

Shielding Properties of Lead-Free Tellurite Glasses against Photons, Neutrons, and Ions

Devendra Raj Upadhyay^{1,3}, **Suffian Mohamad Tajudin**² and **Raju Khanal**¹

¹Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
²School of Medical Imaging, Sultan Zainal Abidin University, Terengganu, Malaysia
³Department of Physics, Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
devendra.upadhyay@ac.tu.edu.np

Norfolk, Virginia

1 Abstract

The shielding capabilities of five different glass systems, namely 60TeO_2 -(30-x)ZnO-5Bi₂O₃-5TiO₂-xB₂O₃, where x varies from 0 to 10 mol%, against photons, protons, alpha particles, neutrons, and carbon ions were investigated. The study involved the theoretical analysis and Monte Carlo simulations of various shielding parameters such as attenuation coefficients, mean free path, value layers, effective atomic number, effective electron density, and build-up factors, spanning an energy range from keV to 100 GeV. Additionally, rapid neutron removal crosssections and effective conductivity for the transport properties of the glass compositions were examined. The simulation utilized the glass samples as shielding materials and subjected them to bombardment by photons emitted from Cs¹³⁷ and Co⁶⁰ sources. Stopping potentials and projected range of protons, alpha particles, and ions were also analyzed using the Stopping and Range of Ions in Matter (SRIM) software. The results indicated that the glass composition 60TeO_2 -30.0ZnO-5Bi₂O₃-5.0TiO₂ exhibited superior attenuation capabilities against gamma rays in comparison to other samples. Conversely, the glass composition 60TeO₂-20.0ZnO-5Bi₂O₃-5TiO₂-10.0B₂O₃ displayed excellent protons, alpha particles, carbon ions and neutron shielding behavior owing to its higher boron atom concentration. By comparing the calculated attenuation parameters, potentials, and ranges with previously reported data and recommended glass systems for nuclear applications, it is concluded that the selected glass sample demonstrated effective and comparable shielding properties. This study provides valuable insights into the shielding properties of different glass compositions against diverse radiation types. These findings are crucial for the development of shielding materials for nuclear applications and environments with potential radiation exposure.

Fig. 2. Variation of value layer for glass systems as the function of incident energy (a) Half (b) Tenth.

2 Materials and Methods

Table 1: Chemical composition of glass samples and density [1].			
S.N.	Composition (mole %)	X	$g \text{ cm}^{-3}$
\mathbf{S}_1	60TeO ₂ -30.0ZnO-5Bi ₂ O ₃ -5TiO ₂	0.0	5.879
S_2	$60 \text{TeO}_2 - 27.5 \text{ZnO} - 5 \text{Bi}_2 \text{O}_3 - 5 \text{TiO}_2 - 2.5 \text{B}_2 \text{O}_3$	2.5	5.819
S_3	$60 \text{TeO}_2 - 25.0 \text{ZnO} - 5 \text{Bi}_2 \text{O}_3 - 5 \text{TiO}_2 - 5.0 \text{B}_2 \text{O}_3$	5.0	5.780

Fig. 9. (a) Geometry consist of Air (80% N₂ and 20% O₂) and S₁ glass system. (b) bombarded 10⁵ photon at instant from artificial radionuclei, Co⁶⁰ of 200 GBq source after 2.5 nsec. (c) Co⁶⁰ (200 GBq) 10⁵ photon trajectories inside the system at time 20 nsec (d) Cs¹³⁷ (200 GBq) gamma photon trajectories inside the system at time 37.5 nsec, (e) Cs¹³⁷ (200 GBq) 10⁵ photon trajectories inside the system at time 20 nsec, (f) Cs¹³⁷ (200 GBq) 10⁵ photon trajectories inside the system at time 20 nsec, (f) Cs¹³⁷ (200 GBq) 10⁵ photon trajectories inside the system at time 20 nsec, (f) Cs¹³⁷ (200 GBq) 10⁵ photon trajectories inside the system at time 37.5 nsec.

Fig. 10. (a) Photon (b) electron shielding by 0.1 cm glass with energy range up to 1 GeV.

4 Conclusions

• The attenuation of photons is greater for S_1 (60TeO₂-30.0ZnO-5Bi₂O₃-5.0TiO₂), whereas transport properties, ion stopping potentials, and the fast neutron removal parameter are higher for S_5 (60TeO₂-20.0ZnO-5Bi₂O₃-5TiO₂-10.0B₂O₃), suggesting that for photons, density matters. However, for charged particles and neutron protective capability, it depends upon the chemical composition of materials. Here, boron concentrations play a role in better shielding against neutrons and ions.

- Using the PHITS Monte Carlo method and SRIM, the selected glass demonstrates comparable attenuating properties to those previously reported for accelerator and nuclear applications.
- Present studied glasses have potential applications as shielding materials against photons, neutrons, and ions, serving as a lead-free alternative.

5 Acknowledgements

- Office of Radiological Security, U.S. Department of Energy: for support to participate in the AccelApp'24
- Jefferson Lab, ANS, IAEA, Pacific Northwest National Laboratory: for invitation and support

and charge of electron, τ = relaxation time, $\frac{dE}{dx}$ = stopping potential, v = velocity of particles, A = Atomic mass, K = a constant factor = 0.1535 MeV cm² g⁻¹, z = Charge of the particle, γ = Lorentz factor = $\frac{1}{\sqrt{(1-\beta^2)}}$, T_{max} = maximum energy transfer in a single collision, I = mean excitation energy of the material

3 Results and Discussion

Fig. 7. (a) H⁺ total stopping potential (TSP), (b) H⁺ projected range (PR) (c) He⁺ TSP (d) He⁺ PR, and (e) C⁺ TSP and (f) C⁺ PR by 60TeO_2 -(30-*x*)ZnO-5Bi₂O₃-5TiO₂-*x*B₂O₃ glass system.

Fig. 8. Fast neutron removal cross section (a) selected samples and (b) S_5 and previously recommended glass samples for nuclear application samples.

• IAEA (TC Project NEP0002): for nuclear lab facilities

• University Grants Commission, Nepal: for Ph.D. fellowship (Ph.D. 78/79-S&T-14)

References

- [1] Marzuki et al. (2022). Effect of B₂O₃ addition on thermal and optical properties of TeO₂-ZnO-Bi₂O₃-TiO₂ glasses. Materials Research Express, 9(2), 025203.
- [2] Şakar et al. (2020). Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, **166**, 108496.
- [3] Sato et al. (2018). Features of particle and heavy ion transport code system (PHITS) version 3.02. Journal of Nuclear Science and Technology, 55(6), 684-690.
- [4] Ziegler et al. (2010). SRIM–The stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11-12), 1818-1823.

[5] Knoll (2010). Radiation detection and measurement. John Wiley & Sons.

2024 International Topical Meeting on Nuclear Applications of Accelerators (AccelApp'24), March 15 – 21, Norfolk, VA 23510, USA