

APPLICATION OF ACCELERATOR TECHNIQUES FOR CHARACTERISATION OF WALL MATERIALS IN CONTROLLED FUSION REACTORS

Marek Rubel^{1,2}, Sotirios Charisopoulos³, Per Petersson¹, Eduardo Pitthan², Daniel Primetzhofer², Anna Widdowson⁴

¹KTH Royal Institute of Technology, Stockholm, Sweden
 ²Physics and Astronomy, Uppsala University, Uppsala, Sweden
 ³International Atomic Energy Agency, Physics Section, Vienna, Austria
 ⁴Culham Centre for Fusion Energy, Abingdon, United Kingdom

Int. Topical Meeting on Nuclear Applications of Accelerators

- A brief introduction to the title and topic of the talk
- **Controlled Fusion and Devices**
- Plasma-Facing Materials and Components
 - **Nuclear and Material Aspects of Deuterium Tritium Fusion**

Choice of process is based on analysis of reaction cross-section.

Int. Topical Meeting on Nuclear Applications of Accelerators

Plasma-facing wall in fusion devices: Tokamaks

JET: Joint European Torus: *the largest tokamak (1983- 2023)*

High complexity of the plasma-facing wall: composition and structure.

Int. Topical Meeting on Nuclear Applications of Accelerators

Structure of the talk

- What is to be determined/analysed?
- Why is it to be determined/analysed?
- How is the examination carried out? The Tools The Physics

What do we study? Components retrieved from fusion devices

A large number of:

- limiter plates
- divertor plates
- long-term probes
- short-term probes
- optical components
- dust

Int. Topical Meeting on Nuclear Applications of Accelerators

Material Migration: Erosion & Deposition

Example from the TEXTOR tokamak operated till December 2013.

Cross-section of a re-deposited layer

Int. Topical Meeting on Nuclear Applications of Accelerators

Plasma – Wall Interactions: Material Migration

Consequences: Modification of fusion plasma and material properties.

Int. Topical Meeting on Nuclear Applications of Accelerators

Plasma – Wall Interactions: Material Migration

Consequences: Modification of fusion plasma and material properties.

Int. Topical Meeting on Nuclear Applications of Accelerators

Species to be analysed / determined

Z = 1: HYDROGEN ISOTOPES (*H D T*)

Z = 2: HELIUM ASH (⁴He)

ERODED SPECIES: *PLASMA IMPURITY ATOMS*

Z > 2

For instance:

³He ⁶Li ⁷Li ⁹Be ¹⁰Be ¹⁰B ¹¹B ¹²C ¹³C ¹⁴C ¹⁴N ¹⁵N ¹⁶O ¹⁸O Ne Si Ni Cr Fe Mo W Re

Int. Topical Meeting on Nuclear Applications of Accelerators

- Where are the erosion zones ?
- Where are the eroded species re-deposited? (Migration !)
- How are materials modified by erosion & re-deposition ?
- How much fuel is retained in wall components? (fuel inventory must be strictly controlled.)
- What is the impact of wall materials on material migration?
 The whole picture depends on the wall composition/materials.

Main plasma-facing materials in fusion devices world-wide:

Carbon

(graphite, fibre composites)

Beryllium

Tungsten

	Advantages	Drawbacks
С	Excellent power handling & no melting	Chemical erosion $\rightarrow C_x H_y$
Be	Low-Z, no chemical erosion	Low T _m
W	High T _m , low sputter erosion	High-Z plasma contaminant

Material characterization: Methods

Over the years more than 40 different analysis methods have been used in studies of wall materials.

IBA methods play particular role.

Int. Topical Meeting on Nuclear Applications of Accelerators

Int. Topical Meeting on Nuclear Applications of Accelerators

Why accelerator-based IBA techniques?

• Efficiency:

- > Combination of various techniques in one system.
- > Analysis of many elements and isotopes in the same system.
- ➢ Relatively quick analysis over <u>large areas.</u>
- Sensitivity & Selectivity & Quantification (no standards).
- Neither special sampling nor sample preparation needed (in many cases).
- Depth profiling (limited in some cases).
- Chemical state of atoms is often of secondary importance. (materials retrieved from devices are transported in air).

Nuclear Reaction Analysis with ³He

Advantage:

Simultaneous determination of ²H, ⁹Be, ¹²C, ¹³C (also B, N)

²*H* (³*He,p*) ⁴*He* The main tool in fuel retention studies in devices operated with deuterium.

Int. Topical Meeting on Nuclear Applications of Accelerators

If accelerator-based IBA techniques...

... then we need people and tools:

- competent personnel,
- Iaboratories with relevant hardware,
- * material handling capabilities,
- robust physics basis,
- ✤ data libraries,
- spectra analysis softwares,
- stetc.

The Tandem Laboratory at Uppsala University

5 MeV Tandem

Beam lines with quadrupoles

Surface analysis station

Int. Topical Meeting on Nuclear Applications of Accelerators

The Tandem Laboratory at Uppsala University

Fusion-related research is carried out in all systems.

Norfolk, March 2024

Int. Topical Meeting on Nuclear Applications of Accelerators

Ion Beam Analysis of Fusion Reactor Materials IAEA-initiated "inventory" of laboratories and capabilities

"Ion Beam Analysis of fusion plasma-facing materials and components: Facilities and Research Challenges" M. Mayer, S. Möller, M. Rubel, A. Widdowson, S. Charisopoulos et al., Nucl. Fusion 60 (2020) 025001.

Overview of:

- > 13 laboratories with over 20 systems.
- > Simulation softwares.
- > Handling of contaminated materials.
- > Impact of surface roughness.
- > Discrepancy in the data bases.
- Future research needs.

Ion Beam Analysis of Fusion Reactor Materials IAEA-initiated "inventory" of laboratories and capabilities

"Ion Beam Analysis of fusion plasma-facing materials and components: Facilities and Research Challenges" M. Mayer, S. Möller, M. Rubel, A. Widdowson, S. Charisopoulos et al., Nucl. Fusion 60 (2020) 025001.

Overview of:

- > 13 laboratories with over 20 systems.
- > Simulation softwares.
- > Handling of contaminated materials.
- > Impact of surface roughness.
- > Discrepancy in the data bases.
- Future research needs.

A list of issues to address and solve:

- Provision of facilities for handling of hazardous materials (T, activated samples, Be) for existing and future experiments, e.g. ITER.
- Standardisation of measurement and evaluation procedures;
- Determination and possibly evaluation of crosssections and stopping powers for elements and isotopes with relevance for fusion;

Round-robin test with fusion relevant samples.

IAEA CRP in that area.

Int. Topical Meeting on Nuclear Applications of Accelerators

The Tandem Laboratory at Uppsala University: Recent developments Multi-method capabilities: *In-situ* IBA & target modification

- IBA with light & heavy ions RBS, NRA, PIXE, PIGE, ToF-ERDA
- Beam energies: 2 50 MeV
- > Large viewport (e.g. optical characterization)
- Evaporation: 3 evaporation cells
- ➢ Sputtering: 1 − 5 keV ion gun
- Implantation
- > Annealing & thermal desorption spectroscopy
- Gas analysers
- > Gas feeds

K. Kantre et al., Nucl. Instr. Meth. B (2020) P. Ström, D. Primetzhofer, JINST (2022)

Int. Topical Meeting on Nuclear Applications of Accelerators

The Tandem Laboratory at Uppsala University: Recent developments Time of Flight Heavy Ion ERDA with a gas ionization chamber detector

Int. Topical Meeting on Nuclear Applications of Accelerators

The role and impact of IAEA CRP: Definition of High Priority Measurements

Cross-section measurements of ³ He-induced reactions											
Target isotope:			⁷ Li	⁹ Be	¹⁰ B	¹¹ B	¹² C	¹³ C			
³ He beam energy range and				1 – 6 MeV (Step: ≤ 100 keV)							
recomn	nended	energy step	Caution: consider resonance width, when found								
Range o	of angles	s to measure		120 ⁰ – 175 ⁰							
Stopping power measurements											
Target element:			W		Be	N	Min. data points				
Beam	Н		20 keV – 2 MeV				30				
	He	energy	40 keV – 8 MeV				25				
	Cu		1 -25 MeV				20				
	I	Tange	2	2–40 MeV			15				
		Target type:	thin film, layer or bulk								

Int. Topical Meeting on Nuclear Applications of Accelerators

IBA on C and Be: Motivation for research

Non-Rutherford elastic scattering of ³He on ¹²C

The cross-sections available on IBANDL <u>exhibit differences</u> over orders of magnitude in spite of similar conditions.

NRA spectra for ¹²C(³He,p)¹⁴N and ⁹Be(³He,p)¹¹B, (scattering angle 170°).

 \rightarrow Not possible to determine C on the Be-rich surface.

3MeV ³He on pure targets: ¹²C and ⁹Be

Why still studying stopping power?

Needs: Be, B, W (and Mo)

Int. Topical Meeting on Nuclear Applications of Accelerators

Stopping powers relevant for fusion

- Be, W (and Mo): Limited data at low energies for both protons and He-ions.
- For classical IBA-energies two distinct datasets SRIM represents an average.

Stopping powers: reasons for inaccurate data

> Sample purity and cleanliness:

- bulk contaminants,
- *surface contaminants.*

> Sample microstructure:

- channeling and texture,
- material density issues.

> Treatment of nuclear stopping & multiple scattering:

- how to evaluate?
- what to subtract?

> Generally extensive characterization using ERD and/or NRA is highly recommended.

Integrated program on studies of plasma-facing materials and components

Analysis tools *Laboratory* & *Modelling*

Fusion-relevant experiments & access to materials

Solid data basis:

 $\sigma(E_o)$ $\boldsymbol{S_e}(E_o), \ \boldsymbol{S_n}(E_o)$ Cooperation network

Int. Topical Meeting on Nuclear Applications of Accelerators

Thank you