



 $e_A S_U R$ е

Metrological and Applied Sciences University Research Unit

# Elemental characterization of bulk materials using fast neutron beams at the n lab.

## Sizwe Mhlongo

## Andy Buffler, Tanya Hutton and Zina Ndabeni





#### Radiation-based techniques for elemental characterization



- **Coal** plays a central role in the electrical power production in South Africa.
- Knowledge of the elemental composition of coal (e.g. on belt within the processing cycle) has high economic and environmental value.
- Commonly used techniques for analysis are destructive, e.g. x-ray diffraction and x-ray absorption spectroscopy.

| Element                   | % by mass |
|---------------------------|-----------|
| Carbon                    | 77-80     |
| Hydrogen                  | 4-5       |
| Oxygen                    | 12-15     |
| Nitrogen                  | 2-3       |
| Sulphur                   | 1-2       |
| Ash (SiO2, Al2O3, Fe2O3,) |           |

Matjie, R.H., et al., Determination of mineral matter and elemental composition of individual macerals in coals from Highveld mines,
J. S. Afr. Inst. Min. Metall., 116:2 (2016).

<u>Aim of this work</u>: to develop a non-destructive multimodal technique using fast neutron beams for the elemental characterization of coal and other materials in bulk.



#### Fast neutron-based techniques for elemental characterization



#### Fast neutron-based techniques for elemental characterization



#### Pulsed Fast Neutron Transmission Spectroscopy (Overley 1990)



ety Norfolk, Virginia AccelApp<sup>6</sup>24

#### Fast neutron transmission analysis (FNTA)



$$I(x) = I(0) \exp(-\Sigma_R x)$$

 $\Sigma_R$ : macroscopic removal cross section

 $\sigma_R = \Sigma_R / N_D$ 

 $\sigma_R$ : microscopic removal cross section  $N_D$ : nuclear number density



$$\sigma_{R_{\text{sample}}} = \sum_{k=1}^{N} A_k \sigma_{R_k}$$

 $A_k$ : number of atoms of element k



Tanya Hutton & Andy Buffler, "Characterisation of neutron fields at the n-lab, a fast neutron facility at the University of Cape Town", ARI 206 (2024) 111196

#### Fast neutron transmission analysis (FNTA): Experimental





Standard samples prepared in Ø 6 cm x 10 cm cups



#### Fast neutron transmission analysis: STNG 14 MeV neutrons



#### Fast neutron transmission analysis: AmBe neutrons



#### Fast neutron transmission analysis: AmBe neutrons



#### Examples of unfolding of elemental ratios with FNTA signatures



#### Examples of unfolding of elemental ratios with FNTA signatures



#### Prompt gamma analysis (PGA) to augment FNTA



#### Multimodal (neutron and gamma ray) elemental "signatures"





### **Example: reconstruction of Al<sub>2</sub>O<sub>3</sub>**



AccelApp<sup>24</sup>

#### Summary and present work

- Transmitted neutron signatures of all elements of interest have been measured and simulated for neutrons produced by a D-T sealed tube neutron generator and <sup>241</sup>Am-Be source.
- Number of atoms of each element in multi-elemental samples were determined using an iterative unfolding algorithm within 10%.
- Prompt gamma ray signatures measured for each element are distinctive and enhance the sensitivity of the multimodal technique when combined with neutron transmission analyses.
- The addition of transmitted gamma ray signatures is being explored to improve distinction between high mass elements.



#### **ThermoFisher** SCIENTIFIC

## MP 320 neutron generator

