Coupled Beam-Target-Moderator Optimization for the Second Target Station

Kristel Ghoos, Lukas Zavorka, Igor Remec Second Target Station Project, Oak Ridge National Laboratory

Introduction

- The Second Target Station, currently in preliminary design phase at Oak Ridge National Lab, will provide the highest peak brightness of cold neutrons (5Å) in the world
- A state-of-the art optimization workflow has been developed to efficiently optimize moderator and target design with high fidelity

Methodology

- High-fidelity geometry with unstructured mesh models in MCNP6.2
- Starts from parametrized Creo models from engineers

Model: neutron brightness figures-of-merit

We calculate the optimal designs for three figures-of-merit:

- **PEAK** = highest value for brightness as a function of time
- **TINT** = highest neutron intensity per pulse integrated over time
- **COMB** = highest combination of **PEAK and TINT**

Pareto front gives the designs with optimal weighted combination of **PEAK and TINT**

Optimization results

- Efficient optimization using algorithms in Dakota
- Fully automated no user intervention required

Zavorka, NIMA 1052 (2023) 168252 Ghoos, NIMA 1060 (2024) 169035

Model: geometry and parameters

• Cylindrical moderator: 6 independent parameters **Parahydrogen** moderator with **water** pre-moderator and **beryllium** reflector in **aluminum** vessels

 X_m (position of the moderator w.r.t. the target)

• **Target**: 1 independent parameter **Tungsten** blocks separated with **copper** plates surrounded by water-cooled

Cylindrical moderator

Tube moderator

Optimal designs for cylindrical moderator (dimensions in mm)

	R_m	$\boldsymbol{P}_{\boldsymbol{s}}$	P _b	P_t	R _{be}	X _m	H _t	σ_z	σ_y
TINT	51.4	37.9	31.4	29.8	184	6.6	70	51.0	29.8
COMB	47.5	31.6	30.0	28.7	184	6.6	70	49.4	30.7
PEAK	44.4	25.0	29.2	16.1	175	20	75	45.2	33.6

• Optimal designs for tube moderator (dimensions in mm)

	L _t	\boldsymbol{P}_t	P _r	P _b	Pl	R _{be}	X _m	H _t	σ_z	σ_y
TINT	215	27.4	41.0	13.8	33.0	200	4.0	75	52.6	28.9
COMB	183	26.8	35.0	13.9	35.0	200	5.2	74	51.6	29.4
PEAK	128	25.9	31.6	19.8	25.6	181	5.0	70	54.0	28.1

Effect of proton beam footprint (cylindrical moderator)

Inconel shroud

• **Tube moderator**: 7 independent parameters **Parahydrogen** moderator with **water** pre-moderator and **beryllium** reflector in **aluminum** vessels

- X_m (position of the moderator w.r.t. the target)
- **Proton beam**: 1 independent parameter

Super-gaussian beam profile:
$$P(y, z, \sigma_y, \sigma_z) = P_0 \left(-\frac{1}{2} \left| \frac{y}{\sigma_y} \right|^{10} - \frac{1}{2} \left| \frac{z}{\sigma_z} \right|^{10} \right)$$

Choose σ_v , then calculate σ_z based on 60 cm² footprint (area on which 95% of particles impinge)

• Optimize R_m , H_t , σ_v for three footprints: 30 cm², 60 cm², 90 cm²

- Performance increase/loss of 3% with a 30 cm² footprint change
- Optimal moderator radius is independent of beam footprint

Conclusion

- We demonstrated the use of an efficient, fully automated optimization workflow by simultaneously optimizing the dimensions of the moderators, the target height and the proton beam.
- A smaller beam footprint increases the performance, but does not change the optimal moderator radius

Related talks: Wed 3/20: Zavorka, 16.00, Tipton, 16.20

(3rd session on High-Power Accelerator Components and Targets)

