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1 Abstract
The shielding capabilities of five different glass systems, namely
60TeO2–(30-𝑥)ZnO–5Bi2O3–5TiO2-𝑥B2O3, where 𝑥 varies from
0 to 10 mol%, against photons, protons, alpha particles, neu-
trons, and carbon ions were investigated. The study involved
the theoretical analysis and Monte Carlo simulations of vari-
ous shielding parameters such as attenuation coefficients, mean
free path, value layers, effective atomic number, effective elec-
tron density, and build-up factors, spanning an energy range from
1 keV to 100 GeV. Additionally, rapid neutron removal cross-
sections and effective conductivity for the transport properties of
the glass compositions were examined. The simulation utilized
the glass samples as shielding materials and subjected them to
bombardment by photons emitted from Cs137 and Co60 sources.
Stopping potentials and projected range of protons, alpha parti-
cles, and ions were also analyzed using the Stopping and Range
of Ions in Matter (SRIM) software. The results indicated that
the glass composition 60TeO2–30.0ZnO–5Bi2O3–5.0TiO2 exhib-
ited superior attenuation capabilities against gamma rays in com-
parison to other samples. Conversely, the glass composition
60TeO2–20.0ZnO–5Bi2O3–5TiO2-10.0B2O3 displayed excellent
protons, alpha particles, carbon ions and neutron shielding behav-
ior owing to its higher boron atom concentration. By comparing
the calculated attenuation parameters, potentials, and ranges with
previously reported data and recommended glass systems for nu-
clear applications, it is concluded that the selected glass sample
demonstrated effective and comparable shielding properties. This
study provides valuable insights into the shielding properties of
different glass compositions against diverse radiation types. These
findings are crucial for the development of shielding materials for
nuclear applications and environments with potential radiation
exposure.

2 Materials and Methods

Table 1: Chemical composition of glass samples and density [1].
S.N. Composition (mole %) 𝑥 g cm−3

S1 60TeO2–30.0ZnO–5Bi2O3–5TiO2 0.0 5.879
S2 60TeO2–27.5ZnO–5Bi2O3–5TiO2 − 2.5B2O3 2.5 5.819
S3 60TeO2–25.0ZnO–5Bi2O3–5TiO2 − 5.0B2O3 5.0 5.780
S4 60TeO2–22.5ZnO–5Bi2O3–5TiO2 − 7.5B2O3 7.5 5.665
S5 60TeO2–20.0ZnO–5Bi2O3–5TiO2 − 10.0B2O3 10.0 5.646

Work Flow [1-5]

Theoretical Framework [2-5]
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where, 𝜇, 𝜇m = Mass, linear attenuation coefficient, 𝜌= density of materials, 𝐻𝑉𝐿, 𝑇𝑉𝐿=
half, tenth value layer, 𝑀𝐹𝑃 = mean free path, 𝑍eff = effective atomic number, 𝜎a, 𝜎e= atomic
and electronic cross sections, 𝑁eff, 𝐶eff = effective electron density, conductivity, m𝑒, e = mass
and charge of electron, 𝜏 = relaxation time, 𝑑𝐸

𝑑𝑥
= stopping potential, 𝑣 = velocity of particles,

𝐴 = Atomic mass, K = a constant factor = 0.1535 MeV cm2 g−1, 𝑧 = Charge of the particle,
𝛾 = Lorentz factor = 1√

(1−𝛽2)
, 𝑇max= maximum energy transfer in a single collision, 𝐼 = mean

excitation energy of the material

3 Results and Discussion
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Fig. 1. Alteration in attenuation coefficients for the selected
glass systems: 60TeO2–(30-𝑥)ZnO–5Bi2O3–5TiO2-𝑥B2O3 as the
function of incident energy of the photon (a) mass attenuation
coefficient. (b) linear attenuation coefficient from Phy-X/PSD.
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Fig. 2. Variation of value layer for glass systems as the func-
tion of incident energy (a) Half (b) Tenth.
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Fig. 3. (a) effective atomic number (b) effective electron density.
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Fig. 4. (a) Effective conductivity and (b) mean free path.
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Fig. 5. Variation of (a) 𝑀𝐴𝐶 values and (b)𝑀𝐹𝑃 for glass
system: 60TeO2–(30-𝑥)ZnO–5Bi2O3–5TiO2-𝑥B2O3 at several
gamma energy from Eu152, Am241, Cs137 and Co60.
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Fig. 6. Comparison of 𝑀𝐴𝐶 values of S1 glass system with
previous published work.
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Fig. 7. (a) H+ total stopping potential (TSP), (b) H+ projected
range (PR) (c) He+ TSP (d) He+ PR, and (e) C+ TSP and (f) C+

PR by 60TeO2–(30-𝑥)ZnO–5Bi2O3–5TiO2-𝑥B2O3 glass system.
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Fig. 8. Fast neutron removal cross section (a) selected samples
and (b) S5 and previously recommended glass samples for nuclear
application samples.

Fig. 9. (a) Geometry consist of Air (80% N2 and 20% O2) and S1
glass system. (b) bombarded 105 photon at instant from artificial
radionuclei, Co60 of 200 GBq source after 2.5 nsec. (c) Co60 (200
GBq) 105 photon trajectories inside the system at time 20 nsec
(d) Cs137 (200 GBq) gamma photon trajectories inside the system
at time 37.5 nsec, (e) Cs137 ( 200 GBq) 105 photon trajectories
inside the system at time 20 nsec, (f) Cs137 (200 GBq) 105 photon
trajectories inside the system at time 37.5 nsec.

Fig. 10. (a) Photon (b) electron shielding by 0.1 cm glass with
energy range up to 1 GeV.

4 Conclusions
• The attenuation of photons is greater for S1

(60TeO2–30.0ZnO–5Bi2O3–5.0TiO2), whereas transport prop-
erties, ion stopping potentials, and the fast neutron removal
parameter are higher for S5 (60TeO2–20.0ZnO–5Bi2O3–5TiO2-
10.0B2O3), suggesting that for photons, density matters. How-
ever, for charged particles and neutron protective capability, it
depends upon the chemical composition of materials. Here,
boron concentrations play a role in better shielding against
neutrons and ions.

• Using the PHITS Monte Carlo method and SRIM, the selected
glass demonstrates comparable attenuating properties to those
previously reported for accelerator and nuclear applications.

• Present studied glasses have potential applications as shield-
ing materials against photons, neutrons, and ions, serving as a
lead-free alternative.
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