near the range where the protons lose most of their kinetic energy
- After about 1.1 mm, the neutron yield reaches saturation
 - the proton energy reduces to energy below the threshold energy of the ⁹Be(p,n)⁹B reaction

Neutron Production Evaluation - ⁹Be(p,n)⁹B

Neutron Yield

Beam type	Total photon yield ×10 ¹⁰ [p / s μA]	Neutron yield ×10 ¹⁰ [n / s μA]			Optimal
		Forward	Backward	Total	thickness
		(0°-90°)	(90°-180°)	TOLAI	[mm]
proton	0.0572 ± 0.0001	2.4097 ± 0.0004	1.3676 ± 0.0003	3.7773 ± 0.0005	1.0

• Total Neutron yield from 12 MeV proton beam hitting a 1 mm beryllium target is

 $3.77 \times 10^{10} [n / s \mu A]$

3D FLUKA Model

IBC Rooms with the CANS Design

XZ view (along the red line)

YZ view (along the blue line)

Ambient Dose (H*) Evaluation - ⁹Be(p,n)⁹B

- The H* value on the outer surface of the shielding (R 005) is about 0.3-0.5 [mSv / h μA]
- In R 004, the highest H* values are at the end of the neutron guides (about 1.0-2.0 [mSv / h μA])
- In R 103 (above the neutron source), the H* values are in the range of 1.0-2.0 [μSv / h μA]

Neutron Characteristics Evaluation - ⁹Be(p,n)⁹B

Neutron Flux & Current in the Target Chamber

- Neutrons are streaming back from the shielding to the target chamber
- The neutron flux in the target chamber
 - neutrons produced directly by the target (fast neutrons)
 - back-scattered neutrons (thermalized neutrons)

Neutron Characteristics Evaluation - ⁹Be(p,n)⁹B

Neutron Current along the Neutron Beamlines

Beamline No.	Neutron current ×10 ⁹ [n / s μA]					
	Target chamber to neutron channel	Neutron channel to neutron chamber	Neutron channel to neutron guide	End of the neutron guide		
1	1.05930 ± 0.00079	0.01174 ± 0.00008				
2	1.37964 ± 0.00090		0.01468 ± 0.00010	0.00088 ± 0.00002		
3	1.07189 ± 0.00072		0.01509 ± 0.00009	0.00120 ± 0.00003		

- Delivered neutron flux
 - Beamline 1 (Radionuclide Production): 4.15×10^5 [n / s cm² µA]
 - Beamline 2 (Neutron Imaging): 1.27×10^4 [n / s cm² µA]
 - Beamline 3 (PGNAA): 1.73 ×10⁴ [n / s cm² μA]

! <u>Neutron guides</u>: a simple SS316L cylindrical tube (outer diameter of 10 cm, wall thickness of 0.3 cm)

Neutron Production Evaluation

Inverse Kinematic Reaction Scheme

Proton Target (hydrogen-rich target)

Photon and neutron yield from different beam type hitting a TiH_2 target

Beam type	Charge	Energy [MeV]	Total photon yield ×10 ¹⁰ [p / s μA]	Neutron yield ×10 ¹⁰ [n / s µA]		
				Forward (0°-90°)	Backward (90º-180º)	Total
Proton	+1	12	0.0572 ± 0.0001	2.4097 ± 0.0004	1.3676 ± 0.0003	3.7773 ± 0.0005
⁷ Li	+3	24	7.3417 ± 0.0008	5.3286 ± 0.0005	2.7721 ± 0.0003	8.1007 ± 0.0008
⁶ Li	+3	10	1.1466 ± 0.0003	0.4724 ± 0.0001	0.3686 ± 0.0001	0.8410 ± 0.0002
⁹ Be	+4	30	6.3863 ± 0.0006	5.6193 ± 0.0005	2.4248 ± 0.0003	8.0441 ± 0.0007
¹² C	+3	12	1.0696 ± 0.0003	0.4643 ± 0.0002	0.2840 ± 0.0001	0.7483 ± 0.0002
¹³ C	+3	12	1.1749 ± 0.0003	0.7194 ± 0.0002	0.3871 ± 0.0001	1.1065 ± 0.0003
¹⁴ N	+3	20	2.6828 ± 0.0005	1.4175 ± 0.0003	0.7452 ± 0.0002	2.1627 ± 0.0004
¹⁶ O	+5	30	3.0621 ± 0.0013	2.0329 ± 0.0009	0.9057 ± 0.0005	2.9386 ± 0.0013

Neutron Production Evaluation

Neutron Yield – Angular Distribution

 $\frac{\text{forward } (0^{\circ}-90^{\circ}) \text{ yield}}{\text{backward } (90^{\circ}-180^{\circ}) \text{ yield}} = 1.76$

Summary

- CANS is planned to be constructed at IBC
 - opens new opportunities for material analysis
- The design was evaluated via MC simulations
 - for optimization and radiation protection permission
- Ongoing and future tasks
 - building reconstruction in R 004 and R 005
 - installation of new ion beamline with 30° deflection magnet
 - construction of the shielding
 - tests with Be-target and proton beam. radiation measurements
 - tests with TiH_2 -target and a heavy ion beam. radiation measurements
 - installations of neutron beamlines. radiation measurements
 - installation of experimental equipment for neutron imaging and PGNAA

Thank you for your attention!

Hi ACTSThis work is funded by by Hi-Acts - Helmholtz Innovation
Platform for Accelerator-based Technologies & Solutions

Ion Beam Center - Helmholtz-Zentrum Dresden-Rossendorf, HZDR

Available Ions at IBC

Classical Ion Beam Analysis – Basic Principles

- Scattered and secondary particles are detected after collision
 - Rutherford Backscattering, Elastic Recoil Detection Analysis, Nuclear Reaction Analysis
- X-rays and Y-rays are detected after the reaction
 - Particle Induced Emission

Ion Beam Analysis at the IBC

Ion Beam Analysis at the IBC

RBS Hedgehog

Member of the Helmholtz Association Reuven Rachamin | Institute FWIZ-B | www.hzdr.de